peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_cobyla.py
import math | |
import numpy as np | |
from numpy.testing import assert_allclose, assert_, assert_array_equal | |
import pytest | |
from scipy.optimize import fmin_cobyla, minimize, Bounds | |
class TestCobyla: | |
def setup_method(self): | |
self.x0 = [4.95, 0.66] | |
self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3] | |
self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5, | |
'maxiter': 100} | |
def fun(self, x): | |
return x[0]**2 + abs(x[1])**3 | |
def con1(self, x): | |
return x[0]**2 + x[1]**2 - 25 | |
def con2(self, x): | |
return -self.con1(x) | |
def test_simple(self, capfd): | |
# use disp=True as smoke test for gh-8118 | |
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1, | |
rhoend=1e-5, maxfun=100, disp=True) | |
assert_allclose(x, self.solution, atol=1e-4) | |
def test_minimize_simple(self): | |
class Callback: | |
def __init__(self): | |
self.n_calls = 0 | |
self.last_x = None | |
def __call__(self, x): | |
self.n_calls += 1 | |
self.last_x = x | |
callback = Callback() | |
# Minimize with method='COBYLA' | |
cons = ({'type': 'ineq', 'fun': self.con1}, | |
{'type': 'ineq', 'fun': self.con2}) | |
sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons, | |
callback=callback, options=self.opts) | |
assert_allclose(sol.x, self.solution, atol=1e-4) | |
assert_(sol.success, sol.message) | |
assert_(sol.maxcv < 1e-5, sol) | |
assert_(sol.nfev < 70, sol) | |
assert_(sol.fun < self.fun(self.solution) + 1e-3, sol) | |
assert_(sol.nfev == callback.n_calls, | |
"Callback is not called exactly once for every function eval.") | |
assert_array_equal( | |
sol.x, | |
callback.last_x, | |
"Last design vector sent to the callback is not equal to returned value.", | |
) | |
def test_minimize_constraint_violation(self): | |
np.random.seed(1234) | |
pb = np.random.rand(10, 10) | |
spread = np.random.rand(10) | |
def p(w): | |
return pb.dot(w) | |
def f(w): | |
return -(w * spread).sum() | |
def c1(w): | |
return 500 - abs(p(w)).sum() | |
def c2(w): | |
return 5 - abs(p(w).sum()) | |
def c3(w): | |
return 5 - abs(p(w)).max() | |
cons = ({'type': 'ineq', 'fun': c1}, | |
{'type': 'ineq', 'fun': c2}, | |
{'type': 'ineq', 'fun': c3}) | |
w0 = np.zeros((10,)) | |
sol = minimize(f, w0, method='cobyla', constraints=cons, | |
options={'catol': 1e-6}) | |
assert_(sol.maxcv > 1e-6) | |
assert_(not sol.success) | |
def test_vector_constraints(): | |
# test that fmin_cobyla and minimize can take a combination | |
# of constraints, some returning a number and others an array | |
def fun(x): | |
return (x[0] - 1)**2 + (x[1] - 2.5)**2 | |
def fmin(x): | |
return fun(x) - 1 | |
def cons1(x): | |
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]]) | |
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] + | |
a[i, 2] for i in range(len(a))]) | |
def cons2(x): | |
return x # identity, acts as bounds x > 0 | |
x0 = np.array([2, 0]) | |
cons_list = [fun, cons1, cons2] | |
xsol = [1.4, 1.7] | |
fsol = 0.8 | |
# testing fmin_cobyla | |
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5) | |
assert_allclose(sol, xsol, atol=1e-4) | |
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5) | |
assert_allclose(fun(sol), 1, atol=1e-4) | |
# testing minimize | |
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list] | |
sol = minimize(fun, x0, constraints=constraints, tol=1e-5) | |
assert_allclose(sol.x, xsol, atol=1e-4) | |
assert_(sol.success, sol.message) | |
assert_allclose(sol.fun, fsol, atol=1e-4) | |
constraints = {'type': 'ineq', 'fun': fmin} | |
sol = minimize(fun, x0, constraints=constraints, tol=1e-5) | |
assert_allclose(sol.fun, 1, atol=1e-4) | |
class TestBounds: | |
# Test cobyla support for bounds (only when used via `minimize`) | |
# Invalid bounds is tested in | |
# test_optimize.TestOptimizeSimple.test_minimize_invalid_bounds | |
def test_basic(self): | |
def f(x): | |
return np.sum(x**2) | |
lb = [-1, None, 1, None, -0.5] | |
ub = [-0.5, -0.5, None, None, -0.5] | |
bounds = [(a, b) for a, b in zip(lb, ub)] | |
# these are converted to Bounds internally | |
res = minimize(f, x0=[1, 2, 3, 4, 5], method='cobyla', bounds=bounds) | |
ref = [-0.5, -0.5, 1, 0, -0.5] | |
assert res.success | |
assert_allclose(res.x, ref, atol=1e-3) | |
def test_unbounded(self): | |
def f(x): | |
return np.sum(x**2) | |
bounds = Bounds([-np.inf, -np.inf], [np.inf, np.inf]) | |
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds) | |
assert res.success | |
assert_allclose(res.x, 0, atol=1e-3) | |
bounds = Bounds([1, -np.inf], [np.inf, np.inf]) | |
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds) | |
assert res.success | |
assert_allclose(res.x, [1, 0], atol=1e-3) | |