peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_milp.py
""" | |
Unit test for Mixed Integer Linear Programming | |
""" | |
import re | |
import numpy as np | |
from numpy.testing import assert_allclose, assert_array_equal | |
import pytest | |
from .test_linprog import magic_square | |
from scipy.optimize import milp, Bounds, LinearConstraint | |
from scipy import sparse | |
def test_milp_iv(): | |
message = "`c` must be a dense array" | |
with pytest.raises(ValueError, match=message): | |
milp(sparse.coo_array([0, 0])) | |
message = "`c` must be a one-dimensional array of finite numbers with" | |
with pytest.raises(ValueError, match=message): | |
milp(np.zeros((3, 4))) | |
with pytest.raises(ValueError, match=message): | |
milp([]) | |
with pytest.raises(ValueError, match=message): | |
milp(None) | |
message = "`bounds` must be convertible into an instance of..." | |
with pytest.raises(ValueError, match=message): | |
milp(1, bounds=10) | |
message = "`constraints` (or each element within `constraints`) must be" | |
with pytest.raises(ValueError, match=re.escape(message)): | |
milp(1, constraints=10) | |
with pytest.raises(ValueError, match=re.escape(message)): | |
milp(np.zeros(3), constraints=([[1, 2, 3]], [2, 3], [2, 3])) | |
with pytest.raises(ValueError, match=re.escape(message)): | |
milp(np.zeros(2), constraints=([[1, 2]], [2], sparse.coo_array([2]))) | |
message = "The shape of `A` must be (len(b_l), len(c))." | |
with pytest.raises(ValueError, match=re.escape(message)): | |
milp(np.zeros(3), constraints=([[1, 2]], [2], [2])) | |
message = "`integrality` must be a dense array" | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2], integrality=sparse.coo_array([1, 2])) | |
message = ("`integrality` must contain integers 0-3 and be broadcastable " | |
"to `c.shape`.") | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], integrality=[1, 2]) | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], integrality=[1, 5, 3]) | |
message = "Lower and upper bounds must be dense arrays." | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], bounds=([1, 2], sparse.coo_array([3, 4]))) | |
message = "`lb`, `ub`, and `keep_feasible` must be broadcastable." | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], bounds=([1, 2], [3, 4, 5])) | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], bounds=([1, 2, 3], [4, 5])) | |
message = "`bounds.lb` and `bounds.ub` must contain reals and..." | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], bounds=([1, 2], [3, 4])) | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], bounds=([1, 2, 3], ["3+4", 4, 5])) | |
with pytest.raises(ValueError, match=message): | |
milp([1, 2, 3], bounds=([1, 2, 3], [set(), 4, 5])) | |
def test_milp_options(capsys): | |
# run=False now because of gh-16347 | |
message = "Unrecognized options detected: {'ekki'}..." | |
options = {'ekki': True} | |
with pytest.warns(RuntimeWarning, match=message): | |
milp(1, options=options) | |
A, b, c, numbers, M = magic_square(3) | |
options = {"disp": True, "presolve": False, "time_limit": 0.05} | |
res = milp(c=c, constraints=(A, b, b), bounds=(0, 1), integrality=1, | |
options=options) | |
captured = capsys.readouterr() | |
assert "Presolve is switched off" in captured.out | |
assert "Time Limit Reached" in captured.out | |
assert not res.success | |
def test_result(): | |
A, b, c, numbers, M = magic_square(3) | |
res = milp(c=c, constraints=(A, b, b), bounds=(0, 1), integrality=1) | |
assert res.status == 0 | |
assert res.success | |
msg = "Optimization terminated successfully. (HiGHS Status 7:" | |
assert res.message.startswith(msg) | |
assert isinstance(res.x, np.ndarray) | |
assert isinstance(res.fun, float) | |
assert isinstance(res.mip_node_count, int) | |
assert isinstance(res.mip_dual_bound, float) | |
assert isinstance(res.mip_gap, float) | |
A, b, c, numbers, M = magic_square(6) | |
res = milp(c=c*0, constraints=(A, b, b), bounds=(0, 1), integrality=1, | |
options={'time_limit': 0.05}) | |
assert res.status == 1 | |
assert not res.success | |
msg = "Time limit reached. (HiGHS Status 13:" | |
assert res.message.startswith(msg) | |
assert (res.fun is res.mip_dual_bound is res.mip_gap | |
is res.mip_node_count is res.x is None) | |
res = milp(1, bounds=(1, -1)) | |
assert res.status == 2 | |
assert not res.success | |
msg = "The problem is infeasible. (HiGHS Status 8:" | |
assert res.message.startswith(msg) | |
assert (res.fun is res.mip_dual_bound is res.mip_gap | |
is res.mip_node_count is res.x is None) | |
res = milp(-1) | |
assert res.status == 3 | |
assert not res.success | |
msg = "The problem is unbounded. (HiGHS Status 10:" | |
assert res.message.startswith(msg) | |
assert (res.fun is res.mip_dual_bound is res.mip_gap | |
is res.mip_node_count is res.x is None) | |
def test_milp_optional_args(): | |
# check that arguments other than `c` are indeed optional | |
res = milp(1) | |
assert res.fun == 0 | |
assert_array_equal(res.x, [0]) | |
def test_milp_1(): | |
# solve magic square problem | |
n = 3 | |
A, b, c, numbers, M = magic_square(n) | |
A = sparse.csc_array(A) # confirm that sparse arrays are accepted | |
res = milp(c=c*0, constraints=(A, b, b), bounds=(0, 1), integrality=1) | |
# check that solution is a magic square | |
x = np.round(res.x) | |
s = (numbers.flatten() * x).reshape(n**2, n, n) | |
square = np.sum(s, axis=0) | |
np.testing.assert_allclose(square.sum(axis=0), M) | |
np.testing.assert_allclose(square.sum(axis=1), M) | |
np.testing.assert_allclose(np.diag(square).sum(), M) | |
np.testing.assert_allclose(np.diag(square[:, ::-1]).sum(), M) | |
def test_milp_2(): | |
# solve MIP with inequality constraints and all integer constraints | |
# source: slide 5, | |
# https://www.cs.upc.edu/~erodri/webpage/cps/theory/lp/milp/slides.pdf | |
# also check that `milp` accepts all valid ways of specifying constraints | |
c = -np.ones(2) | |
A = [[-2, 2], [-8, 10]] | |
b_l = [1, -np.inf] | |
b_u = [np.inf, 13] | |
linear_constraint = LinearConstraint(A, b_l, b_u) | |
# solve original problem | |
res1 = milp(c=c, constraints=(A, b_l, b_u), integrality=True) | |
res2 = milp(c=c, constraints=linear_constraint, integrality=True) | |
res3 = milp(c=c, constraints=[(A, b_l, b_u)], integrality=True) | |
res4 = milp(c=c, constraints=[linear_constraint], integrality=True) | |
res5 = milp(c=c, integrality=True, | |
constraints=[(A[:1], b_l[:1], b_u[:1]), | |
(A[1:], b_l[1:], b_u[1:])]) | |
res6 = milp(c=c, integrality=True, | |
constraints=[LinearConstraint(A[:1], b_l[:1], b_u[:1]), | |
LinearConstraint(A[1:], b_l[1:], b_u[1:])]) | |
res7 = milp(c=c, integrality=True, | |
constraints=[(A[:1], b_l[:1], b_u[:1]), | |
LinearConstraint(A[1:], b_l[1:], b_u[1:])]) | |
xs = np.array([res1.x, res2.x, res3.x, res4.x, res5.x, res6.x, res7.x]) | |
funs = np.array([res1.fun, res2.fun, res3.fun, | |
res4.fun, res5.fun, res6.fun, res7.fun]) | |
np.testing.assert_allclose(xs, np.broadcast_to([1, 2], xs.shape)) | |
np.testing.assert_allclose(funs, -3) | |
# solve relaxed problem | |
res = milp(c=c, constraints=(A, b_l, b_u)) | |
np.testing.assert_allclose(res.x, [4, 4.5]) | |
np.testing.assert_allclose(res.fun, -8.5) | |
def test_milp_3(): | |
# solve MIP with inequality constraints and all integer constraints | |
# source: https://en.wikipedia.org/wiki/Integer_programming#Example | |
c = [0, -1] | |
A = [[-1, 1], [3, 2], [2, 3]] | |
b_u = [1, 12, 12] | |
b_l = np.full_like(b_u, -np.inf, dtype=np.float64) | |
constraints = LinearConstraint(A, b_l, b_u) | |
integrality = np.ones_like(c) | |
# solve original problem | |
res = milp(c=c, constraints=constraints, integrality=integrality) | |
assert_allclose(res.fun, -2) | |
# two optimal solutions possible, just need one of them | |
assert np.allclose(res.x, [1, 2]) or np.allclose(res.x, [2, 2]) | |
# solve relaxed problem | |
res = milp(c=c, constraints=constraints) | |
assert_allclose(res.fun, -2.8) | |
assert_allclose(res.x, [1.8, 2.8]) | |
def test_milp_4(): | |
# solve MIP with inequality constraints and only one integer constraint | |
# source: https://www.mathworks.com/help/optim/ug/intlinprog.html | |
c = [8, 1] | |
integrality = [0, 1] | |
A = [[1, 2], [-4, -1], [2, 1]] | |
b_l = [-14, -np.inf, -np.inf] | |
b_u = [np.inf, -33, 20] | |
constraints = LinearConstraint(A, b_l, b_u) | |
bounds = Bounds(-np.inf, np.inf) | |
res = milp(c, integrality=integrality, bounds=bounds, | |
constraints=constraints) | |
assert_allclose(res.fun, 59) | |
assert_allclose(res.x, [6.5, 7]) | |
def test_milp_5(): | |
# solve MIP with inequality and equality constraints | |
# source: https://www.mathworks.com/help/optim/ug/intlinprog.html | |
c = [-3, -2, -1] | |
integrality = [0, 0, 1] | |
lb = [0, 0, 0] | |
ub = [np.inf, np.inf, 1] | |
bounds = Bounds(lb, ub) | |
A = [[1, 1, 1], [4, 2, 1]] | |
b_l = [-np.inf, 12] | |
b_u = [7, 12] | |
constraints = LinearConstraint(A, b_l, b_u) | |
res = milp(c, integrality=integrality, bounds=bounds, | |
constraints=constraints) | |
# there are multiple solutions | |
assert_allclose(res.fun, -12) | |
# prerelease_deps_coverage_64bit_blas job | |
def test_milp_6(): | |
# solve a larger MIP with only equality constraints | |
# source: https://www.mathworks.com/help/optim/ug/intlinprog.html | |
integrality = 1 | |
A_eq = np.array([[22, 13, 26, 33, 21, 3, 14, 26], | |
[39, 16, 22, 28, 26, 30, 23, 24], | |
[18, 14, 29, 27, 30, 38, 26, 26], | |
[41, 26, 28, 36, 18, 38, 16, 26]]) | |
b_eq = np.array([7872, 10466, 11322, 12058]) | |
c = np.array([2, 10, 13, 17, 7, 5, 7, 3]) | |
res = milp(c=c, constraints=(A_eq, b_eq, b_eq), integrality=integrality) | |
np.testing.assert_allclose(res.fun, 1854) | |
def test_infeasible_prob_16609(): | |
# Ensure presolve does not mark trivially infeasible problems | |
# as Optimal -- see gh-16609 | |
c = [1.0, 0.0] | |
integrality = [0, 1] | |
lb = [0, -np.inf] | |
ub = [np.inf, np.inf] | |
bounds = Bounds(lb, ub) | |
A_eq = [[0.0, 1.0]] | |
b_eq = [0.5] | |
constraints = LinearConstraint(A_eq, b_eq, b_eq) | |
res = milp(c, integrality=integrality, bounds=bounds, | |
constraints=constraints) | |
np.testing.assert_equal(res.status, 2) | |
_msg_time = "Time limit reached. (HiGHS Status 13:" | |
_msg_iter = "Iteration limit reached. (HiGHS Status 14:" | |
def test_milp_timeout_16545(options, msg): | |
# Ensure solution is not thrown away if MILP solver times out | |
# -- see gh-16545 | |
rng = np.random.default_rng(5123833489170494244) | |
A = rng.integers(0, 5, size=(100, 100)) | |
b_lb = np.full(100, fill_value=-np.inf) | |
b_ub = np.full(100, fill_value=25) | |
constraints = LinearConstraint(A, b_lb, b_ub) | |
variable_lb = np.zeros(100) | |
variable_ub = np.ones(100) | |
variable_bounds = Bounds(variable_lb, variable_ub) | |
integrality = np.ones(100) | |
c_vector = -np.ones(100) | |
res = milp( | |
c_vector, | |
integrality=integrality, | |
bounds=variable_bounds, | |
constraints=constraints, | |
options=options, | |
) | |
assert res.message.startswith(msg) | |
assert res["x"] is not None | |
# ensure solution is feasible | |
x = res["x"] | |
tol = 1e-8 # sometimes needed due to finite numerical precision | |
assert np.all(b_lb - tol <= A @ x) and np.all(A @ x <= b_ub + tol) | |
assert np.all(variable_lb - tol <= x) and np.all(x <= variable_ub + tol) | |
assert np.allclose(x, np.round(x)) | |
def test_three_constraints_16878(): | |
# `milp` failed when exactly three constraints were passed | |
# Ensure that this is no longer the case. | |
rng = np.random.default_rng(5123833489170494244) | |
A = rng.integers(0, 5, size=(6, 6)) | |
bl = np.full(6, fill_value=-np.inf) | |
bu = np.full(6, fill_value=10) | |
constraints = [LinearConstraint(A[:2], bl[:2], bu[:2]), | |
LinearConstraint(A[2:4], bl[2:4], bu[2:4]), | |
LinearConstraint(A[4:], bl[4:], bu[4:])] | |
constraints2 = [(A[:2], bl[:2], bu[:2]), | |
(A[2:4], bl[2:4], bu[2:4]), | |
(A[4:], bl[4:], bu[4:])] | |
lb = np.zeros(6) | |
ub = np.ones(6) | |
variable_bounds = Bounds(lb, ub) | |
c = -np.ones(6) | |
res1 = milp(c, bounds=variable_bounds, constraints=constraints) | |
res2 = milp(c, bounds=variable_bounds, constraints=constraints2) | |
ref = milp(c, bounds=variable_bounds, constraints=(A, bl, bu)) | |
assert res1.success and res2.success | |
assert_allclose(res1.x, ref.x) | |
assert_allclose(res2.x, ref.x) | |
def test_mip_rel_gap_passdown(): | |
# Solve problem with decreasing mip_gap to make sure mip_rel_gap decreases | |
# Adapted from test_linprog::TestLinprogHiGHSMIP::test_mip_rel_gap_passdown | |
# MIP taken from test_mip_6 above | |
A_eq = np.array([[22, 13, 26, 33, 21, 3, 14, 26], | |
[39, 16, 22, 28, 26, 30, 23, 24], | |
[18, 14, 29, 27, 30, 38, 26, 26], | |
[41, 26, 28, 36, 18, 38, 16, 26]]) | |
b_eq = np.array([7872, 10466, 11322, 12058]) | |
c = np.array([2, 10, 13, 17, 7, 5, 7, 3]) | |
mip_rel_gaps = [0.25, 0.01, 0.001] | |
sol_mip_gaps = [] | |
for mip_rel_gap in mip_rel_gaps: | |
res = milp(c=c, bounds=(0, np.inf), constraints=(A_eq, b_eq, b_eq), | |
integrality=True, options={"mip_rel_gap": mip_rel_gap}) | |
# assert that the solution actually has mip_gap lower than the | |
# required mip_rel_gap supplied | |
assert res.mip_gap <= mip_rel_gap | |
# check that `res.mip_gap` is as defined in the documentation | |
assert res.mip_gap == (res.fun - res.mip_dual_bound)/res.fun | |
sol_mip_gaps.append(res.mip_gap) | |
# make sure that the mip_rel_gap parameter is actually doing something | |
# check that differences between solution gaps are declining | |
# monotonically with the mip_rel_gap parameter. | |
assert np.all(np.diff(sol_mip_gaps) < 0) | |