peacock-data-public-datasets-idc-cronscript
				/
					venv
								
							/lib
								
							/python3.10
								
							/site-packages
								
							/nltk
								
							/test
								
							/drt.doctest
					
			| .. Copyright (C) 2001-2023 NLTK Project | |
| .. For license information, see LICENSE.TXT | |
| ================================ | |
| Discourse Representation Theory | |
| ================================ | |
| >>> from nltk.sem import logic | |
| >>> from nltk.inference import TableauProver | |
| Overview | |
| ======== | |
| A DRS can be created with the ``DRS()`` constructor. This takes two arguments: a list of | |
| discourse referents and list of conditions. . | |
| >>> from nltk.sem.drt import * | |
| >>> dexpr = DrtExpression.fromstring | |
| >>> man_x = dexpr('man(x)') | |
| >>> walk_x = dexpr('walk(x)') | |
| >>> x = dexpr('x') | |
| >>> print(DRS([x], [man_x, walk_x])) | |
| ([x],[man(x), walk(x)]) | |
| The ``parse()`` method can also be applied directly to DRS | |
| expressions, which allows them to be specified more | |
| easily. | |
| >>> drs1 = dexpr('([x],[man(x),walk(x)])') | |
| >>> print(drs1) | |
| ([x],[man(x), walk(x)]) | |
| DRSs can be *merged* using the ``+`` operator. | |
| >>> drs2 = dexpr('([y],[woman(y),stop(y)])') | |
| >>> drs3 = drs1 + drs2 | |
| >>> print(drs3) | |
| (([x],[man(x), walk(x)]) + ([y],[woman(y), stop(y)])) | |
| >>> print(drs3.simplify()) | |
| ([x,y],[man(x), walk(x), woman(y), stop(y)]) | |
| We can embed DRSs as components of an ``implies`` condition. | |
| >>> s = '([], [(%s -> %s)])' % (drs1, drs2) | |
| >>> print(dexpr(s)) | |
| ([],[(([x],[man(x), walk(x)]) -> ([y],[woman(y), stop(y)]))]) | |
| The ``fol()`` method converts DRSs into FOL formulae. | |
| >>> print(dexpr(r'([x],[man(x), walks(x)])').fol()) | |
| exists x.(man(x) & walks(x)) | |
| >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol()) | |
| all x.(man(x) -> walks(x)) | |
| In order to visualize a DRS, the ``pretty_format()`` method can be used. | |
| >>> print(drs3.pretty_format()) | |
| _________ __________ | |
| | x | | y | | |
| (|---------| + |----------|) | |
| | man(x) | | woman(y) | | |
| | walk(x) | | stop(y) | | |
| |_________| |__________| | |
| Parse to semantics | |
| ------------------ | |
| .. | |
| >>> logic._counter._value = 0 | |
| DRSs can be used for building compositional semantics in a feature | |
| based grammar. To specify that we want to use DRSs, the appropriate | |
| logic parser needs be passed as a parameter to ``load_earley()`` | |
| >>> from nltk.parse import load_parser | |
| >>> from nltk.sem.drt import DrtParser | |
| >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, logic_parser=DrtParser()) | |
| >>> for tree in parser.parse('a dog barks'.split()): | |
| ... print(tree.label()['SEM'].simplify()) | |
| ... | |
| ([x],[dog(x), bark(x)]) | |
| Alternatively, a ``FeatStructReader`` can be passed with the ``logic_parser`` set on it | |
| >>> from nltk.featstruct import FeatStructReader | |
| >>> from nltk.grammar import FeatStructNonterminal | |
| >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, fstruct_reader=FeatStructReader(fdict_class=FeatStructNonterminal, logic_parser=DrtParser())) | |
| >>> for tree in parser.parse('every girl chases a dog'.split()): | |
| ... print(tree.label()['SEM'].simplify().normalize()) | |
| ... | |
| ([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chase(z1,z2)]))]) | |
| Unit Tests | |
| ========== | |
| Parser | |
| ------ | |
| >>> print(dexpr(r'([x,y],[sees(x,y)])')) | |
| ([x,y],[sees(x,y)]) | |
| >>> print(dexpr(r'([x],[man(x), walks(x)])')) | |
| ([x],[man(x), walks(x)]) | |
| >>> print(dexpr(r'\x.([],[man(x), walks(x)])')) | |
| \x.([],[man(x), walks(x)]) | |
| >>> print(dexpr(r'\x.\y.([],[sees(x,y)])')) | |
| \x y.([],[sees(x,y)]) | |
| >>> print(dexpr(r'([x,y],[(x = y)])')) | |
| ([x,y],[(x = y)]) | |
| >>> print(dexpr(r'([x,y],[(x != y)])')) | |
| ([x,y],[-(x = y)]) | |
| >>> print(dexpr(r'\x.([],[walks(x)])(john)')) | |
| (\x.([],[walks(x)]))(john) | |
| >>> print(dexpr(r'\R.\x.([],[big(x,R)])(\y.([],[mouse(y)]))')) | |
| (\R x.([],[big(x,R)]))(\y.([],[mouse(y)])) | |
| >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))')) | |
| (([x],[walks(x)]) + ([y],[runs(y)])) | |
| >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))')) | |
| (([x,y],[walks(x), jumps(y)]) + ([z],[twos(z)]) + ([w],[runs(w)])) | |
| >>> print(dexpr(r'((([],[walks(x)]) + ([],[twos(x)])) + ([],[runs(x)]))')) | |
| (([],[walks(x)]) + ([],[twos(x)]) + ([],[runs(x)])) | |
| >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)])) + (([],[threes(x)]) + ([],[fours(x)])))')) | |
| (([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])) | |
| >>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))')) | |
| (([],[walks(x)]) -> ([],[runs(x)])) | |
| >>> print(dexpr(r'([x],[PRO(x), sees(John,x)])')) | |
| ([x],[PRO(x), sees(John,x)]) | |
| >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])')) | |
| ([x],[man(x), -([],[walks(x)])]) | |
| >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])')) | |
| ([],[(([x],[man(x)]) -> ([],[walks(x)]))]) | |
| >>> print(dexpr(r'DRS([x],[walk(x)])')) | |
| ([x],[walk(x)]) | |
| >>> print(dexpr(r'DRS([x][walk(x)])')) | |
| ([x],[walk(x)]) | |
| >>> print(dexpr(r'([x][walk(x)])')) | |
| ([x],[walk(x)]) | |
| ``simplify()`` | |
| -------------- | |
| >>> print(dexpr(r'\x.([],[man(x), walks(x)])(john)').simplify()) | |
| ([],[man(john), walks(john)]) | |
| >>> print(dexpr(r'\x.\y.([z],[dog(z),sees(x,y)])(john)(mary)').simplify()) | |
| ([z],[dog(z), sees(john,mary)]) | |
| >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').simplify()) | |
| \x.([],[big(x,\y.([],[mouse(y)]))]) | |
| >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').simplify()) | |
| ([x,y],[walks(x), runs(y)]) | |
| >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))').simplify()) | |
| ([w,x,y,z],[walks(x), jumps(y), twos(z), runs(w)]) | |
| >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])))').simplify()) | |
| ([],[walks(x), runs(x), threes(x), fours(x)]) | |
| >>> dexpr(r'([x],[man(x)])+([x],[walks(x)])').simplify() == \ | |
| ... dexpr(r'([x,z1],[man(x), walks(z1)])') | |
| True | |
| >>> dexpr(r'([y],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)]))])+([x],[run(x)])').simplify() == \ | |
| ... dexpr(r'([y,z1],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)])), run(z1)])') | |
| True | |
| >>> dexpr(r'\Q.(([x],[john(x),walks(x)]) + Q)(([x],[PRO(x),leaves(x)]))').simplify() == \ | |
| ... dexpr(r'([x,z1],[john(x), walks(x), PRO(z1), leaves(z1)])') | |
| True | |
| >>> logic._counter._value = 0 | |
| >>> print(dexpr('([],[(([x],[dog(x)]) -> ([e,y],[boy(y), chase(e), subj(e,x), obj(e,y)]))])+([e,x],[PRO(x), run(e), subj(e,x)])').simplify().normalize().normalize()) | |
| ([e02,z5],[(([z3],[dog(z3)]) -> ([e01,z4],[boy(z4), chase(e01), subj(e01,z3), obj(e01,z4)])), PRO(z5), run(e02), subj(e02,z5)]) | |
| ``fol()`` | |
| ----------- | |
| >>> print(dexpr(r'([x,y],[sees(x,y)])').fol()) | |
| exists x y.sees(x,y) | |
| >>> print(dexpr(r'([x],[man(x), walks(x)])').fol()) | |
| exists x.(man(x) & walks(x)) | |
| >>> print(dexpr(r'\x.([],[man(x), walks(x)])').fol()) | |
| \x.(man(x) & walks(x)) | |
| >>> print(dexpr(r'\x y.([],[sees(x,y)])').fol()) | |
| \x y.sees(x,y) | |
| >>> print(dexpr(r'\x.([],[walks(x)])(john)').fol()) | |
| \x.walks(x)(john) | |
| >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').fol()) | |
| (\R x.big(x,R))(\y.mouse(y)) | |
| >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').fol()) | |
| (exists x.walks(x) & exists y.runs(y)) | |
| >>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))').fol()) | |
| (walks(x) -> runs(x)) | |
| >>> print(dexpr(r'([x],[PRO(x), sees(John,x)])').fol()) | |
| exists x.(PRO(x) & sees(John,x)) | |
| >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])').fol()) | |
| exists x.(man(x) & -walks(x)) | |
| >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol()) | |
| all x.(man(x) -> walks(x)) | |
| >>> print(dexpr(r'([x],[man(x) | walks(x)])').fol()) | |
| exists x.(man(x) | walks(x)) | |
| >>> print(dexpr(r'P(x) + ([x],[walks(x)])').fol()) | |
| (P(x) & exists x.walks(x)) | |
| ``resolve_anaphora()`` | |
| ---------------------- | |
| >>> from nltk.sem.drt import AnaphoraResolutionException | |
| >>> print(resolve_anaphora(dexpr(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])'))) | |
| ([x,y,z],[dog(x), cat(y), walks(z), (z = [x,y])]) | |
| >>> print(resolve_anaphora(dexpr(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])'))) | |
| ([],[(([x],[dog(x)]) -> ([y],[walks(y), (y = x)]))]) | |
| >>> print(resolve_anaphora(dexpr(r'(([x,y],[]) + ([],[PRO(x)]))')).simplify()) | |
| ([x,y],[(x = y)]) | |
| >>> try: print(resolve_anaphora(dexpr(r'([x],[walks(x), PRO(x)])'))) | |
| ... except AnaphoraResolutionException as e: print(e) | |
| Variable 'x' does not resolve to anything. | |
| >>> print(resolve_anaphora(dexpr('([e01,z6,z7],[boy(z6), PRO(z7), run(e01), subj(e01,z7)])'))) | |
| ([e01,z6,z7],[boy(z6), (z7 = z6), run(e01), subj(e01,z7)]) | |
| ``equiv()``: | |
| ---------------- | |
| >>> a = dexpr(r'([x],[man(x), walks(x)])') | |
| >>> b = dexpr(r'([x],[walks(x), man(x)])') | |
| >>> print(a.equiv(b, TableauProver())) | |
| True | |
| ``replace()``: | |
| -------------- | |
| >>> a = dexpr(r'a') | |
| >>> w = dexpr(r'w') | |
| >>> x = dexpr(r'x') | |
| >>> y = dexpr(r'y') | |
| >>> z = dexpr(r'z') | |
| replace bound | |
| ------------- | |
| >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, False)) | |
| ([x],[give(x,y,z)]) | |
| >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, True)) | |
| ([a],[give(a,y,z)]) | |
| replace unbound | |
| --------------- | |
| >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, False)) | |
| ([x],[give(x,a,z)]) | |
| >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, True)) | |
| ([x],[give(x,a,z)]) | |
| replace unbound with bound | |
| -------------------------- | |
| >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, False) == \ | |
| ... dexpr('([z1],[give(z1,x,z)])') | |
| True | |
| >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, True) == \ | |
| ... dexpr('([z1],[give(z1,x,z)])') | |
| True | |
| replace unbound with unbound | |
| ---------------------------- | |
| >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, False)) | |
| ([x],[give(x,z,z)]) | |
| >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, True)) | |
| ([x],[give(x,z,z)]) | |
| replace unbound | |
| --------------- | |
| >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False)) | |
| (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)])) | |
| >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True)) | |
| (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)])) | |
| replace bound | |
| ------------- | |
| >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, False)) | |
| (([x],[P(x,y,z)]) + ([y],[Q(x,y,z)])) | |
| >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, True)) | |
| (([a],[P(a,y,z)]) + ([y],[Q(a,y,z)])) | |
| replace unbound with unbound | |
| ---------------------------- | |
| >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False)) | |
| (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)])) | |
| >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True)) | |
| (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)])) | |
| replace unbound with bound on same side | |
| --------------------------------------- | |
| >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, False) == \ | |
| ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))') | |
| True | |
| >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, True) == \ | |
| ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))') | |
| True | |
| replace unbound with bound on other side | |
| ---------------------------------------- | |
| >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, False) == \ | |
| ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))') | |
| True | |
| >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, True) == \ | |
| ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))') | |
| True | |
| replace unbound with double bound | |
| --------------------------------- | |
| >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, False) == \ | |
| ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))') | |
| True | |
| >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, True) == \ | |
| ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))') | |
| True | |
| regression tests | |
| ---------------- | |
| >>> d = dexpr('([x],[A(c), ([y],[B(x,y,z,a)])->([z],[C(x,y,z,a)])])') | |
| >>> print(d) | |
| ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) | |
| >>> print(d.pretty_format()) | |
| ____________________________________ | |
| | x | | |
| |------------------------------------| | |
| | A(c) | | |
| | ____________ ____________ | | |
| | | y | | z | | | |
| | (|------------| -> |------------|) | | |
| | | B(x,y,z,a) | | C(x,y,z,a) | | | |
| | |____________| |____________| | | |
| |____________________________________| | |
| >>> print(str(d)) | |
| ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) | |
| >>> print(d.fol()) | |
| exists x.(A(c) & all y.(B(x,y,z,a) -> exists z.C(x,y,z,a))) | |
| >>> print(d.replace(Variable('a'), DrtVariableExpression(Variable('r')))) | |
| ([x],[A(c), (([y],[B(x,y,z,r)]) -> ([z],[C(x,y,z,r)]))]) | |
| >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')))) | |
| ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) | |
| >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')))) | |
| ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))]) | |
| >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')))) | |
| ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([z],[C(x,y,z,a)]))]) | |
| >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')), True)) | |
| ([r],[A(c), (([y],[B(r,y,z,a)]) -> ([z],[C(r,y,z,a)]))]) | |
| >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')), True)) | |
| ([x],[A(c), (([r],[B(x,r,z,a)]) -> ([z],[C(x,r,z,a)]))]) | |
| >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')), True)) | |
| ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([r],[C(x,y,r,a)]))]) | |
| >>> print(d == dexpr('([l],[A(c), ([m],[B(l,m,z,a)])->([n],[C(l,m,n,a)])])')) | |
| True | |
| >>> d = dexpr('([],[([x,y],[B(x,y,h), ([a,b],[dee(x,a,g)])])->([z,w],[cee(x,y,f), ([c,d],[E(x,c,d,e)])])])') | |
| >>> sorted(d.free()) | |
| [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')] | |
| >>> sorted(d.variables()) | |
| [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')] | |
| >>> sorted(d.get_refs(True)) | |
| [Variable('a'), Variable('b'), Variable('c'), Variable('d'), Variable('w'), Variable('x'), Variable('y'), Variable('z')] | |
| >>> sorted(d.conds[0].get_refs(False)) | |
| [Variable('x'), Variable('y')] | |
| >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])->([],[C(x,y)]), ([x,y],[D(x,y)])->([],[E(x,y)]), ([],[F(x,y)])->([x,y],[G(x,y)])])').eliminate_equality()) | |
| ([x],[A(x,x), (([],[B(x,x)]) -> ([],[C(x,x)])), (([x,y],[D(x,y)]) -> ([],[E(x,y)])), (([],[F(x,x)]) -> ([x,y],[G(x,y)]))]) | |
| >>> print(dexpr('([x,y],[A(x,y), (x=y)]) -> ([],[B(x,y)])').eliminate_equality()) | |
| (([x],[A(x,x)]) -> ([],[B(x,x)])) | |
| >>> print(dexpr('([x,y],[A(x,y)]) -> ([],[B(x,y), (x=y)])').eliminate_equality()) | |
| (([x,y],[A(x,y)]) -> ([],[B(x,x)])) | |
| >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])])').eliminate_equality()) | |
| ([x],[A(x,x), ([],[B(x,x)])]) | |
| >>> print(dexpr('([x,y],[A(x,y), ([],[B(x,y), (x=y)])])').eliminate_equality()) | |
| ([x,y],[A(x,y), ([],[B(x,x)])]) | |
| >>> print(dexpr('([z8 z9 z10],[A(z8), z8=z10, z9=z10, B(z9), C(z10), D(z10)])').eliminate_equality()) | |
| ([z9],[A(z9), B(z9), C(z9), D(z9)]) | |
| >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)]), ([x,y],[C(x,y)])])').eliminate_equality()) | |
| ([x],[A(x,x), ([],[B(x,x)]), ([x,y],[C(x,y)])]) | |
| >>> print(dexpr('([x,y],[A(x,y)]) + ([],[B(x,y), (x=y)]) + ([],[C(x,y)])').eliminate_equality()) | |
| ([x],[A(x,x), B(x,x), C(x,x)]) | |
| >>> print(dexpr('([x,y],[B(x,y)])+([x,y],[C(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x')))) | |
| (([x,y],[B(x,y)]) + ([x,y],[C(x,y)])) | |
| >>> print(dexpr('(([x,y],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x')))) | |
| (([x,y],[B(x,y)]) + ([],[C(x,y)]) + ([],[D(x,y)])) | |
| >>> print(dexpr('(([],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x')))) | |
| (([],[B(x,x)]) + ([],[C(x,x)]) + ([],[D(x,x)])) | |
| >>> print(dexpr('(([],[B(x,y), ([x,y],[A(x,y)])])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))).normalize()) | |
| (([],[B(z3,z1), ([z2,z3],[A(z3,z2)])]) + ([],[C(z3,z1)]) + ([],[D(z3,z1)])) | |
| Parse errors | |
| ============ | |
| >>> def parse_error(drtstring): | |
| ... try: dexpr(drtstring) | |
| ... except logic.LogicalExpressionException as e: print(e) | |
| >>> parse_error(r'') | |
| End of input found. Expression expected. | |
| <BLANKLINE> | |
| ^ | |
| >>> parse_error(r'(') | |
| End of input found. Expression expected. | |
| ( | |
| ^ | |
| >>> parse_error(r'()') | |
| Unexpected token: ')'. Expression expected. | |
| () | |
| ^ | |
| >>> parse_error(r'([') | |
| End of input found. Expected token ']'. | |
| ([ | |
| ^ | |
| >>> parse_error(r'([,') | |
| ',' is an illegal variable name. Constants may not be quantified. | |
| ([, | |
| ^ | |
| >>> parse_error(r'([x,') | |
| End of input found. Variable expected. | |
| ([x, | |
| ^ | |
| >>> parse_error(r'([]') | |
| End of input found. Expected token '['. | |
| ([] | |
| ^ | |
| >>> parse_error(r'([][') | |
| End of input found. Expected token ']'. | |
| ([][ | |
| ^ | |
| >>> parse_error(r'([][,') | |
| Unexpected token: ','. Expression expected. | |
| ([][, | |
| ^ | |
| >>> parse_error(r'([][]') | |
| End of input found. Expected token ')'. | |
| ([][] | |
| ^ | |
| >>> parse_error(r'([x][man(x)]) |') | |
| End of input found. Expression expected. | |
| ([x][man(x)]) | | |
| ^ | |
| Pretty Printing | |
| =============== | |
| >>> dexpr(r"([],[])").pretty_print() | |
| __ | |
| | | | |
| |--| | |
| |__| | |
| >>> dexpr(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pretty_print() | |
| _____________________________ | |
| | | | |
| |-----------------------------| | |
| | ________ _________ | | |
| | | x | | | | | |
| | (|--------| -> |---------|) | | |
| | | big(x) | | bark(x) | | | |
| | | dog(x) | |_________| | | |
| | |________| | | |
| | _________ | | |
| | | x | | | |
| | __ |---------| | | |
| | | | walk(x) | | | |
| | |_________| | | |
| |_____________________________| | |
| >>> dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print() | |
| _________ _________ | |
| | x y | | z | | |
| (|---------| + |---------|) | |
| | (x = y) | | dog(z) | | |
| |_________| | walk(z) | | |
| |_________| | |
| >>> dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print() | |
| _______________________________ | |
| | | | |
| |-------------------------------| | |
| | ___ ___ _________ | | |
| | | x | | y | | z | | | |
| | (|---| | |---| | |---------|) | | |
| | |___| |___| | dog(z) | | | |
| | | walk(z) | | | |
| | |_________| | | |
| |_______________________________| | |
| >>> dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print() | |
| ___ ________ | |
| \ | x | \ | | | |
| /\ P Q.(|---| + P(x) + Q(x))( /\ x.|--------|) | |
| |___| | dog(x) | | |
| |________| | |
