peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_bracket.py
import pytest | |
import numpy as np | |
from numpy.testing import assert_array_less, assert_allclose, assert_equal | |
from scipy.optimize._bracket import _bracket_root, _bracket_minimum, _ELIMITS | |
import scipy._lib._elementwise_iterative_method as eim | |
from scipy import stats | |
class TestBracketRoot: | |
def test_nfev_expected(self, seed, use_xmin, other_side, fix_one_side): | |
# Property-based test to confirm that _bracket_root is behaving as | |
# expected. The basic case is when root < a < b. | |
# The number of times bracket expands (per side) can be found by | |
# setting the expression for the left endpoint of the bracket to the | |
# root of f (x=0), solving for i, and rounding up. The corresponding | |
# lower and upper ends of the bracket are found by plugging this back | |
# into the expression for the ends of the bracket. | |
# `other_side=True` is the case that a < b < root | |
# Special cases like a < root < b are tested separately | |
rng = np.random.default_rng(seed) | |
xl0, d, factor = rng.random(size=3) * [1e5, 10, 5] | |
factor = 1 + factor # factor must be greater than 1 | |
xr0 = xl0 + d # xr0 must be greater than a in basic case | |
def f(x): | |
f.count += 1 | |
return x # root is 0 | |
if use_xmin: | |
xmin = -rng.random() | |
n = np.ceil(np.log(-(xl0 - xmin) / xmin) / np.log(factor)) | |
l, u = xmin + (xl0 - xmin)*factor**-n, xmin + (xl0 - xmin)*factor**-(n - 1) | |
kwargs = dict(xl0=xl0, xr0=xr0, factor=factor, xmin=xmin) | |
else: | |
n = np.ceil(np.log(xr0/d) / np.log(factor)) | |
l, u = xr0 - d*factor**n, xr0 - d*factor**(n-1) | |
kwargs = dict(xl0=xl0, xr0=xr0, factor=factor) | |
if other_side: | |
kwargs['xl0'], kwargs['xr0'] = -kwargs['xr0'], -kwargs['xl0'] | |
l, u = -u, -l | |
if 'xmin' in kwargs: | |
kwargs['xmax'] = -kwargs.pop('xmin') | |
if fix_one_side: | |
if other_side: | |
kwargs['xmin'] = -xr0 | |
else: | |
kwargs['xmax'] = xr0 | |
f.count = 0 | |
res = _bracket_root(f, **kwargs) | |
# Compare reported number of function evaluations `nfev` against | |
# reported `nit`, actual function call count `f.count`, and theoretical | |
# number of expansions `n`. | |
# When both sides are free, these get multiplied by 2 because function | |
# is evaluated on the left and the right each iteration. | |
# When one side is fixed, however, we add one: on the right side, the | |
# function gets evaluated once at b. | |
# Add 1 to `n` and `res.nit` because function evaluations occur at | |
# iterations *0*, 1, ..., `n`. Subtract 1 from `f.count` because | |
# function is called separately for left and right in iteration 0. | |
if not fix_one_side: | |
assert res.nfev == 2*(res.nit+1) == 2*(f.count-1) == 2*(n + 1) | |
else: | |
assert res.nfev == (res.nit+1)+1 == (f.count-1)+1 == (n+1)+1 | |
# Compare reported bracket to theoretical bracket and reported function | |
# values to function evaluated at bracket. | |
bracket = np.asarray([res.xl, res.xr]) | |
assert_allclose(bracket, (l, u)) | |
f_bracket = np.asarray([res.fl, res.fr]) | |
assert_allclose(f_bracket, f(bracket)) | |
# Check that bracket is valid and that status and success are correct | |
assert res.xr > res.xl | |
signs = np.sign(f_bracket) | |
assert signs[0] == -signs[1] | |
assert res.status == 0 | |
assert res.success | |
def f(self, q, p): | |
return stats.norm.cdf(q) - p | |
def test_basic(self, p, xmin, xmax, factor): | |
# Test basic functionality to bracket root (distribution PPF) | |
res = _bracket_root(self.f, -0.01, 0.01, xmin=xmin, xmax=xmax, | |
factor=factor, args=(p,)) | |
assert_equal(-np.sign(res.fl), np.sign(res.fr)) | |
def test_vectorization(self, shape): | |
# Test for correct functionality, output shapes, and dtypes for various | |
# input shapes. | |
p = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6 | |
args = (p,) | |
maxiter = 10 | |
def bracket_root_single(xl0, xr0, xmin, xmax, factor, p): | |
return _bracket_root(self.f, xl0, xr0, xmin=xmin, xmax=xmax, | |
factor=factor, args=(p,), | |
maxiter=maxiter) | |
def f(*args, **kwargs): | |
f.f_evals += 1 | |
return self.f(*args, **kwargs) | |
f.f_evals = 0 | |
rng = np.random.default_rng(2348234) | |
xl0 = -rng.random(size=shape) | |
xr0 = rng.random(size=shape) | |
xmin, xmax = 1e3*xl0, 1e3*xr0 | |
if shape: # make some elements un | |
i = rng.random(size=shape) > 0.5 | |
xmin[i], xmax[i] = -np.inf, np.inf | |
factor = rng.random(size=shape) + 1.5 | |
res = _bracket_root(f, xl0, xr0, xmin=xmin, xmax=xmax, factor=factor, | |
args=args, maxiter=maxiter) | |
refs = bracket_root_single(xl0, xr0, xmin, xmax, factor, p).ravel() | |
attrs = ['xl', 'xr', 'fl', 'fr', 'success', 'nfev', 'nit'] | |
for attr in attrs: | |
ref_attr = [getattr(ref, attr) for ref in refs] | |
res_attr = getattr(res, attr) | |
assert_allclose(res_attr.ravel(), ref_attr) | |
assert_equal(res_attr.shape, shape) | |
assert np.issubdtype(res.success.dtype, np.bool_) | |
if shape: | |
assert np.all(res.success[1:-1]) | |
assert np.issubdtype(res.status.dtype, np.integer) | |
assert np.issubdtype(res.nfev.dtype, np.integer) | |
assert np.issubdtype(res.nit.dtype, np.integer) | |
assert_equal(np.max(res.nit), f.f_evals - 2) | |
assert_array_less(res.xl, res.xr) | |
assert_allclose(res.fl, self.f(res.xl, *args)) | |
assert_allclose(res.fr, self.f(res.xr, *args)) | |
def test_flags(self): | |
# Test cases that should produce different status flags; show that all | |
# can be produced simultaneously. | |
def f(xs, js): | |
funcs = [lambda x: x - 1.5, | |
lambda x: x - 1000, | |
lambda x: x - 1000, | |
lambda x: np.nan] | |
return [funcs[j](x) for x, j in zip(xs, js)] | |
args = (np.arange(4, dtype=np.int64),) | |
res = _bracket_root(f, xl0=[-1, -1, -1, -1], xr0=[1, 1, 1, 1], | |
xmin=[-np.inf, -1, -np.inf, -np.inf], | |
xmax=[np.inf, 1, np.inf, np.inf], | |
args=args, maxiter=3) | |
ref_flags = np.array([eim._ECONVERGED, | |
_ELIMITS, | |
eim._ECONVERR, | |
eim._EVALUEERR]) | |
assert_equal(res.status, ref_flags) | |
def test_dtype(self, root, xmin, xmax, dtype): | |
# Test that dtypes are preserved | |
xmin = xmin if xmin is None else dtype(xmin) | |
xmax = xmax if xmax is None else dtype(xmax) | |
root = dtype(root) | |
def f(x, root): | |
return ((x - root) ** 3).astype(dtype) | |
bracket = np.asarray([-0.01, 0.01], dtype=dtype) | |
res = _bracket_root(f, *bracket, xmin=xmin, xmax=xmax, args=(root,)) | |
assert np.all(res.success) | |
assert res.xl.dtype == res.xr.dtype == dtype | |
assert res.fl.dtype == res.fr.dtype == dtype | |
def test_input_validation(self): | |
# Test input validation for appropriate error messages | |
message = '`func` must be callable.' | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(None, -4, 4) | |
message = '...must be numeric and real.' | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4+1j, 4) | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 'hello') | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, xmin=np) | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, xmax=object()) | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, factor=sum) | |
message = "All elements of `factor` must be greater than 1." | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, factor=0.5) | |
message = '`xmin <= xl0 < xr0 <= xmax` must be True' | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, 4, -4) | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, xmax=np.nan) | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, xmin=10) | |
message = "shape mismatch: objects cannot be broadcast" | |
# raised by `np.broadcast, but the traceback is readable IMO | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, [-2, -3], [3, 4, 5]) | |
# Consider making this give a more readable error message | |
# with pytest.raises(ValueError, match=message): | |
# _bracket_root(lambda x: [x[0], x[1], x[1]], [-3, -3], [5, 5]) | |
message = '`maxiter` must be a non-negative integer.' | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, maxiter=1.5) | |
with pytest.raises(ValueError, match=message): | |
_bracket_root(lambda x: x, -4, 4, maxiter=-1) | |
def test_special_cases(self): | |
# Test edge cases and other special cases | |
# Test that integers are not passed to `f` | |
# (otherwise this would overflow) | |
def f(x): | |
assert np.issubdtype(x.dtype, np.floating) | |
return x ** 99 - 1 | |
res = _bracket_root(f, -7, 5) | |
assert res.success | |
# Test maxiter = 0. Should do nothing to bracket. | |
def f(x): | |
return x - 10 | |
bracket = (-3, 5) | |
res = _bracket_root(f, *bracket, maxiter=0) | |
assert res.xl, res.xr == bracket | |
assert res.nit == 0 | |
assert res.nfev == 2 | |
assert res.status == -2 | |
# Test scalar `args` (not in tuple) | |
def f(x, c): | |
return c*x - 1 | |
res = _bracket_root(f, -1, 1, args=3) | |
assert res.success | |
assert_allclose(res.fl, f(res.xl, 3)) | |
# Test other edge cases | |
def f(x): | |
f.count += 1 | |
return x | |
# 1. root lies within guess of bracket | |
f.count = 0 | |
_bracket_root(f, -10, 20) | |
assert_equal(f.count, 2) | |
# 2. bracket endpoint hits root exactly | |
f.count = 0 | |
res = _bracket_root(f, 5, 10, factor=2) | |
bracket = (res.xl, res.xr) | |
assert_equal(res.nfev, 4) | |
assert_allclose(bracket, (0, 5), atol=1e-15) | |
# 3. bracket limit hits root exactly | |
with np.errstate(over='ignore'): | |
res = _bracket_root(f, 5, 10, xmin=0) | |
bracket = (res.xl, res.xr) | |
assert_allclose(bracket[0], 0, atol=1e-15) | |
with np.errstate(over='ignore'): | |
res = _bracket_root(f, -10, -5, xmax=0) | |
bracket = (res.xl, res.xr) | |
assert_allclose(bracket[1], 0, atol=1e-15) | |
# 4. bracket not within min, max | |
with np.errstate(over='ignore'): | |
res = _bracket_root(f, 5, 10, xmin=1) | |
assert not res.success | |
class TestBracketMinimum: | |
def init_f(self): | |
def f(x, a, b): | |
f.count += 1 | |
return (x - a)**2 + b | |
f.count = 0 | |
return f | |
def assert_valid_bracket(self, result): | |
assert np.all( | |
(result.xl < result.xm) & (result.xm < result.xr) | |
) | |
assert np.all( | |
(result.fl >= result.fm) & (result.fr > result.fm) | |
| (result.fl > result.fm) & (result.fr > result.fm) | |
) | |
def get_kwargs( | |
self, *, xl0=None, xr0=None, factor=None, xmin=None, xmax=None, args=() | |
): | |
names = ("xl0", "xr0", "xmin", "xmax", "factor", "args") | |
return { | |
name: val for name, val in zip(names, (xl0, xr0, xmin, xmax, factor, args)) | |
if isinstance(val, np.ndarray) or np.isscalar(val) | |
or val not in [None, ()] | |
} | |
def test_nfev_expected(self, seed, use_xmin, other_side): | |
rng = np.random.default_rng(seed) | |
args = (0, 0) # f(x) = x^2 with minimum at 0 | |
# xl0, xm0, xr0 are chosen such that the initial bracket is to | |
# the right of the minimum, and the bracket will expand | |
# downhill towards zero. | |
xl0, d1, d2, factor = rng.random(size=4) * [1e5, 10, 10, 5] | |
xm0 = xl0 + d1 | |
xr0 = xm0 + d2 | |
# Factor should be greater than one. | |
factor += 1 | |
if use_xmin: | |
xmin = -rng.random() * 5 | |
n = int(np.ceil(np.log(-(xl0 - xmin) / xmin) / np.log(factor))) | |
lower = xmin + (xl0 - xmin)*factor**-n | |
middle = xmin + (xl0 - xmin)*factor**-(n-1) | |
upper = xmin + (xl0 - xmin)*factor**-(n-2) if n > 1 else xm0 | |
# It may be the case the lower is below the minimum, but we still | |
# don't have a valid bracket. | |
if middle**2 > lower**2: | |
n += 1 | |
lower, middle, upper = ( | |
xmin + (xl0 - xmin)*factor**-n, lower, middle | |
) | |
else: | |
xmin = None | |
n = int(np.ceil(np.log(xl0 / d1) / np.log(factor))) | |
lower = xl0 - d1*factor**n | |
middle = xl0 - d1*factor**(n-1) if n > 1 else xl0 | |
upper = xl0 - d1*factor**(n-2) if n > 1 else xm0 | |
# It may be the case the lower is below the minimum, but we still | |
# don't have a valid bracket. | |
if middle**2 > lower**2: | |
n += 1 | |
lower, middle, upper = ( | |
xl0 - d1*factor**n, lower, middle | |
) | |
f = self.init_f() | |
xmax = None | |
if other_side: | |
xl0, xm0, xr0 = -xr0, -xm0, -xl0 | |
xmin, xmax = None, -xmin if xmin is not None else None | |
lower, middle, upper = -upper, -middle, -lower | |
kwargs = self.get_kwargs( | |
xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax, factor=factor, args=args | |
) | |
result = _bracket_minimum(f, xm0, **kwargs) | |
# Check that `nfev` and `nit` have the correct relationship | |
assert result.nfev == result.nit + 3 | |
# Check that `nfev` reports the correct number of function evaluations. | |
assert result.nfev == f.count | |
# Check that the number of iterations matches the theoretical value. | |
assert result.nit == n | |
# Compare reported bracket to theoretical bracket and reported function | |
# values to function evaluated at bracket. | |
bracket = np.asarray([result.xl, result.xm, result.xr]) | |
assert_allclose(bracket, (lower, middle, upper)) | |
f_bracket = np.asarray([result.fl, result.fm, result.fr]) | |
assert_allclose(f_bracket, f(bracket, *args)) | |
self.assert_valid_bracket(result) | |
assert result.status == 0 | |
assert result.success | |
def test_flags(self): | |
# Test cases that should produce different status flags; show that all | |
# can be produced simultaneously | |
def f(xs, js): | |
funcs = [lambda x: (x - 1.5)**2, | |
lambda x: x, | |
lambda x: x, | |
lambda x: np.nan] | |
return [funcs[j](x) for x, j in zip(xs, js)] | |
args = (np.arange(4, dtype=np.int64),) | |
xl0, xm0, xr0 = np.full(4, -1.0), np.full(4, 0.0), np.full(4, 1.0) | |
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, | |
xmin=[-np.inf, -1.0, -np.inf, -np.inf], | |
args=args, maxiter=3) | |
reference_flags = np.array([eim._ECONVERGED, _ELIMITS, | |
eim._ECONVERR, eim._EVALUEERR]) | |
assert_equal(result.status, reference_flags) | |
def test_dtypes(self, minimum, xmin, xmax, dtype): | |
xmin = xmin if xmin is None else dtype(xmin) | |
xmax = xmax if xmax is None else dtype(xmax) | |
minimum = dtype(minimum) | |
def f(x, minimum): | |
return ((x - minimum)**2).astype(dtype) | |
xl0, xm0, xr0 = np.array([-0.01, 0.0, 0.01], dtype=dtype) | |
result = _bracket_minimum( | |
f, xm0, xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax, args=(minimum, ) | |
) | |
assert np.all(result.success) | |
assert result.xl.dtype == result.xm.dtype == result.xr.dtype == dtype | |
assert result.fl.dtype == result.fm.dtype == result.fr.dtype == dtype | |
def test_input_validation(self): | |
# Test input validation for appropriate error messages | |
message = '`func` must be callable.' | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(None, -4, xl0=4) | |
message = '...must be numeric and real.' | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, 4+1j) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xl0='hello') | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xmin=np) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xmax=object()) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, factor=sum) | |
message = "All elements of `factor` must be greater than 1." | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x, -4, factor=0.5) | |
message = '`xmin <= xl0 < xm0 < xr0 <= xmax` must be True' | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, 4, xl0=6) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xr0=-6) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xl0=-3, xr0=-2) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xl0=-6, xr0=-5) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xl0=-np.nan) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xr0=np.nan) | |
message = "shape mismatch: objects cannot be broadcast" | |
# raised by `np.broadcast, but the traceback is readable IMO | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, [-2, -3], xl0=[-3, -4, -5]) | |
message = '`maxiter` must be a non-negative integer.' | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xr0=4, maxiter=1.5) | |
with pytest.raises(ValueError, match=message): | |
_bracket_minimum(lambda x: x**2, -4, xr0=4, maxiter=-1) | |
# Minimum is ``a`` for each tuple ``(a, b)`` below. Tests cases where minimum | |
# is within, or at varying disances to the left or right of the initial | |
# bracket. | |
def test_scalar_no_limits(self, xl0, xm0, xr0, args): | |
f = self.init_f() | |
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, args=args) | |
result = _bracket_minimum(f, xm0, **kwargs) | |
self.assert_valid_bracket(result) | |
assert result.status == 0 | |
assert result.success | |
assert result.nfev == f.count | |
def test_scalar_with_limit_left(self, xl0, xm0, xr0, xmin, args): | |
f = self.init_f() | |
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, xmin=xmin, args=args) | |
result = _bracket_minimum(f, xm0, **kwargs) | |
self.assert_valid_bracket(result) | |
assert result.status == 0 | |
assert result.success | |
assert result.nfev == f.count | |
def test_scalar_with_limit_right(self, xl0, xm0, xr0, xmax, args): | |
f = self.init_f() | |
kwargs = self.get_kwargs(xl0=xl0, xr0=xr0, xmax=xmax, args=args) | |
result = _bracket_minimum(f, xm0, **kwargs) | |
self.assert_valid_bracket(result) | |
assert result.status == 0 | |
assert result.success | |
assert result.nfev == f.count | |
def test_minimum_at_boundary_point(self, xl0, xm0, xr0, xmin, xmax, args): | |
f = self.init_f() | |
kwargs = self.get_kwargs(xr0=xr0, xmin=xmin, xmax=xmax, args=args) | |
result = _bracket_minimum(f, xm0, **kwargs) | |
assert result.status == -1 | |
assert args[0] in (result.xl, result.xr) | |
assert result.nfev == f.count | |
def test_vectorization(self, shape): | |
# Test for correct functionality, output shapes, and dtypes for | |
# various input shapes. | |
a = np.linspace(-0.05, 1.05, 12).reshape(shape) if shape else 0.6 | |
args = (a, 0.0) | |
maxiter = 10 | |
def bracket_minimum_single(xm0, xl0, xr0, xmin, xmax, factor, a): | |
return _bracket_minimum(self.init_f(), xm0, xl0=xl0, xr0=xr0, xmin=xmin, | |
xmax=xmax, factor=factor, maxiter=maxiter, | |
args=(a, 0.0)) | |
f = self.init_f() | |
rng = np.random.default_rng(2348234) | |
xl0 = -rng.random(size=shape) | |
xr0 = rng.random(size=shape) | |
xm0 = xl0 + rng.random(size=shape) * (xr0 - xl0) | |
xmin, xmax = 1e3*xl0, 1e3*xr0 | |
if shape: # make some elements un | |
i = rng.random(size=shape) > 0.5 | |
xmin[i], xmax[i] = -np.inf, np.inf | |
factor = rng.random(size=shape) + 1.5 | |
res = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, xmin=xmin, xmax=xmax, | |
factor=factor, args=args, maxiter=maxiter) | |
refs = bracket_minimum_single(xm0, xl0, xr0, xmin, xmax, factor, a).ravel() | |
attrs = ['xl', 'xm', 'xr', 'fl', 'fm', 'fr', 'success', 'nfev', 'nit'] | |
for attr in attrs: | |
ref_attr = [getattr(ref, attr) for ref in refs] | |
res_attr = getattr(res, attr) | |
assert_allclose(res_attr.ravel(), ref_attr) | |
assert_equal(res_attr.shape, shape) | |
assert np.issubdtype(res.success.dtype, np.bool_) | |
if shape: | |
assert np.all(res.success[1:-1]) | |
assert np.issubdtype(res.status.dtype, np.integer) | |
assert np.issubdtype(res.nfev.dtype, np.integer) | |
assert np.issubdtype(res.nit.dtype, np.integer) | |
assert_equal(np.max(res.nit), f.count - 3) | |
self.assert_valid_bracket(res) | |
assert_allclose(res.fl, f(res.xl, *args)) | |
assert_allclose(res.fm, f(res.xm, *args)) | |
assert_allclose(res.fr, f(res.xr, *args)) | |
def test_special_cases(self): | |
# Test edge cases and other special cases. | |
# Test that integers are not passed to `f` | |
# (otherwise this would overflow) | |
def f(x): | |
assert np.issubdtype(x.dtype, np.floating) | |
return x ** 98 - 1 | |
result = _bracket_minimum(f, -7, xr0=5) | |
assert result.success | |
# Test maxiter = 0. Should do nothing to bracket. | |
def f(x): | |
return x**2 - 10 | |
xl0, xm0, xr0 = -3, -1, 2 | |
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, maxiter=0) | |
assert_equal([result.xl, result.xm, result.xr], [xl0, xm0, xr0]) | |
# Test scalar `args` (not in tuple) | |
def f(x, c): | |
return c*x**2 - 1 | |
result = _bracket_minimum(f, -1, args=3) | |
assert result.success | |
assert_allclose(result.fl, f(result.xl, 3)) | |
# Initial bracket is valid. | |
f = self.init_f() | |
xl0, xm0, xr0 = [-1.0, -0.2, 1.0] | |
args = (0, 0) | |
result = _bracket_minimum(f, xm0, xl0=xl0, xr0=xr0, args=args) | |
assert f.count == 3 | |
assert_equal( | |
[result.xl, result.xm, result.xr], | |
[xl0, xm0, xr0], | |
) | |
assert_equal( | |
[result.fl, result.fm, result.fr], | |
[f(xl0, *args), f(xm0, *args), f(xr0, *args)], | |
) | |