peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/_waveforms.py
# Author: Travis Oliphant | |
# 2003 | |
# | |
# Feb. 2010: Updated by Warren Weckesser: | |
# Rewrote much of chirp() | |
# Added sweep_poly() | |
import numpy as np | |
from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ | |
exp, cos, sin, polyval, polyint | |
__all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly', | |
'unit_impulse'] | |
def sawtooth(t, width=1): | |
""" | |
Return a periodic sawtooth or triangle waveform. | |
The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the | |
interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval | |
``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1]. | |
Note that this is not band-limited. It produces an infinite number | |
of harmonics, which are aliased back and forth across the frequency | |
spectrum. | |
Parameters | |
---------- | |
t : array_like | |
Time. | |
width : array_like, optional | |
Width of the rising ramp as a proportion of the total cycle. | |
Default is 1, producing a rising ramp, while 0 produces a falling | |
ramp. `width` = 0.5 produces a triangle wave. | |
If an array, causes wave shape to change over time, and must be the | |
same length as t. | |
Returns | |
------- | |
y : ndarray | |
Output array containing the sawtooth waveform. | |
Examples | |
-------- | |
A 5 Hz waveform sampled at 500 Hz for 1 second: | |
>>> import numpy as np | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> t = np.linspace(0, 1, 500) | |
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t)) | |
""" | |
t, w = asarray(t), asarray(width) | |
w = asarray(w + (t - t)) | |
t = asarray(t + (w - w)) | |
if t.dtype.char in ['fFdD']: | |
ytype = t.dtype.char | |
else: | |
ytype = 'd' | |
y = zeros(t.shape, ytype) | |
# width must be between 0 and 1 inclusive | |
mask1 = (w > 1) | (w < 0) | |
place(y, mask1, nan) | |
# take t modulo 2*pi | |
tmod = mod(t, 2 * pi) | |
# on the interval 0 to width*2*pi function is | |
# tmod / (pi*w) - 1 | |
mask2 = (1 - mask1) & (tmod < w * 2 * pi) | |
tsub = extract(mask2, tmod) | |
wsub = extract(mask2, w) | |
place(y, mask2, tsub / (pi * wsub) - 1) | |
# on the interval width*2*pi to 2*pi function is | |
# (pi*(w+1)-tmod) / (pi*(1-w)) | |
mask3 = (1 - mask1) & (1 - mask2) | |
tsub = extract(mask3, tmod) | |
wsub = extract(mask3, w) | |
place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub))) | |
return y | |
def square(t, duty=0.5): | |
""" | |
Return a periodic square-wave waveform. | |
The square wave has a period ``2*pi``, has value +1 from 0 to | |
``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in | |
the interval [0,1]. | |
Note that this is not band-limited. It produces an infinite number | |
of harmonics, which are aliased back and forth across the frequency | |
spectrum. | |
Parameters | |
---------- | |
t : array_like | |
The input time array. | |
duty : array_like, optional | |
Duty cycle. Default is 0.5 (50% duty cycle). | |
If an array, causes wave shape to change over time, and must be the | |
same length as t. | |
Returns | |
------- | |
y : ndarray | |
Output array containing the square waveform. | |
Examples | |
-------- | |
A 5 Hz waveform sampled at 500 Hz for 1 second: | |
>>> import numpy as np | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> t = np.linspace(0, 1, 500, endpoint=False) | |
>>> plt.plot(t, signal.square(2 * np.pi * 5 * t)) | |
>>> plt.ylim(-2, 2) | |
A pulse-width modulated sine wave: | |
>>> plt.figure() | |
>>> sig = np.sin(2 * np.pi * t) | |
>>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2) | |
>>> plt.subplot(2, 1, 1) | |
>>> plt.plot(t, sig) | |
>>> plt.subplot(2, 1, 2) | |
>>> plt.plot(t, pwm) | |
>>> plt.ylim(-1.5, 1.5) | |
""" | |
t, w = asarray(t), asarray(duty) | |
w = asarray(w + (t - t)) | |
t = asarray(t + (w - w)) | |
if t.dtype.char in ['fFdD']: | |
ytype = t.dtype.char | |
else: | |
ytype = 'd' | |
y = zeros(t.shape, ytype) | |
# width must be between 0 and 1 inclusive | |
mask1 = (w > 1) | (w < 0) | |
place(y, mask1, nan) | |
# on the interval 0 to duty*2*pi function is 1 | |
tmod = mod(t, 2 * pi) | |
mask2 = (1 - mask1) & (tmod < w * 2 * pi) | |
place(y, mask2, 1) | |
# on the interval duty*2*pi to 2*pi function is | |
# (pi*(w+1)-tmod) / (pi*(1-w)) | |
mask3 = (1 - mask1) & (1 - mask2) | |
place(y, mask3, -1) | |
return y | |
def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, | |
retenv=False): | |
""" | |
Return a Gaussian modulated sinusoid: | |
``exp(-a t^2) exp(1j*2*pi*fc*t).`` | |
If `retquad` is True, then return the real and imaginary parts | |
(in-phase and quadrature). | |
If `retenv` is True, then return the envelope (unmodulated signal). | |
Otherwise, return the real part of the modulated sinusoid. | |
Parameters | |
---------- | |
t : ndarray or the string 'cutoff' | |
Input array. | |
fc : float, optional | |
Center frequency (e.g. Hz). Default is 1000. | |
bw : float, optional | |
Fractional bandwidth in frequency domain of pulse (e.g. Hz). | |
Default is 0.5. | |
bwr : float, optional | |
Reference level at which fractional bandwidth is calculated (dB). | |
Default is -6. | |
tpr : float, optional | |
If `t` is 'cutoff', then the function returns the cutoff | |
time for when the pulse amplitude falls below `tpr` (in dB). | |
Default is -60. | |
retquad : bool, optional | |
If True, return the quadrature (imaginary) as well as the real part | |
of the signal. Default is False. | |
retenv : bool, optional | |
If True, return the envelope of the signal. Default is False. | |
Returns | |
------- | |
yI : ndarray | |
Real part of signal. Always returned. | |
yQ : ndarray | |
Imaginary part of signal. Only returned if `retquad` is True. | |
yenv : ndarray | |
Envelope of signal. Only returned if `retenv` is True. | |
See Also | |
-------- | |
scipy.signal.morlet | |
Examples | |
-------- | |
Plot real component, imaginary component, and envelope for a 5 Hz pulse, | |
sampled at 100 Hz for 2 seconds: | |
>>> import numpy as np | |
>>> from scipy import signal | |
>>> import matplotlib.pyplot as plt | |
>>> t = np.linspace(-1, 1, 2 * 100, endpoint=False) | |
>>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True) | |
>>> plt.plot(t, i, t, q, t, e, '--') | |
""" | |
if fc < 0: | |
raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) | |
if bw <= 0: | |
raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) | |
if bwr >= 0: | |
raise ValueError("Reference level for bandwidth (bwr=%.2f) must " | |
"be < 0 dB" % bwr) | |
# exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) | |
ref = pow(10.0, bwr / 20.0) | |
# fdel = fc*bw/2: g(fdel) = ref --- solve this for a | |
# | |
# pi^2/a * fc^2 * bw^2 /4=-log(ref) | |
a = -(pi * fc * bw) ** 2 / (4.0 * log(ref)) | |
if isinstance(t, str): | |
if t == 'cutoff': # compute cut_off point | |
# Solve exp(-a tc**2) = tref for tc | |
# tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) | |
if tpr >= 0: | |
raise ValueError("Reference level for time cutoff must " | |
"be < 0 dB") | |
tref = pow(10.0, tpr / 20.0) | |
return sqrt(-log(tref) / a) | |
else: | |
raise ValueError("If `t` is a string, it must be 'cutoff'") | |
yenv = exp(-a * t * t) | |
yI = yenv * cos(2 * pi * fc * t) | |
yQ = yenv * sin(2 * pi * fc * t) | |
if not retquad and not retenv: | |
return yI | |
if not retquad and retenv: | |
return yI, yenv | |
if retquad and not retenv: | |
return yI, yQ | |
if retquad and retenv: | |
return yI, yQ, yenv | |
def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): | |
"""Frequency-swept cosine generator. | |
In the following, 'Hz' should be interpreted as 'cycles per unit'; | |
there is no requirement here that the unit is one second. The | |
important distinction is that the units of rotation are cycles, not | |
radians. Likewise, `t` could be a measurement of space instead of time. | |
Parameters | |
---------- | |
t : array_like | |
Times at which to evaluate the waveform. | |
f0 : float | |
Frequency (e.g. Hz) at time t=0. | |
t1 : float | |
Time at which `f1` is specified. | |
f1 : float | |
Frequency (e.g. Hz) of the waveform at time `t1`. | |
method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional | |
Kind of frequency sweep. If not given, `linear` is assumed. See | |
Notes below for more details. | |
phi : float, optional | |
Phase offset, in degrees. Default is 0. | |
vertex_zero : bool, optional | |
This parameter is only used when `method` is 'quadratic'. | |
It determines whether the vertex of the parabola that is the graph | |
of the frequency is at t=0 or t=t1. | |
Returns | |
------- | |
y : ndarray | |
A numpy array containing the signal evaluated at `t` with the | |
requested time-varying frequency. More precisely, the function | |
returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral | |
(from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below. | |
See Also | |
-------- | |
sweep_poly | |
Notes | |
----- | |
There are four options for the `method`. The following formulas give | |
the instantaneous frequency (in Hz) of the signal generated by | |
`chirp()`. For convenience, the shorter names shown below may also be | |
used. | |
linear, lin, li: | |
``f(t) = f0 + (f1 - f0) * t / t1`` | |
quadratic, quad, q: | |
The graph of the frequency f(t) is a parabola through (0, f0) and | |
(t1, f1). By default, the vertex of the parabola is at (0, f0). | |
If `vertex_zero` is False, then the vertex is at (t1, f1). The | |
formula is: | |
if vertex_zero is True: | |
``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` | |
else: | |
``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` | |
To use a more general quadratic function, or an arbitrary | |
polynomial, use the function `scipy.signal.sweep_poly`. | |
logarithmic, log, lo: | |
``f(t) = f0 * (f1/f0)**(t/t1)`` | |
f0 and f1 must be nonzero and have the same sign. | |
This signal is also known as a geometric or exponential chirp. | |
hyperbolic, hyp: | |
``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` | |
f0 and f1 must be nonzero. | |
Examples | |
-------- | |
The following will be used in the examples: | |
>>> import numpy as np | |
>>> from scipy.signal import chirp, spectrogram | |
>>> import matplotlib.pyplot as plt | |
For the first example, we'll plot the waveform for a linear chirp | |
from 6 Hz to 1 Hz over 10 seconds: | |
>>> t = np.linspace(0, 10, 1500) | |
>>> w = chirp(t, f0=6, f1=1, t1=10, method='linear') | |
>>> plt.plot(t, w) | |
>>> plt.title("Linear Chirp, f(0)=6, f(10)=1") | |
>>> plt.xlabel('t (sec)') | |
>>> plt.show() | |
For the remaining examples, we'll use higher frequency ranges, | |
and demonstrate the result using `scipy.signal.spectrogram`. | |
We'll use a 4 second interval sampled at 7200 Hz. | |
>>> fs = 7200 | |
>>> T = 4 | |
>>> t = np.arange(0, int(T*fs)) / fs | |
We'll use this function to plot the spectrogram in each example. | |
>>> def plot_spectrogram(title, w, fs): | |
... ff, tt, Sxx = spectrogram(w, fs=fs, nperseg=256, nfft=576) | |
... fig, ax = plt.subplots() | |
... ax.pcolormesh(tt, ff[:145], Sxx[:145], cmap='gray_r', | |
... shading='gouraud') | |
... ax.set_title(title) | |
... ax.set_xlabel('t (sec)') | |
... ax.set_ylabel('Frequency (Hz)') | |
... ax.grid(True) | |
... | |
Quadratic chirp from 1500 Hz to 250 Hz | |
(vertex of the parabolic curve of the frequency is at t=0): | |
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic') | |
>>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250', w, fs) | |
>>> plt.show() | |
Quadratic chirp from 1500 Hz to 250 Hz | |
(vertex of the parabolic curve of the frequency is at t=T): | |
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic', | |
... vertex_zero=False) | |
>>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250\\n' + | |
... '(vertex_zero=False)', w, fs) | |
>>> plt.show() | |
Logarithmic chirp from 1500 Hz to 250 Hz: | |
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='logarithmic') | |
>>> plot_spectrogram(f'Logarithmic Chirp, f(0)=1500, f({T})=250', w, fs) | |
>>> plt.show() | |
Hyperbolic chirp from 1500 Hz to 250 Hz: | |
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='hyperbolic') | |
>>> plot_spectrogram(f'Hyperbolic Chirp, f(0)=1500, f({T})=250', w, fs) | |
>>> plt.show() | |
""" | |
# 'phase' is computed in _chirp_phase, to make testing easier. | |
phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) | |
# Convert phi to radians. | |
phi *= pi / 180 | |
return cos(phase + phi) | |
def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): | |
""" | |
Calculate the phase used by `chirp` to generate its output. | |
See `chirp` for a description of the arguments. | |
""" | |
t = asarray(t) | |
f0 = float(f0) | |
t1 = float(t1) | |
f1 = float(f1) | |
if method in ['linear', 'lin', 'li']: | |
beta = (f1 - f0) / t1 | |
phase = 2 * pi * (f0 * t + 0.5 * beta * t * t) | |
elif method in ['quadratic', 'quad', 'q']: | |
beta = (f1 - f0) / (t1 ** 2) | |
if vertex_zero: | |
phase = 2 * pi * (f0 * t + beta * t ** 3 / 3) | |
else: | |
phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3) | |
elif method in ['logarithmic', 'log', 'lo']: | |
if f0 * f1 <= 0.0: | |
raise ValueError("For a logarithmic chirp, f0 and f1 must be " | |
"nonzero and have the same sign.") | |
if f0 == f1: | |
phase = 2 * pi * f0 * t | |
else: | |
beta = t1 / log(f1 / f0) | |
phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0) | |
elif method in ['hyperbolic', 'hyp']: | |
if f0 == 0 or f1 == 0: | |
raise ValueError("For a hyperbolic chirp, f0 and f1 must be " | |
"nonzero.") | |
if f0 == f1: | |
# Degenerate case: constant frequency. | |
phase = 2 * pi * f0 * t | |
else: | |
# Singular point: the instantaneous frequency blows up | |
# when t == sing. | |
sing = -f1 * t1 / (f0 - f1) | |
phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing)) | |
else: | |
raise ValueError("method must be 'linear', 'quadratic', 'logarithmic'," | |
" or 'hyperbolic', but a value of %r was given." | |
% method) | |
return phase | |
def sweep_poly(t, poly, phi=0): | |
""" | |
Frequency-swept cosine generator, with a time-dependent frequency. | |
This function generates a sinusoidal function whose instantaneous | |
frequency varies with time. The frequency at time `t` is given by | |
the polynomial `poly`. | |
Parameters | |
---------- | |
t : ndarray | |
Times at which to evaluate the waveform. | |
poly : 1-D array_like or instance of numpy.poly1d | |
The desired frequency expressed as a polynomial. If `poly` is | |
a list or ndarray of length n, then the elements of `poly` are | |
the coefficients of the polynomial, and the instantaneous | |
frequency is | |
``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` | |
If `poly` is an instance of numpy.poly1d, then the | |
instantaneous frequency is | |
``f(t) = poly(t)`` | |
phi : float, optional | |
Phase offset, in degrees, Default: 0. | |
Returns | |
------- | |
sweep_poly : ndarray | |
A numpy array containing the signal evaluated at `t` with the | |
requested time-varying frequency. More precisely, the function | |
returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral | |
(from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. | |
See Also | |
-------- | |
chirp | |
Notes | |
----- | |
.. versionadded:: 0.8.0 | |
If `poly` is a list or ndarray of length `n`, then the elements of | |
`poly` are the coefficients of the polynomial, and the instantaneous | |
frequency is: | |
``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` | |
If `poly` is an instance of `numpy.poly1d`, then the instantaneous | |
frequency is: | |
``f(t) = poly(t)`` | |
Finally, the output `s` is: | |
``cos(phase + (pi/180)*phi)`` | |
where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``, | |
``f(t)`` as defined above. | |
Examples | |
-------- | |
Compute the waveform with instantaneous frequency:: | |
f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2 | |
over the interval 0 <= t <= 10. | |
>>> import numpy as np | |
>>> from scipy.signal import sweep_poly | |
>>> p = np.poly1d([0.025, -0.36, 1.25, 2.0]) | |
>>> t = np.linspace(0, 10, 5001) | |
>>> w = sweep_poly(t, p) | |
Plot it: | |
>>> import matplotlib.pyplot as plt | |
>>> plt.subplot(2, 1, 1) | |
>>> plt.plot(t, w) | |
>>> plt.title("Sweep Poly\\nwith frequency " + | |
... "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$") | |
>>> plt.subplot(2, 1, 2) | |
>>> plt.plot(t, p(t), 'r', label='f(t)') | |
>>> plt.legend() | |
>>> plt.xlabel('t') | |
>>> plt.tight_layout() | |
>>> plt.show() | |
""" | |
# 'phase' is computed in _sweep_poly_phase, to make testing easier. | |
phase = _sweep_poly_phase(t, poly) | |
# Convert to radians. | |
phi *= pi / 180 | |
return cos(phase + phi) | |
def _sweep_poly_phase(t, poly): | |
""" | |
Calculate the phase used by sweep_poly to generate its output. | |
See `sweep_poly` for a description of the arguments. | |
""" | |
# polyint handles lists, ndarrays and instances of poly1d automatically. | |
intpoly = polyint(poly) | |
phase = 2 * pi * polyval(intpoly, t) | |
return phase | |
def unit_impulse(shape, idx=None, dtype=float): | |
""" | |
Unit impulse signal (discrete delta function) or unit basis vector. | |
Parameters | |
---------- | |
shape : int or tuple of int | |
Number of samples in the output (1-D), or a tuple that represents the | |
shape of the output (N-D). | |
idx : None or int or tuple of int or 'mid', optional | |
Index at which the value is 1. If None, defaults to the 0th element. | |
If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in | |
all dimensions. If an int, the impulse will be at `idx` in all | |
dimensions. | |
dtype : data-type, optional | |
The desired data-type for the array, e.g., ``numpy.int8``. Default is | |
``numpy.float64``. | |
Returns | |
------- | |
y : ndarray | |
Output array containing an impulse signal. | |
Notes | |
----- | |
The 1D case is also known as the Kronecker delta. | |
.. versionadded:: 0.19.0 | |
Examples | |
-------- | |
An impulse at the 0th element (:math:`\\delta[n]`): | |
>>> from scipy import signal | |
>>> signal.unit_impulse(8) | |
array([ 1., 0., 0., 0., 0., 0., 0., 0.]) | |
Impulse offset by 2 samples (:math:`\\delta[n-2]`): | |
>>> signal.unit_impulse(7, 2) | |
array([ 0., 0., 1., 0., 0., 0., 0.]) | |
2-dimensional impulse, centered: | |
>>> signal.unit_impulse((3, 3), 'mid') | |
array([[ 0., 0., 0.], | |
[ 0., 1., 0.], | |
[ 0., 0., 0.]]) | |
Impulse at (2, 2), using broadcasting: | |
>>> signal.unit_impulse((4, 4), 2) | |
array([[ 0., 0., 0., 0.], | |
[ 0., 0., 0., 0.], | |
[ 0., 0., 1., 0.], | |
[ 0., 0., 0., 0.]]) | |
Plot the impulse response of a 4th-order Butterworth lowpass filter: | |
>>> imp = signal.unit_impulse(100, 'mid') | |
>>> b, a = signal.butter(4, 0.2) | |
>>> response = signal.lfilter(b, a, imp) | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> plt.plot(np.arange(-50, 50), imp) | |
>>> plt.plot(np.arange(-50, 50), response) | |
>>> plt.margins(0.1, 0.1) | |
>>> plt.xlabel('Time [samples]') | |
>>> plt.ylabel('Amplitude') | |
>>> plt.grid(True) | |
>>> plt.show() | |
""" | |
out = zeros(shape, dtype) | |
shape = np.atleast_1d(shape) | |
if idx is None: | |
idx = (0,) * len(shape) | |
elif idx == 'mid': | |
idx = tuple(shape // 2) | |
elif not hasattr(idx, "__iter__"): | |
idx = (idx,) * len(shape) | |
out[idx] = 1 | |
return out | |