peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_lsq
/common.py
"""Functions used by least-squares algorithms.""" | |
from math import copysign | |
import numpy as np | |
from numpy.linalg import norm | |
from scipy.linalg import cho_factor, cho_solve, LinAlgError | |
from scipy.sparse import issparse | |
from scipy.sparse.linalg import LinearOperator, aslinearoperator | |
EPS = np.finfo(float).eps | |
# Functions related to a trust-region problem. | |
def intersect_trust_region(x, s, Delta): | |
"""Find the intersection of a line with the boundary of a trust region. | |
This function solves the quadratic equation with respect to t | |
||(x + s*t)||**2 = Delta**2. | |
Returns | |
------- | |
t_neg, t_pos : tuple of float | |
Negative and positive roots. | |
Raises | |
------ | |
ValueError | |
If `s` is zero or `x` is not within the trust region. | |
""" | |
a = np.dot(s, s) | |
if a == 0: | |
raise ValueError("`s` is zero.") | |
b = np.dot(x, s) | |
c = np.dot(x, x) - Delta**2 | |
if c > 0: | |
raise ValueError("`x` is not within the trust region.") | |
d = np.sqrt(b*b - a*c) # Root from one fourth of the discriminant. | |
# Computations below avoid loss of significance, see "Numerical Recipes". | |
q = -(b + copysign(d, b)) | |
t1 = q / a | |
t2 = c / q | |
if t1 < t2: | |
return t1, t2 | |
else: | |
return t2, t1 | |
def solve_lsq_trust_region(n, m, uf, s, V, Delta, initial_alpha=None, | |
rtol=0.01, max_iter=10): | |
"""Solve a trust-region problem arising in least-squares minimization. | |
This function implements a method described by J. J. More [1]_ and used | |
in MINPACK, but it relies on a single SVD of Jacobian instead of series | |
of Cholesky decompositions. Before running this function, compute: | |
``U, s, VT = svd(J, full_matrices=False)``. | |
Parameters | |
---------- | |
n : int | |
Number of variables. | |
m : int | |
Number of residuals. | |
uf : ndarray | |
Computed as U.T.dot(f). | |
s : ndarray | |
Singular values of J. | |
V : ndarray | |
Transpose of VT. | |
Delta : float | |
Radius of a trust region. | |
initial_alpha : float, optional | |
Initial guess for alpha, which might be available from a previous | |
iteration. If None, determined automatically. | |
rtol : float, optional | |
Stopping tolerance for the root-finding procedure. Namely, the | |
solution ``p`` will satisfy ``abs(norm(p) - Delta) < rtol * Delta``. | |
max_iter : int, optional | |
Maximum allowed number of iterations for the root-finding procedure. | |
Returns | |
------- | |
p : ndarray, shape (n,) | |
Found solution of a trust-region problem. | |
alpha : float | |
Positive value such that (J.T*J + alpha*I)*p = -J.T*f. | |
Sometimes called Levenberg-Marquardt parameter. | |
n_iter : int | |
Number of iterations made by root-finding procedure. Zero means | |
that Gauss-Newton step was selected as the solution. | |
References | |
---------- | |
.. [1] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation | |
and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes | |
in Mathematics 630, Springer Verlag, pp. 105-116, 1977. | |
""" | |
def phi_and_derivative(alpha, suf, s, Delta): | |
"""Function of which to find zero. | |
It is defined as "norm of regularized (by alpha) least-squares | |
solution minus `Delta`". Refer to [1]_. | |
""" | |
denom = s**2 + alpha | |
p_norm = norm(suf / denom) | |
phi = p_norm - Delta | |
phi_prime = -np.sum(suf ** 2 / denom**3) / p_norm | |
return phi, phi_prime | |
suf = s * uf | |
# Check if J has full rank and try Gauss-Newton step. | |
if m >= n: | |
threshold = EPS * m * s[0] | |
full_rank = s[-1] > threshold | |
else: | |
full_rank = False | |
if full_rank: | |
p = -V.dot(uf / s) | |
if norm(p) <= Delta: | |
return p, 0.0, 0 | |
alpha_upper = norm(suf) / Delta | |
if full_rank: | |
phi, phi_prime = phi_and_derivative(0.0, suf, s, Delta) | |
alpha_lower = -phi / phi_prime | |
else: | |
alpha_lower = 0.0 | |
if initial_alpha is None or not full_rank and initial_alpha == 0: | |
alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5) | |
else: | |
alpha = initial_alpha | |
for it in range(max_iter): | |
if alpha < alpha_lower or alpha > alpha_upper: | |
alpha = max(0.001 * alpha_upper, (alpha_lower * alpha_upper)**0.5) | |
phi, phi_prime = phi_and_derivative(alpha, suf, s, Delta) | |
if phi < 0: | |
alpha_upper = alpha | |
ratio = phi / phi_prime | |
alpha_lower = max(alpha_lower, alpha - ratio) | |
alpha -= (phi + Delta) * ratio / Delta | |
if np.abs(phi) < rtol * Delta: | |
break | |
p = -V.dot(suf / (s**2 + alpha)) | |
# Make the norm of p equal to Delta, p is changed only slightly during | |
# this. It is done to prevent p lie outside the trust region (which can | |
# cause problems later). | |
p *= Delta / norm(p) | |
return p, alpha, it + 1 | |
def solve_trust_region_2d(B, g, Delta): | |
"""Solve a general trust-region problem in 2 dimensions. | |
The problem is reformulated as a 4th order algebraic equation, | |
the solution of which is found by numpy.roots. | |
Parameters | |
---------- | |
B : ndarray, shape (2, 2) | |
Symmetric matrix, defines a quadratic term of the function. | |
g : ndarray, shape (2,) | |
Defines a linear term of the function. | |
Delta : float | |
Radius of a trust region. | |
Returns | |
------- | |
p : ndarray, shape (2,) | |
Found solution. | |
newton_step : bool | |
Whether the returned solution is the Newton step which lies within | |
the trust region. | |
""" | |
try: | |
R, lower = cho_factor(B) | |
p = -cho_solve((R, lower), g) | |
if np.dot(p, p) <= Delta**2: | |
return p, True | |
except LinAlgError: | |
pass | |
a = B[0, 0] * Delta**2 | |
b = B[0, 1] * Delta**2 | |
c = B[1, 1] * Delta**2 | |
d = g[0] * Delta | |
f = g[1] * Delta | |
coeffs = np.array( | |
[-b + d, 2 * (a - c + f), 6 * b, 2 * (-a + c + f), -b - d]) | |
t = np.roots(coeffs) # Can handle leading zeros. | |
t = np.real(t[np.isreal(t)]) | |
p = Delta * np.vstack((2 * t / (1 + t**2), (1 - t**2) / (1 + t**2))) | |
value = 0.5 * np.sum(p * B.dot(p), axis=0) + np.dot(g, p) | |
i = np.argmin(value) | |
p = p[:, i] | |
return p, False | |
def update_tr_radius(Delta, actual_reduction, predicted_reduction, | |
step_norm, bound_hit): | |
"""Update the radius of a trust region based on the cost reduction. | |
Returns | |
------- | |
Delta : float | |
New radius. | |
ratio : float | |
Ratio between actual and predicted reductions. | |
""" | |
if predicted_reduction > 0: | |
ratio = actual_reduction / predicted_reduction | |
elif predicted_reduction == actual_reduction == 0: | |
ratio = 1 | |
else: | |
ratio = 0 | |
if ratio < 0.25: | |
Delta = 0.25 * step_norm | |
elif ratio > 0.75 and bound_hit: | |
Delta *= 2.0 | |
return Delta, ratio | |
# Construction and minimization of quadratic functions. | |
def build_quadratic_1d(J, g, s, diag=None, s0=None): | |
"""Parameterize a multivariate quadratic function along a line. | |
The resulting univariate quadratic function is given as follows:: | |
f(t) = 0.5 * (s0 + s*t).T * (J.T*J + diag) * (s0 + s*t) + | |
g.T * (s0 + s*t) | |
Parameters | |
---------- | |
J : ndarray, sparse matrix or LinearOperator shape (m, n) | |
Jacobian matrix, affects the quadratic term. | |
g : ndarray, shape (n,) | |
Gradient, defines the linear term. | |
s : ndarray, shape (n,) | |
Direction vector of a line. | |
diag : None or ndarray with shape (n,), optional | |
Addition diagonal part, affects the quadratic term. | |
If None, assumed to be 0. | |
s0 : None or ndarray with shape (n,), optional | |
Initial point. If None, assumed to be 0. | |
Returns | |
------- | |
a : float | |
Coefficient for t**2. | |
b : float | |
Coefficient for t. | |
c : float | |
Free term. Returned only if `s0` is provided. | |
""" | |
v = J.dot(s) | |
a = np.dot(v, v) | |
if diag is not None: | |
a += np.dot(s * diag, s) | |
a *= 0.5 | |
b = np.dot(g, s) | |
if s0 is not None: | |
u = J.dot(s0) | |
b += np.dot(u, v) | |
c = 0.5 * np.dot(u, u) + np.dot(g, s0) | |
if diag is not None: | |
b += np.dot(s0 * diag, s) | |
c += 0.5 * np.dot(s0 * diag, s0) | |
return a, b, c | |
else: | |
return a, b | |
def minimize_quadratic_1d(a, b, lb, ub, c=0): | |
"""Minimize a 1-D quadratic function subject to bounds. | |
The free term `c` is 0 by default. Bounds must be finite. | |
Returns | |
------- | |
t : float | |
Minimum point. | |
y : float | |
Minimum value. | |
""" | |
t = [lb, ub] | |
if a != 0: | |
extremum = -0.5 * b / a | |
if lb < extremum < ub: | |
t.append(extremum) | |
t = np.asarray(t) | |
y = t * (a * t + b) + c | |
min_index = np.argmin(y) | |
return t[min_index], y[min_index] | |
def evaluate_quadratic(J, g, s, diag=None): | |
"""Compute values of a quadratic function arising in least squares. | |
The function is 0.5 * s.T * (J.T * J + diag) * s + g.T * s. | |
Parameters | |
---------- | |
J : ndarray, sparse matrix or LinearOperator, shape (m, n) | |
Jacobian matrix, affects the quadratic term. | |
g : ndarray, shape (n,) | |
Gradient, defines the linear term. | |
s : ndarray, shape (k, n) or (n,) | |
Array containing steps as rows. | |
diag : ndarray, shape (n,), optional | |
Addition diagonal part, affects the quadratic term. | |
If None, assumed to be 0. | |
Returns | |
------- | |
values : ndarray with shape (k,) or float | |
Values of the function. If `s` was 2-D, then ndarray is | |
returned, otherwise, float is returned. | |
""" | |
if s.ndim == 1: | |
Js = J.dot(s) | |
q = np.dot(Js, Js) | |
if diag is not None: | |
q += np.dot(s * diag, s) | |
else: | |
Js = J.dot(s.T) | |
q = np.sum(Js**2, axis=0) | |
if diag is not None: | |
q += np.sum(diag * s**2, axis=1) | |
l = np.dot(s, g) | |
return 0.5 * q + l | |
# Utility functions to work with bound constraints. | |
def in_bounds(x, lb, ub): | |
"""Check if a point lies within bounds.""" | |
return np.all((x >= lb) & (x <= ub)) | |
def step_size_to_bound(x, s, lb, ub): | |
"""Compute a min_step size required to reach a bound. | |
The function computes a positive scalar t, such that x + s * t is on | |
the bound. | |
Returns | |
------- | |
step : float | |
Computed step. Non-negative value. | |
hits : ndarray of int with shape of x | |
Each element indicates whether a corresponding variable reaches the | |
bound: | |
* 0 - the bound was not hit. | |
* -1 - the lower bound was hit. | |
* 1 - the upper bound was hit. | |
""" | |
non_zero = np.nonzero(s) | |
s_non_zero = s[non_zero] | |
steps = np.empty_like(x) | |
steps.fill(np.inf) | |
with np.errstate(over='ignore'): | |
steps[non_zero] = np.maximum((lb - x)[non_zero] / s_non_zero, | |
(ub - x)[non_zero] / s_non_zero) | |
min_step = np.min(steps) | |
return min_step, np.equal(steps, min_step) * np.sign(s).astype(int) | |
def find_active_constraints(x, lb, ub, rtol=1e-10): | |
"""Determine which constraints are active in a given point. | |
The threshold is computed using `rtol` and the absolute value of the | |
closest bound. | |
Returns | |
------- | |
active : ndarray of int with shape of x | |
Each component shows whether the corresponding constraint is active: | |
* 0 - a constraint is not active. | |
* -1 - a lower bound is active. | |
* 1 - a upper bound is active. | |
""" | |
active = np.zeros_like(x, dtype=int) | |
if rtol == 0: | |
active[x <= lb] = -1 | |
active[x >= ub] = 1 | |
return active | |
lower_dist = x - lb | |
upper_dist = ub - x | |
lower_threshold = rtol * np.maximum(1, np.abs(lb)) | |
upper_threshold = rtol * np.maximum(1, np.abs(ub)) | |
lower_active = (np.isfinite(lb) & | |
(lower_dist <= np.minimum(upper_dist, lower_threshold))) | |
active[lower_active] = -1 | |
upper_active = (np.isfinite(ub) & | |
(upper_dist <= np.minimum(lower_dist, upper_threshold))) | |
active[upper_active] = 1 | |
return active | |
def make_strictly_feasible(x, lb, ub, rstep=1e-10): | |
"""Shift a point to the interior of a feasible region. | |
Each element of the returned vector is at least at a relative distance | |
`rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used. | |
""" | |
x_new = x.copy() | |
active = find_active_constraints(x, lb, ub, rstep) | |
lower_mask = np.equal(active, -1) | |
upper_mask = np.equal(active, 1) | |
if rstep == 0: | |
x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask]) | |
x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask]) | |
else: | |
x_new[lower_mask] = (lb[lower_mask] + | |
rstep * np.maximum(1, np.abs(lb[lower_mask]))) | |
x_new[upper_mask] = (ub[upper_mask] - | |
rstep * np.maximum(1, np.abs(ub[upper_mask]))) | |
tight_bounds = (x_new < lb) | (x_new > ub) | |
x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds]) | |
return x_new | |
def CL_scaling_vector(x, g, lb, ub): | |
"""Compute Coleman-Li scaling vector and its derivatives. | |
Components of a vector v are defined as follows:: | |
| ub[i] - x[i], if g[i] < 0 and ub[i] < np.inf | |
v[i] = | x[i] - lb[i], if g[i] > 0 and lb[i] > -np.inf | |
| 1, otherwise | |
According to this definition v[i] >= 0 for all i. It differs from the | |
definition in paper [1]_ (eq. (2.2)), where the absolute value of v is | |
used. Both definitions are equivalent down the line. | |
Derivatives of v with respect to x take value 1, -1 or 0 depending on a | |
case. | |
Returns | |
------- | |
v : ndarray with shape of x | |
Scaling vector. | |
dv : ndarray with shape of x | |
Derivatives of v[i] with respect to x[i], diagonal elements of v's | |
Jacobian. | |
References | |
---------- | |
.. [1] M.A. Branch, T.F. Coleman, and Y. Li, "A Subspace, Interior, | |
and Conjugate Gradient Method for Large-Scale Bound-Constrained | |
Minimization Problems," SIAM Journal on Scientific Computing, | |
Vol. 21, Number 1, pp 1-23, 1999. | |
""" | |
v = np.ones_like(x) | |
dv = np.zeros_like(x) | |
mask = (g < 0) & np.isfinite(ub) | |
v[mask] = ub[mask] - x[mask] | |
dv[mask] = -1 | |
mask = (g > 0) & np.isfinite(lb) | |
v[mask] = x[mask] - lb[mask] | |
dv[mask] = 1 | |
return v, dv | |
def reflective_transformation(y, lb, ub): | |
"""Compute reflective transformation and its gradient.""" | |
if in_bounds(y, lb, ub): | |
return y, np.ones_like(y) | |
lb_finite = np.isfinite(lb) | |
ub_finite = np.isfinite(ub) | |
x = y.copy() | |
g_negative = np.zeros_like(y, dtype=bool) | |
mask = lb_finite & ~ub_finite | |
x[mask] = np.maximum(y[mask], 2 * lb[mask] - y[mask]) | |
g_negative[mask] = y[mask] < lb[mask] | |
mask = ~lb_finite & ub_finite | |
x[mask] = np.minimum(y[mask], 2 * ub[mask] - y[mask]) | |
g_negative[mask] = y[mask] > ub[mask] | |
mask = lb_finite & ub_finite | |
d = ub - lb | |
t = np.remainder(y[mask] - lb[mask], 2 * d[mask]) | |
x[mask] = lb[mask] + np.minimum(t, 2 * d[mask] - t) | |
g_negative[mask] = t > d[mask] | |
g = np.ones_like(y) | |
g[g_negative] = -1 | |
return x, g | |
# Functions to display algorithm's progress. | |
def print_header_nonlinear(): | |
print("{:^15}{:^15}{:^15}{:^15}{:^15}{:^15}" | |
.format("Iteration", "Total nfev", "Cost", "Cost reduction", | |
"Step norm", "Optimality")) | |
def print_iteration_nonlinear(iteration, nfev, cost, cost_reduction, | |
step_norm, optimality): | |
if cost_reduction is None: | |
cost_reduction = " " * 15 | |
else: | |
cost_reduction = f"{cost_reduction:^15.2e}" | |
if step_norm is None: | |
step_norm = " " * 15 | |
else: | |
step_norm = f"{step_norm:^15.2e}" | |
print("{:^15}{:^15}{:^15.4e}{}{}{:^15.2e}" | |
.format(iteration, nfev, cost, cost_reduction, | |
step_norm, optimality)) | |
def print_header_linear(): | |
print("{:^15}{:^15}{:^15}{:^15}{:^15}" | |
.format("Iteration", "Cost", "Cost reduction", "Step norm", | |
"Optimality")) | |
def print_iteration_linear(iteration, cost, cost_reduction, step_norm, | |
optimality): | |
if cost_reduction is None: | |
cost_reduction = " " * 15 | |
else: | |
cost_reduction = f"{cost_reduction:^15.2e}" | |
if step_norm is None: | |
step_norm = " " * 15 | |
else: | |
step_norm = f"{step_norm:^15.2e}" | |
print(f"{iteration:^15}{cost:^15.4e}{cost_reduction}{step_norm}{optimality:^15.2e}") | |
# Simple helper functions. | |
def compute_grad(J, f): | |
"""Compute gradient of the least-squares cost function.""" | |
if isinstance(J, LinearOperator): | |
return J.rmatvec(f) | |
else: | |
return J.T.dot(f) | |
def compute_jac_scale(J, scale_inv_old=None): | |
"""Compute variables scale based on the Jacobian matrix.""" | |
if issparse(J): | |
scale_inv = np.asarray(J.power(2).sum(axis=0)).ravel()**0.5 | |
else: | |
scale_inv = np.sum(J**2, axis=0)**0.5 | |
if scale_inv_old is None: | |
scale_inv[scale_inv == 0] = 1 | |
else: | |
scale_inv = np.maximum(scale_inv, scale_inv_old) | |
return 1 / scale_inv, scale_inv | |
def left_multiplied_operator(J, d): | |
"""Return diag(d) J as LinearOperator.""" | |
J = aslinearoperator(J) | |
def matvec(x): | |
return d * J.matvec(x) | |
def matmat(X): | |
return d[:, np.newaxis] * J.matmat(X) | |
def rmatvec(x): | |
return J.rmatvec(x.ravel() * d) | |
return LinearOperator(J.shape, matvec=matvec, matmat=matmat, | |
rmatvec=rmatvec) | |
def right_multiplied_operator(J, d): | |
"""Return J diag(d) as LinearOperator.""" | |
J = aslinearoperator(J) | |
def matvec(x): | |
return J.matvec(np.ravel(x) * d) | |
def matmat(X): | |
return J.matmat(X * d[:, np.newaxis]) | |
def rmatvec(x): | |
return d * J.rmatvec(x) | |
return LinearOperator(J.shape, matvec=matvec, matmat=matmat, | |
rmatvec=rmatvec) | |
def regularized_lsq_operator(J, diag): | |
"""Return a matrix arising in regularized least squares as LinearOperator. | |
The matrix is | |
[ J ] | |
[ D ] | |
where D is diagonal matrix with elements from `diag`. | |
""" | |
J = aslinearoperator(J) | |
m, n = J.shape | |
def matvec(x): | |
return np.hstack((J.matvec(x), diag * x)) | |
def rmatvec(x): | |
x1 = x[:m] | |
x2 = x[m:] | |
return J.rmatvec(x1) + diag * x2 | |
return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec) | |
def right_multiply(J, d, copy=True): | |
"""Compute J diag(d). | |
If `copy` is False, `J` is modified in place (unless being LinearOperator). | |
""" | |
if copy and not isinstance(J, LinearOperator): | |
J = J.copy() | |
if issparse(J): | |
J.data *= d.take(J.indices, mode='clip') # scikit-learn recipe. | |
elif isinstance(J, LinearOperator): | |
J = right_multiplied_operator(J, d) | |
else: | |
J *= d | |
return J | |
def left_multiply(J, d, copy=True): | |
"""Compute diag(d) J. | |
If `copy` is False, `J` is modified in place (unless being LinearOperator). | |
""" | |
if copy and not isinstance(J, LinearOperator): | |
J = J.copy() | |
if issparse(J): | |
J.data *= np.repeat(d, np.diff(J.indptr)) # scikit-learn recipe. | |
elif isinstance(J, LinearOperator): | |
J = left_multiplied_operator(J, d) | |
else: | |
J *= d[:, np.newaxis] | |
return J | |
def check_termination(dF, F, dx_norm, x_norm, ratio, ftol, xtol): | |
"""Check termination condition for nonlinear least squares.""" | |
ftol_satisfied = dF < ftol * F and ratio > 0.25 | |
xtol_satisfied = dx_norm < xtol * (xtol + x_norm) | |
if ftol_satisfied and xtol_satisfied: | |
return 4 | |
elif ftol_satisfied: | |
return 2 | |
elif xtol_satisfied: | |
return 3 | |
else: | |
return None | |
def scale_for_robust_loss_function(J, f, rho): | |
"""Scale Jacobian and residuals for a robust loss function. | |
Arrays are modified in place. | |
""" | |
J_scale = rho[1] + 2 * rho[2] * f**2 | |
J_scale[J_scale < EPS] = EPS | |
J_scale **= 0.5 | |
f *= rho[1] / J_scale | |
return left_multiply(J, J_scale, copy=False), f | |