peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test__spectral.py
import itertools | |
import numpy as np | |
from numpy import exp | |
from numpy.testing import assert_, assert_equal | |
from scipy.optimize import root | |
def test_performance(): | |
# Compare performance results to those listed in | |
# [Cheng & Li, IMA J. Num. An. 29, 814 (2008)] | |
# and | |
# [W. La Cruz, J.M. Martinez, M. Raydan, Math. Comp. 75, 1429 (2006)]. | |
# and those produced by dfsane.f from M. Raydan's website. | |
# | |
# Where the results disagree, the largest limits are taken. | |
e_a = 1e-5 | |
e_r = 1e-4 | |
table_1 = [ | |
dict(F=F_1, x0=x0_1, n=1000, nit=5, nfev=5), | |
dict(F=F_1, x0=x0_1, n=10000, nit=2, nfev=2), | |
dict(F=F_2, x0=x0_2, n=500, nit=11, nfev=11), | |
dict(F=F_2, x0=x0_2, n=2000, nit=11, nfev=11), | |
# dict(F=F_4, x0=x0_4, n=999, nit=243, nfev=1188) removed: | |
# too sensitive to rounding errors | |
# Results from dfsane.f; papers list nit=3, nfev=3 | |
dict(F=F_6, x0=x0_6, n=100, nit=6, nfev=6), | |
# Must have n%3==0, typo in papers? | |
dict(F=F_7, x0=x0_7, n=99, nit=23, nfev=29), | |
# Must have n%3==0, typo in papers? | |
dict(F=F_7, x0=x0_7, n=999, nit=23, nfev=29), | |
# Results from dfsane.f; papers list nit=nfev=6? | |
dict(F=F_9, x0=x0_9, n=100, nit=12, nfev=18), | |
dict(F=F_9, x0=x0_9, n=1000, nit=12, nfev=18), | |
# Results from dfsane.f; papers list nit=2, nfev=12 | |
dict(F=F_10, x0=x0_10, n=1000, nit=5, nfev=5), | |
] | |
# Check also scaling invariance | |
for xscale, yscale, line_search in itertools.product( | |
[1.0, 1e-10, 1e10], [1.0, 1e-10, 1e10], ['cruz', 'cheng'] | |
): | |
for problem in table_1: | |
n = problem['n'] | |
def func(x, n): | |
return yscale * problem['F'](x / xscale, n) | |
args = (n,) | |
x0 = problem['x0'](n) * xscale | |
fatol = np.sqrt(n) * e_a * yscale + e_r * np.linalg.norm(func(x0, n)) | |
sigma_eps = 1e-10 * min(yscale/xscale, xscale/yscale) | |
sigma_0 = xscale/yscale | |
with np.errstate(over='ignore'): | |
sol = root(func, x0, args=args, | |
options=dict(ftol=0, fatol=fatol, maxfev=problem['nfev'] + 1, | |
sigma_0=sigma_0, sigma_eps=sigma_eps, | |
line_search=line_search), | |
method='DF-SANE') | |
err_msg = repr( | |
[xscale, yscale, line_search, problem, np.linalg.norm(func(sol.x, n)), | |
fatol, sol.success, sol.nit, sol.nfev] | |
) | |
assert sol.success, err_msg | |
# nfev+1: dfsane.f doesn't count first eval | |
assert sol.nfev <= problem['nfev'] + 1, err_msg | |
assert sol.nit <= problem['nit'], err_msg | |
assert np.linalg.norm(func(sol.x, n)) <= fatol, err_msg | |
def test_complex(): | |
def func(z): | |
return z**2 - 1 + 2j | |
x0 = 2.0j | |
ftol = 1e-4 | |
sol = root(func, x0, tol=ftol, method='DF-SANE') | |
assert_(sol.success) | |
f0 = np.linalg.norm(func(x0)) | |
fx = np.linalg.norm(func(sol.x)) | |
assert_(fx <= ftol*f0) | |
def test_linear_definite(): | |
# The DF-SANE paper proves convergence for "strongly isolated" | |
# solutions. | |
# | |
# For linear systems F(x) = A x - b = 0, with A positive or | |
# negative definite, the solution is strongly isolated. | |
def check_solvability(A, b, line_search='cruz'): | |
def func(x): | |
return A.dot(x) - b | |
xp = np.linalg.solve(A, b) | |
eps = np.linalg.norm(func(xp)) * 1e3 | |
sol = root( | |
func, b, | |
options=dict(fatol=eps, ftol=0, maxfev=17523, line_search=line_search), | |
method='DF-SANE', | |
) | |
assert_(sol.success) | |
assert_(np.linalg.norm(func(sol.x)) <= eps) | |
n = 90 | |
# Test linear pos.def. system | |
np.random.seed(1234) | |
A = np.arange(n*n).reshape(n, n) | |
A = A + n*n * np.diag(1 + np.arange(n)) | |
assert_(np.linalg.eigvals(A).min() > 0) | |
b = np.arange(n) * 1.0 | |
check_solvability(A, b, 'cruz') | |
check_solvability(A, b, 'cheng') | |
# Test linear neg.def. system | |
check_solvability(-A, b, 'cruz') | |
check_solvability(-A, b, 'cheng') | |
def test_shape(): | |
def f(x, arg): | |
return x - arg | |
for dt in [float, complex]: | |
x = np.zeros([2,2]) | |
arg = np.ones([2,2], dtype=dt) | |
sol = root(f, x, args=(arg,), method='DF-SANE') | |
assert_(sol.success) | |
assert_equal(sol.x.shape, x.shape) | |
# Some of the test functions and initial guesses listed in | |
# [W. La Cruz, M. Raydan. Optimization Methods and Software, 18, 583 (2003)] | |
def F_1(x, n): | |
g = np.zeros([n]) | |
i = np.arange(2, n+1) | |
g[0] = exp(x[0] - 1) - 1 | |
g[1:] = i*(exp(x[1:] - 1) - x[1:]) | |
return g | |
def x0_1(n): | |
x0 = np.empty([n]) | |
x0.fill(n/(n-1)) | |
return x0 | |
def F_2(x, n): | |
g = np.zeros([n]) | |
i = np.arange(2, n+1) | |
g[0] = exp(x[0]) - 1 | |
g[1:] = 0.1*i*(exp(x[1:]) + x[:-1] - 1) | |
return g | |
def x0_2(n): | |
x0 = np.empty([n]) | |
x0.fill(1/n**2) | |
return x0 | |
def F_4(x, n): # skip name check | |
assert_equal(n % 3, 0) | |
g = np.zeros([n]) | |
# Note: the first line is typoed in some of the references; | |
# correct in original [Gasparo, Optimization Meth. 13, 79 (2000)] | |
g[::3] = 0.6 * x[::3] + 1.6 * x[1::3]**3 - 7.2 * x[1::3]**2 + 9.6 * x[1::3] - 4.8 | |
g[1::3] = (0.48 * x[::3] - 0.72 * x[1::3]**3 + 3.24 * x[1::3]**2 - 4.32 * x[1::3] | |
- x[2::3] + 0.2 * x[2::3]**3 + 2.16) | |
g[2::3] = 1.25 * x[2::3] - 0.25*x[2::3]**3 | |
return g | |
def x0_4(n): # skip name check | |
assert_equal(n % 3, 0) | |
x0 = np.array([-1, 1/2, -1] * (n//3)) | |
return x0 | |
def F_6(x, n): | |
c = 0.9 | |
mu = (np.arange(1, n+1) - 0.5)/n | |
return x - 1/(1 - c/(2*n) * (mu[:,None]*x / (mu[:,None] + mu)).sum(axis=1)) | |
def x0_6(n): | |
return np.ones([n]) | |
def F_7(x, n): | |
assert_equal(n % 3, 0) | |
def phi(t): | |
v = 0.5*t - 2 | |
v[t > -1] = ((-592*t**3 + 888*t**2 + 4551*t - 1924)/1998)[t > -1] | |
v[t >= 2] = (0.5*t + 2)[t >= 2] | |
return v | |
g = np.zeros([n]) | |
g[::3] = 1e4 * x[1::3]**2 - 1 | |
g[1::3] = exp(-x[::3]) + exp(-x[1::3]) - 1.0001 | |
g[2::3] = phi(x[2::3]) | |
return g | |
def x0_7(n): | |
assert_equal(n % 3, 0) | |
return np.array([1e-3, 18, 1] * (n//3)) | |
def F_9(x, n): | |
g = np.zeros([n]) | |
i = np.arange(2, n) | |
g[0] = x[0]**3/3 + x[1]**2/2 | |
g[1:-1] = -x[1:-1]**2/2 + i*x[1:-1]**3/3 + x[2:]**2/2 | |
g[-1] = -x[-1]**2/2 + n*x[-1]**3/3 | |
return g | |
def x0_9(n): | |
return np.ones([n]) | |
def F_10(x, n): | |
return np.log(1 + x) - x/n | |
def x0_10(n): | |
return np.ones([n]) | |