peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/ndimage
/_morphology.py
# Copyright (C) 2003-2005 Peter J. Verveer | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# 3. The name of the author may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import warnings | |
import operator | |
import numpy | |
from . import _ni_support | |
from . import _nd_image | |
from . import _filters | |
__all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion', | |
'binary_dilation', 'binary_opening', 'binary_closing', | |
'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes', | |
'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing', | |
'morphological_gradient', 'morphological_laplace', 'white_tophat', | |
'black_tophat', 'distance_transform_bf', 'distance_transform_cdt', | |
'distance_transform_edt'] | |
def _center_is_true(structure, origin): | |
structure = numpy.array(structure) | |
coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape, | |
origin)]) | |
return bool(structure[coor]) | |
def iterate_structure(structure, iterations, origin=None): | |
""" | |
Iterate a structure by dilating it with itself. | |
Parameters | |
---------- | |
structure : array_like | |
Structuring element (an array of bools, for example), to be dilated with | |
itself. | |
iterations : int | |
number of dilations performed on the structure with itself | |
origin : optional | |
If origin is None, only the iterated structure is returned. If | |
not, a tuple of the iterated structure and the modified origin is | |
returned. | |
Returns | |
------- | |
iterate_structure : ndarray of bools | |
A new structuring element obtained by dilating `structure` | |
(`iterations` - 1) times with itself. | |
See Also | |
-------- | |
generate_binary_structure | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> struct = ndimage.generate_binary_structure(2, 1) | |
>>> struct.astype(int) | |
array([[0, 1, 0], | |
[1, 1, 1], | |
[0, 1, 0]]) | |
>>> ndimage.iterate_structure(struct, 2).astype(int) | |
array([[0, 0, 1, 0, 0], | |
[0, 1, 1, 1, 0], | |
[1, 1, 1, 1, 1], | |
[0, 1, 1, 1, 0], | |
[0, 0, 1, 0, 0]]) | |
>>> ndimage.iterate_structure(struct, 3).astype(int) | |
array([[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[1, 1, 1, 1, 1, 1, 1], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0]]) | |
""" | |
structure = numpy.asarray(structure) | |
if iterations < 2: | |
return structure.copy() | |
ni = iterations - 1 | |
shape = [ii + ni * (ii - 1) for ii in structure.shape] | |
pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))] | |
slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None) | |
for ii in range(len(shape))) | |
out = numpy.zeros(shape, bool) | |
out[slc] = structure != 0 | |
out = binary_dilation(out, structure, iterations=ni) | |
if origin is None: | |
return out | |
else: | |
origin = _ni_support._normalize_sequence(origin, structure.ndim) | |
origin = [iterations * o for o in origin] | |
return out, origin | |
def generate_binary_structure(rank, connectivity): | |
""" | |
Generate a binary structure for binary morphological operations. | |
Parameters | |
---------- | |
rank : int | |
Number of dimensions of the array to which the structuring element | |
will be applied, as returned by `np.ndim`. | |
connectivity : int | |
`connectivity` determines which elements of the output array belong | |
to the structure, i.e., are considered as neighbors of the central | |
element. Elements up to a squared distance of `connectivity` from | |
the center are considered neighbors. `connectivity` may range from 1 | |
(no diagonal elements are neighbors) to `rank` (all elements are | |
neighbors). | |
Returns | |
------- | |
output : ndarray of bools | |
Structuring element which may be used for binary morphological | |
operations, with `rank` dimensions and all dimensions equal to 3. | |
See Also | |
-------- | |
iterate_structure, binary_dilation, binary_erosion | |
Notes | |
----- | |
`generate_binary_structure` can only create structuring elements with | |
dimensions equal to 3, i.e., minimal dimensions. For larger structuring | |
elements, that are useful e.g., for eroding large objects, one may either | |
use `iterate_structure`, or create directly custom arrays with | |
numpy functions such as `numpy.ones`. | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> struct = ndimage.generate_binary_structure(2, 1) | |
>>> struct | |
array([[False, True, False], | |
[ True, True, True], | |
[False, True, False]], dtype=bool) | |
>>> a = np.zeros((5,5)) | |
>>> a[2, 2] = 1 | |
>>> a | |
array([[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 0., 0., 0.]]) | |
>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype) | |
>>> b | |
array([[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 0., 0., 0., 0.]]) | |
>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype) | |
array([[ 0., 0., 1., 0., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 1., 1., 1., 1., 1.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 0., 1., 0., 0.]]) | |
>>> struct = ndimage.generate_binary_structure(2, 2) | |
>>> struct | |
array([[ True, True, True], | |
[ True, True, True], | |
[ True, True, True]], dtype=bool) | |
>>> struct = ndimage.generate_binary_structure(3, 1) | |
>>> struct # no diagonal elements | |
array([[[False, False, False], | |
[False, True, False], | |
[False, False, False]], | |
[[False, True, False], | |
[ True, True, True], | |
[False, True, False]], | |
[[False, False, False], | |
[False, True, False], | |
[False, False, False]]], dtype=bool) | |
""" | |
if connectivity < 1: | |
connectivity = 1 | |
if rank < 1: | |
return numpy.array(True, dtype=bool) | |
output = numpy.fabs(numpy.indices([3] * rank) - 1) | |
output = numpy.add.reduce(output, 0) | |
return output <= connectivity | |
def _binary_erosion(input, structure, iterations, mask, output, | |
border_value, origin, invert, brute_force): | |
try: | |
iterations = operator.index(iterations) | |
except TypeError as e: | |
raise TypeError('iterations parameter should be an integer') from e | |
input = numpy.asarray(input) | |
if numpy.iscomplexobj(input): | |
raise TypeError('Complex type not supported') | |
if structure is None: | |
structure = generate_binary_structure(input.ndim, 1) | |
else: | |
structure = numpy.asarray(structure, dtype=bool) | |
if structure.ndim != input.ndim: | |
raise RuntimeError('structure and input must have same dimensionality') | |
if not structure.flags.contiguous: | |
structure = structure.copy() | |
if numpy.prod(structure.shape, axis=0) < 1: | |
raise RuntimeError('structure must not be empty') | |
if mask is not None: | |
mask = numpy.asarray(mask) | |
if mask.shape != input.shape: | |
raise RuntimeError('mask and input must have equal sizes') | |
origin = _ni_support._normalize_sequence(origin, input.ndim) | |
cit = _center_is_true(structure, origin) | |
if isinstance(output, numpy.ndarray): | |
if numpy.iscomplexobj(output): | |
raise TypeError('Complex output type not supported') | |
else: | |
output = bool | |
output = _ni_support._get_output(output, input) | |
temp_needed = numpy.may_share_memory(input, output) | |
if temp_needed: | |
# input and output arrays cannot share memory | |
temp = output | |
output = _ni_support._get_output(output.dtype, input) | |
if iterations == 1: | |
_nd_image.binary_erosion(input, structure, mask, output, | |
border_value, origin, invert, cit, 0) | |
elif cit and not brute_force: | |
changed, coordinate_list = _nd_image.binary_erosion( | |
input, structure, mask, output, | |
border_value, origin, invert, cit, 1) | |
structure = structure[tuple([slice(None, None, -1)] * | |
structure.ndim)] | |
for ii in range(len(origin)): | |
origin[ii] = -origin[ii] | |
if not structure.shape[ii] & 1: | |
origin[ii] -= 1 | |
if mask is not None: | |
mask = numpy.asarray(mask, dtype=numpy.int8) | |
if not structure.flags.contiguous: | |
structure = structure.copy() | |
_nd_image.binary_erosion2(output, structure, mask, iterations - 1, | |
origin, invert, coordinate_list) | |
else: | |
tmp_in = numpy.empty_like(input, dtype=bool) | |
tmp_out = output | |
if iterations >= 1 and not iterations & 1: | |
tmp_in, tmp_out = tmp_out, tmp_in | |
changed = _nd_image.binary_erosion( | |
input, structure, mask, tmp_out, | |
border_value, origin, invert, cit, 0) | |
ii = 1 | |
while ii < iterations or (iterations < 1 and changed): | |
tmp_in, tmp_out = tmp_out, tmp_in | |
changed = _nd_image.binary_erosion( | |
tmp_in, structure, mask, tmp_out, | |
border_value, origin, invert, cit, 0) | |
ii += 1 | |
if temp_needed: | |
temp[...] = output | |
output = temp | |
return output | |
def binary_erosion(input, structure=None, iterations=1, mask=None, output=None, | |
border_value=0, origin=0, brute_force=False): | |
""" | |
Multidimensional binary erosion with a given structuring element. | |
Binary erosion is a mathematical morphology operation used for image | |
processing. | |
Parameters | |
---------- | |
input : array_like | |
Binary image to be eroded. Non-zero (True) elements form | |
the subset to be eroded. | |
structure : array_like, optional | |
Structuring element used for the erosion. Non-zero elements are | |
considered True. If no structuring element is provided, an element | |
is generated with a square connectivity equal to one. | |
iterations : int, optional | |
The erosion is repeated `iterations` times (one, by default). | |
If iterations is less than 1, the erosion is repeated until the | |
result does not change anymore. | |
mask : array_like, optional | |
If a mask is given, only those elements with a True value at | |
the corresponding mask element are modified at each iteration. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
border_value : int (cast to 0 or 1), optional | |
Value at the border in the output array. | |
origin : int or tuple of ints, optional | |
Placement of the filter, by default 0. | |
brute_force : boolean, optional | |
Memory condition: if False, only the pixels whose value was changed in | |
the last iteration are tracked as candidates to be updated (eroded) in | |
the current iteration; if True all pixels are considered as candidates | |
for erosion, regardless of what happened in the previous iteration. | |
False by default. | |
Returns | |
------- | |
binary_erosion : ndarray of bools | |
Erosion of the input by the structuring element. | |
See Also | |
-------- | |
grey_erosion, binary_dilation, binary_closing, binary_opening, | |
generate_binary_structure | |
Notes | |
----- | |
Erosion [1]_ is a mathematical morphology operation [2]_ that uses a | |
structuring element for shrinking the shapes in an image. The binary | |
erosion of an image by a structuring element is the locus of the points | |
where a superimposition of the structuring element centered on the point | |
is entirely contained in the set of non-zero elements of the image. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29 | |
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[1:6, 2:5] = 1 | |
>>> a | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.binary_erosion(a).astype(a.dtype) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> #Erosion removes objects smaller than the structure | |
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
""" | |
return _binary_erosion(input, structure, iterations, mask, | |
output, border_value, origin, 0, brute_force) | |
def binary_dilation(input, structure=None, iterations=1, mask=None, | |
output=None, border_value=0, origin=0, | |
brute_force=False): | |
""" | |
Multidimensional binary dilation with the given structuring element. | |
Parameters | |
---------- | |
input : array_like | |
Binary array_like to be dilated. Non-zero (True) elements form | |
the subset to be dilated. | |
structure : array_like, optional | |
Structuring element used for the dilation. Non-zero elements are | |
considered True. If no structuring element is provided an element | |
is generated with a square connectivity equal to one. | |
iterations : int, optional | |
The dilation is repeated `iterations` times (one, by default). | |
If iterations is less than 1, the dilation is repeated until the | |
result does not change anymore. Only an integer of iterations is | |
accepted. | |
mask : array_like, optional | |
If a mask is given, only those elements with a True value at | |
the corresponding mask element are modified at each iteration. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
border_value : int (cast to 0 or 1), optional | |
Value at the border in the output array. | |
origin : int or tuple of ints, optional | |
Placement of the filter, by default 0. | |
brute_force : boolean, optional | |
Memory condition: if False, only the pixels whose value was changed in | |
the last iteration are tracked as candidates to be updated (dilated) | |
in the current iteration; if True all pixels are considered as | |
candidates for dilation, regardless of what happened in the previous | |
iteration. False by default. | |
Returns | |
------- | |
binary_dilation : ndarray of bools | |
Dilation of the input by the structuring element. | |
See Also | |
-------- | |
grey_dilation, binary_erosion, binary_closing, binary_opening, | |
generate_binary_structure | |
Notes | |
----- | |
Dilation [1]_ is a mathematical morphology operation [2]_ that uses a | |
structuring element for expanding the shapes in an image. The binary | |
dilation of an image by a structuring element is the locus of the points | |
covered by the structuring element, when its center lies within the | |
non-zero points of the image. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29 | |
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((5, 5)) | |
>>> a[2, 2] = 1 | |
>>> a | |
array([[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 0., 0., 0.]]) | |
>>> ndimage.binary_dilation(a) | |
array([[False, False, False, False, False], | |
[False, False, True, False, False], | |
[False, True, True, True, False], | |
[False, False, True, False, False], | |
[False, False, False, False, False]], dtype=bool) | |
>>> ndimage.binary_dilation(a).astype(a.dtype) | |
array([[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 0., 0., 0., 0.]]) | |
>>> # 3x3 structuring element with connectivity 1, used by default | |
>>> struct1 = ndimage.generate_binary_structure(2, 1) | |
>>> struct1 | |
array([[False, True, False], | |
[ True, True, True], | |
[False, True, False]], dtype=bool) | |
>>> # 3x3 structuring element with connectivity 2 | |
>>> struct2 = ndimage.generate_binary_structure(2, 2) | |
>>> struct2 | |
array([[ True, True, True], | |
[ True, True, True], | |
[ True, True, True]], dtype=bool) | |
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype) | |
array([[ 0., 0., 0., 0., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 0., 1., 0., 0.], | |
[ 0., 0., 0., 0., 0.]]) | |
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype) | |
array([[ 0., 0., 0., 0., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 0., 0., 0., 0.]]) | |
>>> ndimage.binary_dilation(a, structure=struct1,\\ | |
... iterations=2).astype(a.dtype) | |
array([[ 0., 0., 1., 0., 0.], | |
[ 0., 1., 1., 1., 0.], | |
[ 1., 1., 1., 1., 1.], | |
[ 0., 1., 1., 1., 0.], | |
[ 0., 0., 1., 0., 0.]]) | |
""" | |
input = numpy.asarray(input) | |
if structure is None: | |
structure = generate_binary_structure(input.ndim, 1) | |
origin = _ni_support._normalize_sequence(origin, input.ndim) | |
structure = numpy.asarray(structure) | |
structure = structure[tuple([slice(None, None, -1)] * | |
structure.ndim)] | |
for ii in range(len(origin)): | |
origin[ii] = -origin[ii] | |
if not structure.shape[ii] & 1: | |
origin[ii] -= 1 | |
return _binary_erosion(input, structure, iterations, mask, | |
output, border_value, origin, 1, brute_force) | |
def binary_opening(input, structure=None, iterations=1, output=None, | |
origin=0, mask=None, border_value=0, brute_force=False): | |
""" | |
Multidimensional binary opening with the given structuring element. | |
The *opening* of an input image by a structuring element is the | |
*dilation* of the *erosion* of the image by the structuring element. | |
Parameters | |
---------- | |
input : array_like | |
Binary array_like to be opened. Non-zero (True) elements form | |
the subset to be opened. | |
structure : array_like, optional | |
Structuring element used for the opening. Non-zero elements are | |
considered True. If no structuring element is provided an element | |
is generated with a square connectivity equal to one (i.e., only | |
nearest neighbors are connected to the center, diagonally-connected | |
elements are not considered neighbors). | |
iterations : int, optional | |
The erosion step of the opening, then the dilation step are each | |
repeated `iterations` times (one, by default). If `iterations` is | |
less than 1, each operation is repeated until the result does | |
not change anymore. Only an integer of iterations is accepted. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
origin : int or tuple of ints, optional | |
Placement of the filter, by default 0. | |
mask : array_like, optional | |
If a mask is given, only those elements with a True value at | |
the corresponding mask element are modified at each iteration. | |
.. versionadded:: 1.1.0 | |
border_value : int (cast to 0 or 1), optional | |
Value at the border in the output array. | |
.. versionadded:: 1.1.0 | |
brute_force : boolean, optional | |
Memory condition: if False, only the pixels whose value was changed in | |
the last iteration are tracked as candidates to be updated in the | |
current iteration; if true all pixels are considered as candidates for | |
update, regardless of what happened in the previous iteration. | |
False by default. | |
.. versionadded:: 1.1.0 | |
Returns | |
------- | |
binary_opening : ndarray of bools | |
Opening of the input by the structuring element. | |
See Also | |
-------- | |
grey_opening, binary_closing, binary_erosion, binary_dilation, | |
generate_binary_structure | |
Notes | |
----- | |
*Opening* [1]_ is a mathematical morphology operation [2]_ that | |
consists in the succession of an erosion and a dilation of the | |
input with the same structuring element. Opening, therefore, removes | |
objects smaller than the structuring element. | |
Together with *closing* (`binary_closing`), opening can be used for | |
noise removal. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29 | |
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((5,5), dtype=int) | |
>>> a[1:4, 1:4] = 1; a[4, 4] = 1 | |
>>> a | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 1]]) | |
>>> # Opening removes small objects | |
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> # Opening can also smooth corners | |
>>> ndimage.binary_opening(a).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> # Opening is the dilation of the erosion of the input | |
>>> ndimage.binary_erosion(a).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0]]) | |
""" | |
input = numpy.asarray(input) | |
if structure is None: | |
rank = input.ndim | |
structure = generate_binary_structure(rank, 1) | |
tmp = binary_erosion(input, structure, iterations, mask, None, | |
border_value, origin, brute_force) | |
return binary_dilation(tmp, structure, iterations, mask, output, | |
border_value, origin, brute_force) | |
def binary_closing(input, structure=None, iterations=1, output=None, | |
origin=0, mask=None, border_value=0, brute_force=False): | |
""" | |
Multidimensional binary closing with the given structuring element. | |
The *closing* of an input image by a structuring element is the | |
*erosion* of the *dilation* of the image by the structuring element. | |
Parameters | |
---------- | |
input : array_like | |
Binary array_like to be closed. Non-zero (True) elements form | |
the subset to be closed. | |
structure : array_like, optional | |
Structuring element used for the closing. Non-zero elements are | |
considered True. If no structuring element is provided an element | |
is generated with a square connectivity equal to one (i.e., only | |
nearest neighbors are connected to the center, diagonally-connected | |
elements are not considered neighbors). | |
iterations : int, optional | |
The dilation step of the closing, then the erosion step are each | |
repeated `iterations` times (one, by default). If iterations is | |
less than 1, each operations is repeated until the result does | |
not change anymore. Only an integer of iterations is accepted. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
origin : int or tuple of ints, optional | |
Placement of the filter, by default 0. | |
mask : array_like, optional | |
If a mask is given, only those elements with a True value at | |
the corresponding mask element are modified at each iteration. | |
.. versionadded:: 1.1.0 | |
border_value : int (cast to 0 or 1), optional | |
Value at the border in the output array. | |
.. versionadded:: 1.1.0 | |
brute_force : boolean, optional | |
Memory condition: if False, only the pixels whose value was changed in | |
the last iteration are tracked as candidates to be updated in the | |
current iteration; if true al pixels are considered as candidates for | |
update, regardless of what happened in the previous iteration. | |
False by default. | |
.. versionadded:: 1.1.0 | |
Returns | |
------- | |
binary_closing : ndarray of bools | |
Closing of the input by the structuring element. | |
See Also | |
-------- | |
grey_closing, binary_opening, binary_dilation, binary_erosion, | |
generate_binary_structure | |
Notes | |
----- | |
*Closing* [1]_ is a mathematical morphology operation [2]_ that | |
consists in the succession of a dilation and an erosion of the | |
input with the same structuring element. Closing therefore fills | |
holes smaller than the structuring element. | |
Together with *opening* (`binary_opening`), closing can be used for | |
noise removal. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29 | |
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((5,5), dtype=int) | |
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0 | |
>>> a | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 0, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> # Closing removes small holes | |
>>> ndimage.binary_closing(a).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> # Closing is the erosion of the dilation of the input | |
>>> ndimage.binary_dilation(a).astype(int) | |
array([[0, 1, 1, 1, 0], | |
[1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1], | |
[0, 1, 1, 1, 0]]) | |
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0 | |
>>> a | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 1, 0, 0], | |
[0, 0, 1, 0, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> # In addition to removing holes, closing can also | |
>>> # coarsen boundaries with fine hollows. | |
>>> ndimage.binary_closing(a).astype(int) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
""" | |
input = numpy.asarray(input) | |
if structure is None: | |
rank = input.ndim | |
structure = generate_binary_structure(rank, 1) | |
tmp = binary_dilation(input, structure, iterations, mask, None, | |
border_value, origin, brute_force) | |
return binary_erosion(tmp, structure, iterations, mask, output, | |
border_value, origin, brute_force) | |
def binary_hit_or_miss(input, structure1=None, structure2=None, | |
output=None, origin1=0, origin2=None): | |
""" | |
Multidimensional binary hit-or-miss transform. | |
The hit-or-miss transform finds the locations of a given pattern | |
inside the input image. | |
Parameters | |
---------- | |
input : array_like (cast to booleans) | |
Binary image where a pattern is to be detected. | |
structure1 : array_like (cast to booleans), optional | |
Part of the structuring element to be fitted to the foreground | |
(non-zero elements) of `input`. If no value is provided, a | |
structure of square connectivity 1 is chosen. | |
structure2 : array_like (cast to booleans), optional | |
Second part of the structuring element that has to miss completely | |
the foreground. If no value is provided, the complementary of | |
`structure1` is taken. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
origin1 : int or tuple of ints, optional | |
Placement of the first part of the structuring element `structure1`, | |
by default 0 for a centered structure. | |
origin2 : int or tuple of ints, optional | |
Placement of the second part of the structuring element `structure2`, | |
by default 0 for a centered structure. If a value is provided for | |
`origin1` and not for `origin2`, then `origin2` is set to `origin1`. | |
Returns | |
------- | |
binary_hit_or_miss : ndarray | |
Hit-or-miss transform of `input` with the given structuring | |
element (`structure1`, `structure2`). | |
See Also | |
-------- | |
binary_erosion | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1 | |
>>> a | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0, 0], | |
[0, 0, 0, 0, 1, 1, 0], | |
[0, 0, 0, 0, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]]) | |
>>> structure1 | |
array([[1, 0, 0], | |
[0, 1, 1], | |
[0, 1, 1]]) | |
>>> # Find the matches of structure1 in the array a | |
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> # Change the origin of the filter | |
>>> # origin1=1 is equivalent to origin1=(1,1) here | |
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\ | |
... origin1=1).astype(int) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
""" | |
input = numpy.asarray(input) | |
if structure1 is None: | |
structure1 = generate_binary_structure(input.ndim, 1) | |
if structure2 is None: | |
structure2 = numpy.logical_not(structure1) | |
origin1 = _ni_support._normalize_sequence(origin1, input.ndim) | |
if origin2 is None: | |
origin2 = origin1 | |
else: | |
origin2 = _ni_support._normalize_sequence(origin2, input.ndim) | |
tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1, | |
0, False) | |
inplace = isinstance(output, numpy.ndarray) | |
result = _binary_erosion(input, structure2, 1, None, output, 0, | |
origin2, 1, False) | |
if inplace: | |
numpy.logical_not(output, output) | |
numpy.logical_and(tmp1, output, output) | |
else: | |
numpy.logical_not(result, result) | |
return numpy.logical_and(tmp1, result) | |
def binary_propagation(input, structure=None, mask=None, | |
output=None, border_value=0, origin=0): | |
""" | |
Multidimensional binary propagation with the given structuring element. | |
Parameters | |
---------- | |
input : array_like | |
Binary image to be propagated inside `mask`. | |
structure : array_like, optional | |
Structuring element used in the successive dilations. The output | |
may depend on the structuring element, especially if `mask` has | |
several connex components. If no structuring element is | |
provided, an element is generated with a squared connectivity equal | |
to one. | |
mask : array_like, optional | |
Binary mask defining the region into which `input` is allowed to | |
propagate. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
border_value : int (cast to 0 or 1), optional | |
Value at the border in the output array. | |
origin : int or tuple of ints, optional | |
Placement of the filter, by default 0. | |
Returns | |
------- | |
binary_propagation : ndarray | |
Binary propagation of `input` inside `mask`. | |
Notes | |
----- | |
This function is functionally equivalent to calling binary_dilation | |
with the number of iterations less than one: iterative dilation until | |
the result does not change anymore. | |
The succession of an erosion and propagation inside the original image | |
can be used instead of an *opening* for deleting small objects while | |
keeping the contours of larger objects untouched. | |
References | |
---------- | |
.. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15. | |
.. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of | |
image processing", 1998 | |
ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> input = np.zeros((8, 8), dtype=int) | |
>>> input[2, 2] = 1 | |
>>> mask = np.zeros((8, 8), dtype=int) | |
>>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1 | |
>>> input | |
array([[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0]]) | |
>>> mask | |
array([[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 1, 1], | |
[0, 0, 0, 0, 0, 0, 1, 1]]) | |
>>> ndimage.binary_propagation(input, mask=mask).astype(int) | |
array([[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.binary_propagation(input, mask=mask,\\ | |
... structure=np.ones((3,3))).astype(int) | |
array([[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0]]) | |
>>> # Comparison between opening and erosion+propagation | |
>>> a = np.zeros((6,6), dtype=int) | |
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1 | |
>>> a | |
array([[1, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 1]]) | |
>>> ndimage.binary_opening(a).astype(int) | |
array([[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
>>> b = ndimage.binary_erosion(a) | |
>>> b.astype(int) | |
array([[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.binary_propagation(b, mask=a).astype(int) | |
array([[0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0]]) | |
""" | |
return binary_dilation(input, structure, -1, mask, output, | |
border_value, origin) | |
def binary_fill_holes(input, structure=None, output=None, origin=0): | |
""" | |
Fill the holes in binary objects. | |
Parameters | |
---------- | |
input : array_like | |
N-D binary array with holes to be filled | |
structure : array_like, optional | |
Structuring element used in the computation; large-size elements | |
make computations faster but may miss holes separated from the | |
background by thin regions. The default element (with a square | |
connectivity equal to one) yields the intuitive result where all | |
holes in the input have been filled. | |
output : ndarray, optional | |
Array of the same shape as input, into which the output is placed. | |
By default, a new array is created. | |
origin : int, tuple of ints, optional | |
Position of the structuring element. | |
Returns | |
------- | |
out : ndarray | |
Transformation of the initial image `input` where holes have been | |
filled. | |
See Also | |
-------- | |
binary_dilation, binary_propagation, label | |
Notes | |
----- | |
The algorithm used in this function consists in invading the complementary | |
of the shapes in `input` from the outer boundary of the image, | |
using binary dilations. Holes are not connected to the boundary and are | |
therefore not invaded. The result is the complementary subset of the | |
invaded region. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((5, 5), dtype=int) | |
>>> a[1:4, 1:4] = 1 | |
>>> a[2,2] = 0 | |
>>> a | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 0, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> ndimage.binary_fill_holes(a).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
>>> # Too big structuring element | |
>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int) | |
array([[0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 0], | |
[0, 1, 0, 1, 0], | |
[0, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0]]) | |
""" | |
mask = numpy.logical_not(input) | |
tmp = numpy.zeros(mask.shape, bool) | |
inplace = isinstance(output, numpy.ndarray) | |
if inplace: | |
binary_dilation(tmp, structure, -1, mask, output, 1, origin) | |
numpy.logical_not(output, output) | |
else: | |
output = binary_dilation(tmp, structure, -1, mask, None, 1, | |
origin) | |
numpy.logical_not(output, output) | |
return output | |
def grey_erosion(input, size=None, footprint=None, structure=None, | |
output=None, mode="reflect", cval=0.0, origin=0): | |
""" | |
Calculate a greyscale erosion, using either a structuring element, | |
or a footprint corresponding to a flat structuring element. | |
Grayscale erosion is a mathematical morphology operation. For the | |
simple case of a full and flat structuring element, it can be viewed | |
as a minimum filter over a sliding window. | |
Parameters | |
---------- | |
input : array_like | |
Array over which the grayscale erosion is to be computed. | |
size : tuple of ints | |
Shape of a flat and full structuring element used for the grayscale | |
erosion. Optional if `footprint` or `structure` is provided. | |
footprint : array of ints, optional | |
Positions of non-infinite elements of a flat structuring element | |
used for the grayscale erosion. Non-zero values give the set of | |
neighbors of the center over which the minimum is chosen. | |
structure : array of ints, optional | |
Structuring element used for the grayscale erosion. `structure` | |
may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the erosion may be provided. | |
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. Default | |
is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default 0 | |
Returns | |
------- | |
output : ndarray | |
Grayscale erosion of `input`. | |
See Also | |
-------- | |
binary_erosion, grey_dilation, grey_opening, grey_closing | |
generate_binary_structure, minimum_filter | |
Notes | |
----- | |
The grayscale erosion of an image input by a structuring element s defined | |
over a domain E is given by: | |
(input+s)(x) = min {input(y) - s(x-y), for y in E} | |
In particular, for structuring elements defined as | |
s(y) = 0 for y in E, the grayscale erosion computes the minimum of the | |
input image inside a sliding window defined by E. | |
Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29 | |
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[1:6, 1:6] = 3 | |
>>> a[4,4] = 2; a[2,3] = 1 | |
>>> a | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 3, 3, 3, 3, 3, 0], | |
[0, 3, 3, 1, 3, 3, 0], | |
[0, 3, 3, 3, 3, 3, 0], | |
[0, 3, 3, 3, 2, 3, 0], | |
[0, 3, 3, 3, 3, 3, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.grey_erosion(a, size=(3,3)) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 3, 2, 2, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> footprint = ndimage.generate_binary_structure(2, 1) | |
>>> footprint | |
array([[False, True, False], | |
[ True, True, True], | |
[False, True, False]], dtype=bool) | |
>>> # Diagonally-connected elements are not considered neighbors | |
>>> ndimage.grey_erosion(a, footprint=footprint) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 3, 1, 2, 0, 0], | |
[0, 0, 3, 2, 2, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
""" | |
if size is None and footprint is None and structure is None: | |
raise ValueError("size, footprint, or structure must be specified") | |
return _filters._min_or_max_filter(input, size, footprint, structure, | |
output, mode, cval, origin, 1) | |
def grey_dilation(input, size=None, footprint=None, structure=None, | |
output=None, mode="reflect", cval=0.0, origin=0): | |
""" | |
Calculate a greyscale dilation, using either a structuring element, | |
or a footprint corresponding to a flat structuring element. | |
Grayscale dilation is a mathematical morphology operation. For the | |
simple case of a full and flat structuring element, it can be viewed | |
as a maximum filter over a sliding window. | |
Parameters | |
---------- | |
input : array_like | |
Array over which the grayscale dilation is to be computed. | |
size : tuple of ints | |
Shape of a flat and full structuring element used for the grayscale | |
dilation. Optional if `footprint` or `structure` is provided. | |
footprint : array of ints, optional | |
Positions of non-infinite elements of a flat structuring element | |
used for the grayscale dilation. Non-zero values give the set of | |
neighbors of the center over which the maximum is chosen. | |
structure : array of ints, optional | |
Structuring element used for the grayscale dilation. `structure` | |
may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the dilation may be provided. | |
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. Default | |
is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default 0 | |
Returns | |
------- | |
grey_dilation : ndarray | |
Grayscale dilation of `input`. | |
See Also | |
-------- | |
binary_dilation, grey_erosion, grey_closing, grey_opening | |
generate_binary_structure, maximum_filter | |
Notes | |
----- | |
The grayscale dilation of an image input by a structuring element s defined | |
over a domain E is given by: | |
(input+s)(x) = max {input(y) + s(x-y), for y in E} | |
In particular, for structuring elements defined as | |
s(y) = 0 for y in E, the grayscale dilation computes the maximum of the | |
input image inside a sliding window defined by E. | |
Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29 | |
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[2:5, 2:5] = 1 | |
>>> a[4,4] = 2; a[2,3] = 3 | |
>>> a | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 3, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 2, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.grey_dilation(a, size=(3,3)) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 3, 3, 3, 2, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.grey_dilation(a, footprint=np.ones((3,3))) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 3, 3, 3, 2, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> s = ndimage.generate_binary_structure(2,1) | |
>>> s | |
array([[False, True, False], | |
[ True, True, True], | |
[False, True, False]], dtype=bool) | |
>>> ndimage.grey_dilation(a, footprint=s) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 3, 1, 0, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 1, 3, 2, 1, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 0, 1, 1, 2, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3))) | |
array([[1, 1, 1, 1, 1, 1, 1], | |
[1, 2, 4, 4, 4, 2, 1], | |
[1, 2, 4, 4, 4, 2, 1], | |
[1, 2, 4, 4, 4, 3, 1], | |
[1, 2, 2, 3, 3, 3, 1], | |
[1, 2, 2, 3, 3, 3, 1], | |
[1, 1, 1, 1, 1, 1, 1]]) | |
""" | |
if size is None and footprint is None and structure is None: | |
raise ValueError("size, footprint, or structure must be specified") | |
if structure is not None: | |
structure = numpy.asarray(structure) | |
structure = structure[tuple([slice(None, None, -1)] * | |
structure.ndim)] | |
if footprint is not None: | |
footprint = numpy.asarray(footprint) | |
footprint = footprint[tuple([slice(None, None, -1)] * | |
footprint.ndim)] | |
input = numpy.asarray(input) | |
origin = _ni_support._normalize_sequence(origin, input.ndim) | |
for ii in range(len(origin)): | |
origin[ii] = -origin[ii] | |
if footprint is not None: | |
sz = footprint.shape[ii] | |
elif structure is not None: | |
sz = structure.shape[ii] | |
elif numpy.isscalar(size): | |
sz = size | |
else: | |
sz = size[ii] | |
if not sz & 1: | |
origin[ii] -= 1 | |
return _filters._min_or_max_filter(input, size, footprint, structure, | |
output, mode, cval, origin, 0) | |
def grey_opening(input, size=None, footprint=None, structure=None, | |
output=None, mode="reflect", cval=0.0, origin=0): | |
""" | |
Multidimensional grayscale opening. | |
A grayscale opening consists in the succession of a grayscale erosion, | |
and a grayscale dilation. | |
Parameters | |
---------- | |
input : array_like | |
Array over which the grayscale opening is to be computed. | |
size : tuple of ints | |
Shape of a flat and full structuring element used for the grayscale | |
opening. Optional if `footprint` or `structure` is provided. | |
footprint : array of ints, optional | |
Positions of non-infinite elements of a flat structuring element | |
used for the grayscale opening. | |
structure : array of ints, optional | |
Structuring element used for the grayscale opening. `structure` | |
may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the opening may be provided. | |
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. Default | |
is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default 0 | |
Returns | |
------- | |
grey_opening : ndarray | |
Result of the grayscale opening of `input` with `structure`. | |
See Also | |
-------- | |
binary_opening, grey_dilation, grey_erosion, grey_closing | |
generate_binary_structure | |
Notes | |
----- | |
The action of a grayscale opening with a flat structuring element amounts | |
to smoothen high local maxima, whereas binary opening erases small objects. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.arange(36).reshape((6,6)) | |
>>> a[3, 3] = 50 | |
>>> a | |
array([[ 0, 1, 2, 3, 4, 5], | |
[ 6, 7, 8, 9, 10, 11], | |
[12, 13, 14, 15, 16, 17], | |
[18, 19, 20, 50, 22, 23], | |
[24, 25, 26, 27, 28, 29], | |
[30, 31, 32, 33, 34, 35]]) | |
>>> ndimage.grey_opening(a, size=(3,3)) | |
array([[ 0, 1, 2, 3, 4, 4], | |
[ 6, 7, 8, 9, 10, 10], | |
[12, 13, 14, 15, 16, 16], | |
[18, 19, 20, 22, 22, 22], | |
[24, 25, 26, 27, 28, 28], | |
[24, 25, 26, 27, 28, 28]]) | |
>>> # Note that the local maximum a[3,3] has disappeared | |
""" | |
if (size is not None) and (footprint is not None): | |
warnings.warn("ignoring size because footprint is set", | |
UserWarning, stacklevel=2) | |
tmp = grey_erosion(input, size, footprint, structure, None, mode, | |
cval, origin) | |
return grey_dilation(tmp, size, footprint, structure, output, mode, | |
cval, origin) | |
def grey_closing(input, size=None, footprint=None, structure=None, | |
output=None, mode="reflect", cval=0.0, origin=0): | |
""" | |
Multidimensional grayscale closing. | |
A grayscale closing consists in the succession of a grayscale dilation, | |
and a grayscale erosion. | |
Parameters | |
---------- | |
input : array_like | |
Array over which the grayscale closing is to be computed. | |
size : tuple of ints | |
Shape of a flat and full structuring element used for the grayscale | |
closing. Optional if `footprint` or `structure` is provided. | |
footprint : array of ints, optional | |
Positions of non-infinite elements of a flat structuring element | |
used for the grayscale closing. | |
structure : array of ints, optional | |
Structuring element used for the grayscale closing. `structure` | |
may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the closing may be provided. | |
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. Default | |
is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default 0 | |
Returns | |
------- | |
grey_closing : ndarray | |
Result of the grayscale closing of `input` with `structure`. | |
See Also | |
-------- | |
binary_closing, grey_dilation, grey_erosion, grey_opening, | |
generate_binary_structure | |
Notes | |
----- | |
The action of a grayscale closing with a flat structuring element amounts | |
to smoothen deep local minima, whereas binary closing fills small holes. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.arange(36).reshape((6,6)) | |
>>> a[3,3] = 0 | |
>>> a | |
array([[ 0, 1, 2, 3, 4, 5], | |
[ 6, 7, 8, 9, 10, 11], | |
[12, 13, 14, 15, 16, 17], | |
[18, 19, 20, 0, 22, 23], | |
[24, 25, 26, 27, 28, 29], | |
[30, 31, 32, 33, 34, 35]]) | |
>>> ndimage.grey_closing(a, size=(3,3)) | |
array([[ 7, 7, 8, 9, 10, 11], | |
[ 7, 7, 8, 9, 10, 11], | |
[13, 13, 14, 15, 16, 17], | |
[19, 19, 20, 20, 22, 23], | |
[25, 25, 26, 27, 28, 29], | |
[31, 31, 32, 33, 34, 35]]) | |
>>> # Note that the local minimum a[3,3] has disappeared | |
""" | |
if (size is not None) and (footprint is not None): | |
warnings.warn("ignoring size because footprint is set", | |
UserWarning, stacklevel=2) | |
tmp = grey_dilation(input, size, footprint, structure, None, mode, | |
cval, origin) | |
return grey_erosion(tmp, size, footprint, structure, output, mode, | |
cval, origin) | |
def morphological_gradient(input, size=None, footprint=None, structure=None, | |
output=None, mode="reflect", cval=0.0, origin=0): | |
""" | |
Multidimensional morphological gradient. | |
The morphological gradient is calculated as the difference between a | |
dilation and an erosion of the input with a given structuring element. | |
Parameters | |
---------- | |
input : array_like | |
Array over which to compute the morphlogical gradient. | |
size : tuple of ints | |
Shape of a flat and full structuring element used for the mathematical | |
morphology operations. Optional if `footprint` or `structure` is | |
provided. A larger `size` yields a more blurred gradient. | |
footprint : array of ints, optional | |
Positions of non-infinite elements of a flat structuring element | |
used for the morphology operations. Larger footprints | |
give a more blurred morphological gradient. | |
structure : array of ints, optional | |
Structuring element used for the morphology operations. | |
`structure` may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the morphological gradient | |
may be provided. | |
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. Default | |
is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default 0 | |
Returns | |
------- | |
morphological_gradient : ndarray | |
Morphological gradient of `input`. | |
See Also | |
-------- | |
grey_dilation, grey_erosion, gaussian_gradient_magnitude | |
Notes | |
----- | |
For a flat structuring element, the morphological gradient | |
computed at a given point corresponds to the maximal difference | |
between elements of the input among the elements covered by the | |
structuring element centered on the point. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[2:5, 2:5] = 1 | |
>>> ndimage.morphological_gradient(a, size=(3,3)) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 1, 0, 1, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> # The morphological gradient is computed as the difference | |
>>> # between a dilation and an erosion | |
>>> ndimage.grey_dilation(a, size=(3,3)) -\\ | |
... ndimage.grey_erosion(a, size=(3,3)) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 1, 0, 1, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> a = np.zeros((7,7), dtype=int) | |
>>> a[2:5, 2:5] = 1 | |
>>> a[4,4] = 2; a[2,3] = 3 | |
>>> a | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 3, 1, 0, 0], | |
[0, 0, 1, 1, 1, 0, 0], | |
[0, 0, 1, 1, 2, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
>>> ndimage.morphological_gradient(a, size=(3,3)) | |
array([[0, 0, 0, 0, 0, 0, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 3, 3, 3, 1, 0], | |
[0, 1, 3, 2, 3, 2, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 1, 1, 2, 2, 2, 0], | |
[0, 0, 0, 0, 0, 0, 0]]) | |
""" | |
tmp = grey_dilation(input, size, footprint, structure, None, mode, | |
cval, origin) | |
if isinstance(output, numpy.ndarray): | |
grey_erosion(input, size, footprint, structure, output, mode, | |
cval, origin) | |
return numpy.subtract(tmp, output, output) | |
else: | |
return (tmp - grey_erosion(input, size, footprint, structure, | |
None, mode, cval, origin)) | |
def morphological_laplace(input, size=None, footprint=None, | |
structure=None, output=None, | |
mode="reflect", cval=0.0, origin=0): | |
""" | |
Multidimensional morphological laplace. | |
Parameters | |
---------- | |
input : array_like | |
Input. | |
size : int or sequence of ints, optional | |
See `structure`. | |
footprint : bool or ndarray, optional | |
See `structure`. | |
structure : structure, optional | |
Either `size`, `footprint`, or the `structure` must be provided. | |
output : ndarray, optional | |
An output array can optionally be provided. | |
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional | |
The mode parameter determines how the array borders are handled. | |
For 'constant' mode, values beyond borders are set to be `cval`. | |
Default is 'reflect'. | |
cval : scalar, optional | |
Value to fill past edges of input if mode is 'constant'. | |
Default is 0.0 | |
origin : origin, optional | |
The origin parameter controls the placement of the filter. | |
Returns | |
------- | |
morphological_laplace : ndarray | |
Output | |
""" | |
tmp1 = grey_dilation(input, size, footprint, structure, None, mode, | |
cval, origin) | |
if isinstance(output, numpy.ndarray): | |
grey_erosion(input, size, footprint, structure, output, mode, | |
cval, origin) | |
numpy.add(tmp1, output, output) | |
numpy.subtract(output, input, output) | |
return numpy.subtract(output, input, output) | |
else: | |
tmp2 = grey_erosion(input, size, footprint, structure, None, mode, | |
cval, origin) | |
numpy.add(tmp1, tmp2, tmp2) | |
numpy.subtract(tmp2, input, tmp2) | |
numpy.subtract(tmp2, input, tmp2) | |
return tmp2 | |
def white_tophat(input, size=None, footprint=None, structure=None, | |
output=None, mode="reflect", cval=0.0, origin=0): | |
""" | |
Multidimensional white tophat filter. | |
Parameters | |
---------- | |
input : array_like | |
Input. | |
size : tuple of ints | |
Shape of a flat and full structuring element used for the filter. | |
Optional if `footprint` or `structure` is provided. | |
footprint : array of ints, optional | |
Positions of elements of a flat structuring element | |
used for the white tophat filter. | |
structure : array of ints, optional | |
Structuring element used for the filter. `structure` | |
may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the filter may be provided. | |
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. | |
Default is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default is 0. | |
Returns | |
------- | |
output : ndarray | |
Result of the filter of `input` with `structure`. | |
See Also | |
-------- | |
black_tophat | |
Examples | |
-------- | |
Subtract gray background from a bright peak. | |
>>> from scipy.ndimage import generate_binary_structure, white_tophat | |
>>> import numpy as np | |
>>> square = generate_binary_structure(rank=2, connectivity=3) | |
>>> bright_on_gray = np.array([[2, 3, 3, 3, 2], | |
... [3, 4, 5, 4, 3], | |
... [3, 5, 9, 5, 3], | |
... [3, 4, 5, 4, 3], | |
... [2, 3, 3, 3, 2]]) | |
>>> white_tophat(input=bright_on_gray, structure=square) | |
array([[0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[0, 1, 5, 1, 0], | |
[0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0]]) | |
""" | |
if (size is not None) and (footprint is not None): | |
warnings.warn("ignoring size because footprint is set", | |
UserWarning, stacklevel=2) | |
tmp = grey_erosion(input, size, footprint, structure, None, mode, | |
cval, origin) | |
tmp = grey_dilation(tmp, size, footprint, structure, output, mode, | |
cval, origin) | |
if tmp is None: | |
tmp = output | |
if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_: | |
numpy.bitwise_xor(input, tmp, out=tmp) | |
else: | |
numpy.subtract(input, tmp, out=tmp) | |
return tmp | |
def black_tophat(input, size=None, footprint=None, | |
structure=None, output=None, mode="reflect", | |
cval=0.0, origin=0): | |
""" | |
Multidimensional black tophat filter. | |
Parameters | |
---------- | |
input : array_like | |
Input. | |
size : tuple of ints, optional | |
Shape of a flat and full structuring element used for the filter. | |
Optional if `footprint` or `structure` is provided. | |
footprint : array of ints, optional | |
Positions of non-infinite elements of a flat structuring element | |
used for the black tophat filter. | |
structure : array of ints, optional | |
Structuring element used for the filter. `structure` | |
may be a non-flat structuring element. | |
output : array, optional | |
An array used for storing the output of the filter may be provided. | |
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional | |
The `mode` parameter determines how the array borders are | |
handled, where `cval` is the value when mode is equal to | |
'constant'. Default is 'reflect' | |
cval : scalar, optional | |
Value to fill past edges of input if `mode` is 'constant'. Default | |
is 0.0. | |
origin : scalar, optional | |
The `origin` parameter controls the placement of the filter. | |
Default 0 | |
Returns | |
------- | |
black_tophat : ndarray | |
Result of the filter of `input` with `structure`. | |
See Also | |
-------- | |
white_tophat, grey_opening, grey_closing | |
Examples | |
-------- | |
Change dark peak to bright peak and subtract background. | |
>>> from scipy.ndimage import generate_binary_structure, black_tophat | |
>>> import numpy as np | |
>>> square = generate_binary_structure(rank=2, connectivity=3) | |
>>> dark_on_gray = np.array([[7, 6, 6, 6, 7], | |
... [6, 5, 4, 5, 6], | |
... [6, 4, 0, 4, 6], | |
... [6, 5, 4, 5, 6], | |
... [7, 6, 6, 6, 7]]) | |
>>> black_tophat(input=dark_on_gray, structure=square) | |
array([[0, 0, 0, 0, 0], | |
[0, 0, 1, 0, 0], | |
[0, 1, 5, 1, 0], | |
[0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0]]) | |
""" | |
if (size is not None) and (footprint is not None): | |
warnings.warn("ignoring size because footprint is set", | |
UserWarning, stacklevel=2) | |
tmp = grey_dilation(input, size, footprint, structure, None, mode, | |
cval, origin) | |
tmp = grey_erosion(tmp, size, footprint, structure, output, mode, | |
cval, origin) | |
if tmp is None: | |
tmp = output | |
if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_: | |
numpy.bitwise_xor(tmp, input, out=tmp) | |
else: | |
numpy.subtract(tmp, input, out=tmp) | |
return tmp | |
def distance_transform_bf(input, metric="euclidean", sampling=None, | |
return_distances=True, return_indices=False, | |
distances=None, indices=None): | |
""" | |
Distance transform function by a brute force algorithm. | |
This function calculates the distance transform of the `input`, by | |
replacing each foreground (non-zero) element, with its | |
shortest distance to the background (any zero-valued element). | |
In addition to the distance transform, the feature transform can | |
be calculated. In this case the index of the closest background | |
element to each foreground element is returned in a separate array. | |
Parameters | |
---------- | |
input : array_like | |
Input | |
metric : {'euclidean', 'taxicab', 'chessboard'}, optional | |
'cityblock' and 'manhattan' are also valid, and map to 'taxicab'. | |
The default is 'euclidean'. | |
sampling : float, or sequence of float, optional | |
This parameter is only used when `metric` is 'euclidean'. | |
Spacing of elements along each dimension. If a sequence, must be of | |
length equal to the input rank; if a single number, this is used for | |
all axes. If not specified, a grid spacing of unity is implied. | |
return_distances : bool, optional | |
Whether to calculate the distance transform. | |
Default is True. | |
return_indices : bool, optional | |
Whether to calculate the feature transform. | |
Default is False. | |
distances : ndarray, optional | |
An output array to store the calculated distance transform, instead of | |
returning it. | |
`return_distances` must be True. | |
It must be the same shape as `input`, and of type float64 if `metric` | |
is 'euclidean', uint32 otherwise. | |
indices : int32 ndarray, optional | |
An output array to store the calculated feature transform, instead of | |
returning it. | |
`return_indicies` must be True. | |
Its shape must be `(input.ndim,) + input.shape`. | |
Returns | |
------- | |
distances : ndarray, optional | |
The calculated distance transform. Returned only when | |
`return_distances` is True and `distances` is not supplied. | |
It will have the same shape as the input array. | |
indices : int32 ndarray, optional | |
The calculated feature transform. It has an input-shaped array for each | |
dimension of the input. See distance_transform_edt documentation for an | |
example. | |
Returned only when `return_indices` is True and `indices` is not | |
supplied. | |
See Also | |
-------- | |
distance_transform_cdt : Faster distance transform for taxicab and | |
chessboard metrics | |
distance_transform_edt : Faster distance transform for euclidean metric | |
Notes | |
----- | |
This function employs a slow brute force algorithm. See also the | |
function `distance_transform_cdt` for more efficient taxicab [1]_ and | |
chessboard algorithms [2]_. | |
References | |
---------- | |
.. [1] Taxicab distance. Wikipedia, 2023. | |
https://en.wikipedia.org/wiki/Taxicab_geometry | |
.. [2] Chessboard distance. Wikipedia, 2023. | |
https://en.wikipedia.org/wiki/Chebyshev_distance | |
Examples | |
-------- | |
Import the necessary modules. | |
>>> import numpy as np | |
>>> from scipy.ndimage import distance_transform_bf | |
>>> import matplotlib.pyplot as plt | |
>>> from mpl_toolkits.axes_grid1 import ImageGrid | |
First, we create a toy binary image. | |
>>> def add_circle(center_x, center_y, radius, image, fillvalue=1): | |
... # fill circular area with 1 | |
... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]] | |
... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2 | |
... circle_shape = np.sqrt(circle) < radius | |
... image[circle_shape] = fillvalue | |
... return image | |
>>> image = np.zeros((100, 100), dtype=np.uint8) | |
>>> image[35:65, 20:80] = 1 | |
>>> image = add_circle(28, 65, 10, image) | |
>>> image = add_circle(37, 30, 10, image) | |
>>> image = add_circle(70, 45, 20, image) | |
>>> image = add_circle(45, 80, 10, image) | |
Next, we set up the figure. | |
>>> fig = plt.figure(figsize=(8, 8)) # set up the figure structure | |
>>> grid = ImageGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=(0.4, 0.3), | |
... label_mode="1", share_all=True, | |
... cbar_location="right", cbar_mode="each", | |
... cbar_size="7%", cbar_pad="2%") | |
>>> for ax in grid: | |
... ax.axis('off') # remove axes from images | |
The top left image is the original binary image. | |
>>> binary_image = grid[0].imshow(image, cmap='gray') | |
>>> cbar_binary_image = grid.cbar_axes[0].colorbar(binary_image) | |
>>> cbar_binary_image.set_ticks([0, 1]) | |
>>> grid[0].set_title("Binary image: foreground in white") | |
The distance transform calculates the distance between foreground pixels | |
and the image background according to a distance metric. Available metrics | |
in `distance_transform_bf` are: ``euclidean`` (default), ``taxicab`` | |
and ``chessboard``. The top right image contains the distance transform | |
based on the ``euclidean`` metric. | |
>>> distance_transform_euclidean = distance_transform_bf(image) | |
>>> euclidean_transform = grid[1].imshow(distance_transform_euclidean, | |
... cmap='gray') | |
>>> cbar_euclidean = grid.cbar_axes[1].colorbar(euclidean_transform) | |
>>> colorbar_ticks = [0, 10, 20] | |
>>> cbar_euclidean.set_ticks(colorbar_ticks) | |
>>> grid[1].set_title("Euclidean distance") | |
The lower left image contains the distance transform using the ``taxicab`` | |
metric. | |
>>> distance_transform_taxicab = distance_transform_bf(image, | |
... metric='taxicab') | |
>>> taxicab_transformation = grid[2].imshow(distance_transform_taxicab, | |
... cmap='gray') | |
>>> cbar_taxicab = grid.cbar_axes[2].colorbar(taxicab_transformation) | |
>>> cbar_taxicab.set_ticks(colorbar_ticks) | |
>>> grid[2].set_title("Taxicab distance") | |
Finally, the lower right image contains the distance transform using the | |
``chessboard`` metric. | |
>>> distance_transform_cb = distance_transform_bf(image, | |
... metric='chessboard') | |
>>> chessboard_transformation = grid[3].imshow(distance_transform_cb, | |
... cmap='gray') | |
>>> cbar_taxicab = grid.cbar_axes[3].colorbar(chessboard_transformation) | |
>>> cbar_taxicab.set_ticks(colorbar_ticks) | |
>>> grid[3].set_title("Chessboard distance") | |
>>> plt.show() | |
""" | |
ft_inplace = isinstance(indices, numpy.ndarray) | |
dt_inplace = isinstance(distances, numpy.ndarray) | |
_distance_tranform_arg_check( | |
dt_inplace, ft_inplace, return_distances, return_indices | |
) | |
tmp1 = numpy.asarray(input) != 0 | |
struct = generate_binary_structure(tmp1.ndim, tmp1.ndim) | |
tmp2 = binary_dilation(tmp1, struct) | |
tmp2 = numpy.logical_xor(tmp1, tmp2) | |
tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8) | |
metric = metric.lower() | |
if metric == 'euclidean': | |
metric = 1 | |
elif metric in ['taxicab', 'cityblock', 'manhattan']: | |
metric = 2 | |
elif metric == 'chessboard': | |
metric = 3 | |
else: | |
raise RuntimeError('distance metric not supported') | |
if sampling is not None: | |
sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim) | |
sampling = numpy.asarray(sampling, dtype=numpy.float64) | |
if not sampling.flags.contiguous: | |
sampling = sampling.copy() | |
if return_indices: | |
ft = numpy.zeros(tmp1.shape, dtype=numpy.int32) | |
else: | |
ft = None | |
if return_distances: | |
if distances is None: | |
if metric == 1: | |
dt = numpy.zeros(tmp1.shape, dtype=numpy.float64) | |
else: | |
dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32) | |
else: | |
if distances.shape != tmp1.shape: | |
raise RuntimeError('distances array has wrong shape') | |
if metric == 1: | |
if distances.dtype.type != numpy.float64: | |
raise RuntimeError('distances array must be float64') | |
else: | |
if distances.dtype.type != numpy.uint32: | |
raise RuntimeError('distances array must be uint32') | |
dt = distances | |
else: | |
dt = None | |
_nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft) | |
if return_indices: | |
if isinstance(indices, numpy.ndarray): | |
if indices.dtype.type != numpy.int32: | |
raise RuntimeError('indices array must be int32') | |
if indices.shape != (tmp1.ndim,) + tmp1.shape: | |
raise RuntimeError('indices array has wrong shape') | |
tmp2 = indices | |
else: | |
tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32) | |
ft = numpy.ravel(ft) | |
for ii in range(tmp2.shape[0]): | |
rtmp = numpy.ravel(tmp2[ii, ...])[ft] | |
rtmp.shape = tmp1.shape | |
tmp2[ii, ...] = rtmp | |
ft = tmp2 | |
# construct and return the result | |
result = [] | |
if return_distances and not dt_inplace: | |
result.append(dt) | |
if return_indices and not ft_inplace: | |
result.append(ft) | |
if len(result) == 2: | |
return tuple(result) | |
elif len(result) == 1: | |
return result[0] | |
else: | |
return None | |
def distance_transform_cdt(input, metric='chessboard', return_distances=True, | |
return_indices=False, distances=None, indices=None): | |
""" | |
Distance transform for chamfer type of transforms. | |
This function calculates the distance transform of the `input`, by | |
replacing each foreground (non-zero) element, with its | |
shortest distance to the background (any zero-valued element). | |
In addition to the distance transform, the feature transform can | |
be calculated. In this case the index of the closest background | |
element to each foreground element is returned in a separate array. | |
Parameters | |
---------- | |
input : array_like | |
Input. Values of 0 are treated as background. | |
metric : {'chessboard', 'taxicab'} or array_like, optional | |
The `metric` determines the type of chamfering that is done. If the | |
`metric` is equal to 'taxicab' a structure is generated using | |
`generate_binary_structure` with a squared distance equal to 1. If | |
the `metric` is equal to 'chessboard', a `metric` is generated | |
using `generate_binary_structure` with a squared distance equal to | |
the dimensionality of the array. These choices correspond to the | |
common interpretations of the 'taxicab' and the 'chessboard' | |
distance metrics in two dimensions. | |
A custom metric may be provided, in the form of a matrix where | |
each dimension has a length of three. | |
'cityblock' and 'manhattan' are also valid, and map to 'taxicab'. | |
The default is 'chessboard'. | |
return_distances : bool, optional | |
Whether to calculate the distance transform. | |
Default is True. | |
return_indices : bool, optional | |
Whether to calculate the feature transform. | |
Default is False. | |
distances : int32 ndarray, optional | |
An output array to store the calculated distance transform, instead of | |
returning it. | |
`return_distances` must be True. | |
It must be the same shape as `input`. | |
indices : int32 ndarray, optional | |
An output array to store the calculated feature transform, instead of | |
returning it. | |
`return_indicies` must be True. | |
Its shape must be `(input.ndim,) + input.shape`. | |
Returns | |
------- | |
distances : int32 ndarray, optional | |
The calculated distance transform. Returned only when | |
`return_distances` is True, and `distances` is not supplied. | |
It will have the same shape as the input array. | |
indices : int32 ndarray, optional | |
The calculated feature transform. It has an input-shaped array for each | |
dimension of the input. See distance_transform_edt documentation for an | |
example. | |
Returned only when `return_indices` is True, and `indices` is not | |
supplied. | |
See Also | |
-------- | |
distance_transform_edt : Fast distance transform for euclidean metric | |
distance_transform_bf : Distance transform for different metrics using | |
a slower brute force algorithm | |
Examples | |
-------- | |
Import the necessary modules. | |
>>> import numpy as np | |
>>> from scipy.ndimage import distance_transform_cdt | |
>>> import matplotlib.pyplot as plt | |
>>> from mpl_toolkits.axes_grid1 import ImageGrid | |
First, we create a toy binary image. | |
>>> def add_circle(center_x, center_y, radius, image, fillvalue=1): | |
... # fill circular area with 1 | |
... xx, yy = np.mgrid[:image.shape[0], :image.shape[1]] | |
... circle = (xx - center_x) ** 2 + (yy - center_y) ** 2 | |
... circle_shape = np.sqrt(circle) < radius | |
... image[circle_shape] = fillvalue | |
... return image | |
>>> image = np.zeros((100, 100), dtype=np.uint8) | |
>>> image[35:65, 20:80] = 1 | |
>>> image = add_circle(28, 65, 10, image) | |
>>> image = add_circle(37, 30, 10, image) | |
>>> image = add_circle(70, 45, 20, image) | |
>>> image = add_circle(45, 80, 10, image) | |
Next, we set up the figure. | |
>>> fig = plt.figure(figsize=(5, 15)) | |
>>> grid = ImageGrid(fig, 111, nrows_ncols=(3, 1), axes_pad=(0.5, 0.3), | |
... label_mode="1", share_all=True, | |
... cbar_location="right", cbar_mode="each", | |
... cbar_size="7%", cbar_pad="2%") | |
>>> for ax in grid: | |
... ax.axis('off') | |
>>> top, middle, bottom = grid | |
>>> colorbar_ticks = [0, 10, 20] | |
The top image contains the original binary image. | |
>>> binary_image = top.imshow(image, cmap='gray') | |
>>> cbar_binary_image = top.cax.colorbar(binary_image) | |
>>> cbar_binary_image.set_ticks([0, 1]) | |
>>> top.set_title("Binary image: foreground in white") | |
The middle image contains the distance transform using the ``taxicab`` | |
metric. | |
>>> distance_taxicab = distance_transform_cdt(image, metric="taxicab") | |
>>> taxicab_transform = middle.imshow(distance_taxicab, cmap='gray') | |
>>> cbar_taxicab = middle.cax.colorbar(taxicab_transform) | |
>>> cbar_taxicab.set_ticks(colorbar_ticks) | |
>>> middle.set_title("Taxicab metric") | |
The bottom image contains the distance transform using the ``chessboard`` | |
metric. | |
>>> distance_chessboard = distance_transform_cdt(image, | |
... metric="chessboard") | |
>>> chessboard_transform = bottom.imshow(distance_chessboard, cmap='gray') | |
>>> cbar_chessboard = bottom.cax.colorbar(chessboard_transform) | |
>>> cbar_chessboard.set_ticks(colorbar_ticks) | |
>>> bottom.set_title("Chessboard metric") | |
>>> plt.tight_layout() | |
>>> plt.show() | |
""" | |
ft_inplace = isinstance(indices, numpy.ndarray) | |
dt_inplace = isinstance(distances, numpy.ndarray) | |
_distance_tranform_arg_check( | |
dt_inplace, ft_inplace, return_distances, return_indices | |
) | |
input = numpy.asarray(input) | |
if isinstance(metric, str): | |
if metric in ['taxicab', 'cityblock', 'manhattan']: | |
rank = input.ndim | |
metric = generate_binary_structure(rank, 1) | |
elif metric == 'chessboard': | |
rank = input.ndim | |
metric = generate_binary_structure(rank, rank) | |
else: | |
raise ValueError('invalid metric provided') | |
else: | |
try: | |
metric = numpy.asarray(metric) | |
except Exception as e: | |
raise ValueError('invalid metric provided') from e | |
for s in metric.shape: | |
if s != 3: | |
raise ValueError('metric sizes must be equal to 3') | |
if not metric.flags.contiguous: | |
metric = metric.copy() | |
if dt_inplace: | |
if distances.dtype.type != numpy.int32: | |
raise ValueError('distances must be of int32 type') | |
if distances.shape != input.shape: | |
raise ValueError('distances has wrong shape') | |
dt = distances | |
dt[...] = numpy.where(input, -1, 0).astype(numpy.int32) | |
else: | |
dt = numpy.where(input, -1, 0).astype(numpy.int32) | |
rank = dt.ndim | |
if return_indices: | |
sz = numpy.prod(dt.shape, axis=0) | |
ft = numpy.arange(sz, dtype=numpy.int32) | |
ft.shape = dt.shape | |
else: | |
ft = None | |
_nd_image.distance_transform_op(metric, dt, ft) | |
dt = dt[tuple([slice(None, None, -1)] * rank)] | |
if return_indices: | |
ft = ft[tuple([slice(None, None, -1)] * rank)] | |
_nd_image.distance_transform_op(metric, dt, ft) | |
dt = dt[tuple([slice(None, None, -1)] * rank)] | |
if return_indices: | |
ft = ft[tuple([slice(None, None, -1)] * rank)] | |
ft = numpy.ravel(ft) | |
if ft_inplace: | |
if indices.dtype.type != numpy.int32: | |
raise ValueError('indices array must be int32') | |
if indices.shape != (dt.ndim,) + dt.shape: | |
raise ValueError('indices array has wrong shape') | |
tmp = indices | |
else: | |
tmp = numpy.indices(dt.shape, dtype=numpy.int32) | |
for ii in range(tmp.shape[0]): | |
rtmp = numpy.ravel(tmp[ii, ...])[ft] | |
rtmp.shape = dt.shape | |
tmp[ii, ...] = rtmp | |
ft = tmp | |
# construct and return the result | |
result = [] | |
if return_distances and not dt_inplace: | |
result.append(dt) | |
if return_indices and not ft_inplace: | |
result.append(ft) | |
if len(result) == 2: | |
return tuple(result) | |
elif len(result) == 1: | |
return result[0] | |
else: | |
return None | |
def distance_transform_edt(input, sampling=None, return_distances=True, | |
return_indices=False, distances=None, indices=None): | |
""" | |
Exact Euclidean distance transform. | |
This function calculates the distance transform of the `input`, by | |
replacing each foreground (non-zero) element, with its | |
shortest distance to the background (any zero-valued element). | |
In addition to the distance transform, the feature transform can | |
be calculated. In this case the index of the closest background | |
element to each foreground element is returned in a separate array. | |
Parameters | |
---------- | |
input : array_like | |
Input data to transform. Can be any type but will be converted | |
into binary: 1 wherever input equates to True, 0 elsewhere. | |
sampling : float, or sequence of float, optional | |
Spacing of elements along each dimension. If a sequence, must be of | |
length equal to the input rank; if a single number, this is used for | |
all axes. If not specified, a grid spacing of unity is implied. | |
return_distances : bool, optional | |
Whether to calculate the distance transform. | |
Default is True. | |
return_indices : bool, optional | |
Whether to calculate the feature transform. | |
Default is False. | |
distances : float64 ndarray, optional | |
An output array to store the calculated distance transform, instead of | |
returning it. | |
`return_distances` must be True. | |
It must be the same shape as `input`. | |
indices : int32 ndarray, optional | |
An output array to store the calculated feature transform, instead of | |
returning it. | |
`return_indicies` must be True. | |
Its shape must be `(input.ndim,) + input.shape`. | |
Returns | |
------- | |
distances : float64 ndarray, optional | |
The calculated distance transform. Returned only when | |
`return_distances` is True and `distances` is not supplied. | |
It will have the same shape as the input array. | |
indices : int32 ndarray, optional | |
The calculated feature transform. It has an input-shaped array for each | |
dimension of the input. See example below. | |
Returned only when `return_indices` is True and `indices` is not | |
supplied. | |
Notes | |
----- | |
The Euclidean distance transform gives values of the Euclidean | |
distance:: | |
n | |
y_i = sqrt(sum (x[i]-b[i])**2) | |
i | |
where b[i] is the background point (value 0) with the smallest | |
Euclidean distance to input points x[i], and n is the | |
number of dimensions. | |
Examples | |
-------- | |
>>> from scipy import ndimage | |
>>> import numpy as np | |
>>> a = np.array(([0,1,1,1,1], | |
... [0,0,1,1,1], | |
... [0,1,1,1,1], | |
... [0,1,1,1,0], | |
... [0,1,1,0,0])) | |
>>> ndimage.distance_transform_edt(a) | |
array([[ 0. , 1. , 1.4142, 2.2361, 3. ], | |
[ 0. , 0. , 1. , 2. , 2. ], | |
[ 0. , 1. , 1.4142, 1.4142, 1. ], | |
[ 0. , 1. , 1.4142, 1. , 0. ], | |
[ 0. , 1. , 1. , 0. , 0. ]]) | |
With a sampling of 2 units along x, 1 along y: | |
>>> ndimage.distance_transform_edt(a, sampling=[2,1]) | |
array([[ 0. , 1. , 2. , 2.8284, 3.6056], | |
[ 0. , 0. , 1. , 2. , 3. ], | |
[ 0. , 1. , 2. , 2.2361, 2. ], | |
[ 0. , 1. , 2. , 1. , 0. ], | |
[ 0. , 1. , 1. , 0. , 0. ]]) | |
Asking for indices as well: | |
>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True) | |
>>> inds | |
array([[[0, 0, 1, 1, 3], | |
[1, 1, 1, 1, 3], | |
[2, 2, 1, 3, 3], | |
[3, 3, 4, 4, 3], | |
[4, 4, 4, 4, 4]], | |
[[0, 0, 1, 1, 4], | |
[0, 1, 1, 1, 4], | |
[0, 0, 1, 4, 4], | |
[0, 0, 3, 3, 4], | |
[0, 0, 3, 3, 4]]]) | |
With arrays provided for inplace outputs: | |
>>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32) | |
>>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices) | |
array([[ 0. , 1. , 1.4142, 2.2361, 3. ], | |
[ 0. , 0. , 1. , 2. , 2. ], | |
[ 0. , 1. , 1.4142, 1.4142, 1. ], | |
[ 0. , 1. , 1.4142, 1. , 0. ], | |
[ 0. , 1. , 1. , 0. , 0. ]]) | |
>>> indices | |
array([[[0, 0, 1, 1, 3], | |
[1, 1, 1, 1, 3], | |
[2, 2, 1, 3, 3], | |
[3, 3, 4, 4, 3], | |
[4, 4, 4, 4, 4]], | |
[[0, 0, 1, 1, 4], | |
[0, 1, 1, 1, 4], | |
[0, 0, 1, 4, 4], | |
[0, 0, 3, 3, 4], | |
[0, 0, 3, 3, 4]]]) | |
""" | |
ft_inplace = isinstance(indices, numpy.ndarray) | |
dt_inplace = isinstance(distances, numpy.ndarray) | |
_distance_tranform_arg_check( | |
dt_inplace, ft_inplace, return_distances, return_indices | |
) | |
# calculate the feature transform | |
input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8)) | |
if sampling is not None: | |
sampling = _ni_support._normalize_sequence(sampling, input.ndim) | |
sampling = numpy.asarray(sampling, dtype=numpy.float64) | |
if not sampling.flags.contiguous: | |
sampling = sampling.copy() | |
if ft_inplace: | |
ft = indices | |
if ft.shape != (input.ndim,) + input.shape: | |
raise RuntimeError('indices array has wrong shape') | |
if ft.dtype.type != numpy.int32: | |
raise RuntimeError('indices array must be int32') | |
else: | |
ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32) | |
_nd_image.euclidean_feature_transform(input, sampling, ft) | |
# if requested, calculate the distance transform | |
if return_distances: | |
dt = ft - numpy.indices(input.shape, dtype=ft.dtype) | |
dt = dt.astype(numpy.float64) | |
if sampling is not None: | |
for ii in range(len(sampling)): | |
dt[ii, ...] *= sampling[ii] | |
numpy.multiply(dt, dt, dt) | |
if dt_inplace: | |
dt = numpy.add.reduce(dt, axis=0) | |
if distances.shape != dt.shape: | |
raise RuntimeError('distances array has wrong shape') | |
if distances.dtype.type != numpy.float64: | |
raise RuntimeError('distances array must be float64') | |
numpy.sqrt(dt, distances) | |
else: | |
dt = numpy.add.reduce(dt, axis=0) | |
dt = numpy.sqrt(dt) | |
# construct and return the result | |
result = [] | |
if return_distances and not dt_inplace: | |
result.append(dt) | |
if return_indices and not ft_inplace: | |
result.append(ft) | |
if len(result) == 2: | |
return tuple(result) | |
elif len(result) == 1: | |
return result[0] | |
else: | |
return None | |
def _distance_tranform_arg_check(distances_out, indices_out, | |
return_distances, return_indices): | |
"""Raise a RuntimeError if the arguments are invalid""" | |
error_msgs = [] | |
if (not return_distances) and (not return_indices): | |
error_msgs.append( | |
'at least one of return_distances/return_indices must be True') | |
if distances_out and not return_distances: | |
error_msgs.append( | |
'return_distances must be True if distances is supplied' | |
) | |
if indices_out and not return_indices: | |
error_msgs.append('return_indices must be True if indices is supplied') | |
if error_msgs: | |
raise RuntimeError(', '.join(error_msgs)) | |