peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_covariance.py
from functools import cached_property | |
import numpy as np | |
from scipy import linalg | |
from scipy.stats import _multivariate | |
__all__ = ["Covariance"] | |
class Covariance: | |
""" | |
Representation of a covariance matrix | |
Calculations involving covariance matrices (e.g. data whitening, | |
multivariate normal function evaluation) are often performed more | |
efficiently using a decomposition of the covariance matrix instead of the | |
covariance matrix itself. This class allows the user to construct an | |
object representing a covariance matrix using any of several | |
decompositions and perform calculations using a common interface. | |
.. note:: | |
The `Covariance` class cannot be instantiated directly. Instead, use | |
one of the factory methods (e.g. `Covariance.from_diagonal`). | |
Examples | |
-------- | |
The `Covariance` class is is used by calling one of its | |
factory methods to create a `Covariance` object, then pass that | |
representation of the `Covariance` matrix as a shape parameter of a | |
multivariate distribution. | |
For instance, the multivariate normal distribution can accept an array | |
representing a covariance matrix: | |
>>> from scipy import stats | |
>>> import numpy as np | |
>>> d = [1, 2, 3] | |
>>> A = np.diag(d) # a diagonal covariance matrix | |
>>> x = [4, -2, 5] # a point of interest | |
>>> dist = stats.multivariate_normal(mean=[0, 0, 0], cov=A) | |
>>> dist.pdf(x) | |
4.9595685102808205e-08 | |
but the calculations are performed in a very generic way that does not | |
take advantage of any special properties of the covariance matrix. Because | |
our covariance matrix is diagonal, we can use ``Covariance.from_diagonal`` | |
to create an object representing the covariance matrix, and | |
`multivariate_normal` can use this to compute the probability density | |
function more efficiently. | |
>>> cov = stats.Covariance.from_diagonal(d) | |
>>> dist = stats.multivariate_normal(mean=[0, 0, 0], cov=cov) | |
>>> dist.pdf(x) | |
4.9595685102808205e-08 | |
""" | |
def __init__(self): | |
message = ("The `Covariance` class cannot be instantiated directly. " | |
"Please use one of the factory methods " | |
"(e.g. `Covariance.from_diagonal`).") | |
raise NotImplementedError(message) | |
def from_diagonal(diagonal): | |
r""" | |
Return a representation of a covariance matrix from its diagonal. | |
Parameters | |
---------- | |
diagonal : array_like | |
The diagonal elements of a diagonal matrix. | |
Notes | |
----- | |
Let the diagonal elements of a diagonal covariance matrix :math:`D` be | |
stored in the vector :math:`d`. | |
When all elements of :math:`d` are strictly positive, whitening of a | |
data point :math:`x` is performed by computing | |
:math:`x \cdot d^{-1/2}`, where the inverse square root can be taken | |
element-wise. | |
:math:`\log\det{D}` is calculated as :math:`-2 \sum(\log{d})`, | |
where the :math:`\log` operation is performed element-wise. | |
This `Covariance` class supports singular covariance matrices. When | |
computing ``_log_pdet``, non-positive elements of :math:`d` are | |
ignored. Whitening is not well defined when the point to be whitened | |
does not lie in the span of the columns of the covariance matrix. The | |
convention taken here is to treat the inverse square root of | |
non-positive elements of :math:`d` as zeros. | |
Examples | |
-------- | |
Prepare a symmetric positive definite covariance matrix ``A`` and a | |
data point ``x``. | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> rng = np.random.default_rng() | |
>>> n = 5 | |
>>> A = np.diag(rng.random(n)) | |
>>> x = rng.random(size=n) | |
Extract the diagonal from ``A`` and create the `Covariance` object. | |
>>> d = np.diag(A) | |
>>> cov = stats.Covariance.from_diagonal(d) | |
Compare the functionality of the `Covariance` object against a | |
reference implementations. | |
>>> res = cov.whiten(x) | |
>>> ref = np.diag(d**-0.5) @ x | |
>>> np.allclose(res, ref) | |
True | |
>>> res = cov.log_pdet | |
>>> ref = np.linalg.slogdet(A)[-1] | |
>>> np.allclose(res, ref) | |
True | |
""" | |
return CovViaDiagonal(diagonal) | |
def from_precision(precision, covariance=None): | |
r""" | |
Return a representation of a covariance from its precision matrix. | |
Parameters | |
---------- | |
precision : array_like | |
The precision matrix; that is, the inverse of a square, symmetric, | |
positive definite covariance matrix. | |
covariance : array_like, optional | |
The square, symmetric, positive definite covariance matrix. If not | |
provided, this may need to be calculated (e.g. to evaluate the | |
cumulative distribution function of | |
`scipy.stats.multivariate_normal`) by inverting `precision`. | |
Notes | |
----- | |
Let the covariance matrix be :math:`A`, its precision matrix be | |
:math:`P = A^{-1}`, and :math:`L` be the lower Cholesky factor such | |
that :math:`L L^T = P`. | |
Whitening of a data point :math:`x` is performed by computing | |
:math:`x^T L`. :math:`\log\det{A}` is calculated as | |
:math:`-2tr(\log{L})`, where the :math:`\log` operation is performed | |
element-wise. | |
This `Covariance` class does not support singular covariance matrices | |
because the precision matrix does not exist for a singular covariance | |
matrix. | |
Examples | |
-------- | |
Prepare a symmetric positive definite precision matrix ``P`` and a | |
data point ``x``. (If the precision matrix is not already available, | |
consider the other factory methods of the `Covariance` class.) | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> rng = np.random.default_rng() | |
>>> n = 5 | |
>>> P = rng.random(size=(n, n)) | |
>>> P = P @ P.T # a precision matrix must be positive definite | |
>>> x = rng.random(size=n) | |
Create the `Covariance` object. | |
>>> cov = stats.Covariance.from_precision(P) | |
Compare the functionality of the `Covariance` object against | |
reference implementations. | |
>>> res = cov.whiten(x) | |
>>> ref = x @ np.linalg.cholesky(P) | |
>>> np.allclose(res, ref) | |
True | |
>>> res = cov.log_pdet | |
>>> ref = -np.linalg.slogdet(P)[-1] | |
>>> np.allclose(res, ref) | |
True | |
""" | |
return CovViaPrecision(precision, covariance) | |
def from_cholesky(cholesky): | |
r""" | |
Representation of a covariance provided via the (lower) Cholesky factor | |
Parameters | |
---------- | |
cholesky : array_like | |
The lower triangular Cholesky factor of the covariance matrix. | |
Notes | |
----- | |
Let the covariance matrix be :math:`A` and :math:`L` be the lower | |
Cholesky factor such that :math:`L L^T = A`. | |
Whitening of a data point :math:`x` is performed by computing | |
:math:`L^{-1} x`. :math:`\log\det{A}` is calculated as | |
:math:`2tr(\log{L})`, where the :math:`\log` operation is performed | |
element-wise. | |
This `Covariance` class does not support singular covariance matrices | |
because the Cholesky decomposition does not exist for a singular | |
covariance matrix. | |
Examples | |
-------- | |
Prepare a symmetric positive definite covariance matrix ``A`` and a | |
data point ``x``. | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> rng = np.random.default_rng() | |
>>> n = 5 | |
>>> A = rng.random(size=(n, n)) | |
>>> A = A @ A.T # make the covariance symmetric positive definite | |
>>> x = rng.random(size=n) | |
Perform the Cholesky decomposition of ``A`` and create the | |
`Covariance` object. | |
>>> L = np.linalg.cholesky(A) | |
>>> cov = stats.Covariance.from_cholesky(L) | |
Compare the functionality of the `Covariance` object against | |
reference implementation. | |
>>> from scipy.linalg import solve_triangular | |
>>> res = cov.whiten(x) | |
>>> ref = solve_triangular(L, x, lower=True) | |
>>> np.allclose(res, ref) | |
True | |
>>> res = cov.log_pdet | |
>>> ref = np.linalg.slogdet(A)[-1] | |
>>> np.allclose(res, ref) | |
True | |
""" | |
return CovViaCholesky(cholesky) | |
def from_eigendecomposition(eigendecomposition): | |
r""" | |
Representation of a covariance provided via eigendecomposition | |
Parameters | |
---------- | |
eigendecomposition : sequence | |
A sequence (nominally a tuple) containing the eigenvalue and | |
eigenvector arrays as computed by `scipy.linalg.eigh` or | |
`numpy.linalg.eigh`. | |
Notes | |
----- | |
Let the covariance matrix be :math:`A`, let :math:`V` be matrix of | |
eigenvectors, and let :math:`W` be the diagonal matrix of eigenvalues | |
such that `V W V^T = A`. | |
When all of the eigenvalues are strictly positive, whitening of a | |
data point :math:`x` is performed by computing | |
:math:`x^T (V W^{-1/2})`, where the inverse square root can be taken | |
element-wise. | |
:math:`\log\det{A}` is calculated as :math:`tr(\log{W})`, | |
where the :math:`\log` operation is performed element-wise. | |
This `Covariance` class supports singular covariance matrices. When | |
computing ``_log_pdet``, non-positive eigenvalues are ignored. | |
Whitening is not well defined when the point to be whitened | |
does not lie in the span of the columns of the covariance matrix. The | |
convention taken here is to treat the inverse square root of | |
non-positive eigenvalues as zeros. | |
Examples | |
-------- | |
Prepare a symmetric positive definite covariance matrix ``A`` and a | |
data point ``x``. | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> rng = np.random.default_rng() | |
>>> n = 5 | |
>>> A = rng.random(size=(n, n)) | |
>>> A = A @ A.T # make the covariance symmetric positive definite | |
>>> x = rng.random(size=n) | |
Perform the eigendecomposition of ``A`` and create the `Covariance` | |
object. | |
>>> w, v = np.linalg.eigh(A) | |
>>> cov = stats.Covariance.from_eigendecomposition((w, v)) | |
Compare the functionality of the `Covariance` object against | |
reference implementations. | |
>>> res = cov.whiten(x) | |
>>> ref = x @ (v @ np.diag(w**-0.5)) | |
>>> np.allclose(res, ref) | |
True | |
>>> res = cov.log_pdet | |
>>> ref = np.linalg.slogdet(A)[-1] | |
>>> np.allclose(res, ref) | |
True | |
""" | |
return CovViaEigendecomposition(eigendecomposition) | |
def whiten(self, x): | |
""" | |
Perform a whitening transformation on data. | |
"Whitening" ("white" as in "white noise", in which each frequency has | |
equal magnitude) transforms a set of random variables into a new set of | |
random variables with unit-diagonal covariance. When a whitening | |
transform is applied to a sample of points distributed according to | |
a multivariate normal distribution with zero mean, the covariance of | |
the transformed sample is approximately the identity matrix. | |
Parameters | |
---------- | |
x : array_like | |
An array of points. The last dimension must correspond with the | |
dimensionality of the space, i.e., the number of columns in the | |
covariance matrix. | |
Returns | |
------- | |
x_ : array_like | |
The transformed array of points. | |
References | |
---------- | |
.. [1] "Whitening Transformation". Wikipedia. | |
https://en.wikipedia.org/wiki/Whitening_transformation | |
.. [2] Novak, Lukas, and Miroslav Vorechovsky. "Generalization of | |
coloring linear transformation". Transactions of VSB 18.2 | |
(2018): 31-35. :doi:`10.31490/tces-2018-0013` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> rng = np.random.default_rng() | |
>>> n = 3 | |
>>> A = rng.random(size=(n, n)) | |
>>> cov_array = A @ A.T # make matrix symmetric positive definite | |
>>> precision = np.linalg.inv(cov_array) | |
>>> cov_object = stats.Covariance.from_precision(precision) | |
>>> x = rng.multivariate_normal(np.zeros(n), cov_array, size=(10000)) | |
>>> x_ = cov_object.whiten(x) | |
>>> np.cov(x_, rowvar=False) # near-identity covariance | |
array([[0.97862122, 0.00893147, 0.02430451], | |
[0.00893147, 0.96719062, 0.02201312], | |
[0.02430451, 0.02201312, 0.99206881]]) | |
""" | |
return self._whiten(np.asarray(x)) | |
def colorize(self, x): | |
""" | |
Perform a colorizing transformation on data. | |
"Colorizing" ("color" as in "colored noise", in which different | |
frequencies may have different magnitudes) transforms a set of | |
uncorrelated random variables into a new set of random variables with | |
the desired covariance. When a coloring transform is applied to a | |
sample of points distributed according to a multivariate normal | |
distribution with identity covariance and zero mean, the covariance of | |
the transformed sample is approximately the covariance matrix used | |
in the coloring transform. | |
Parameters | |
---------- | |
x : array_like | |
An array of points. The last dimension must correspond with the | |
dimensionality of the space, i.e., the number of columns in the | |
covariance matrix. | |
Returns | |
------- | |
x_ : array_like | |
The transformed array of points. | |
References | |
---------- | |
.. [1] "Whitening Transformation". Wikipedia. | |
https://en.wikipedia.org/wiki/Whitening_transformation | |
.. [2] Novak, Lukas, and Miroslav Vorechovsky. "Generalization of | |
coloring linear transformation". Transactions of VSB 18.2 | |
(2018): 31-35. :doi:`10.31490/tces-2018-0013` | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import stats | |
>>> rng = np.random.default_rng(1638083107694713882823079058616272161) | |
>>> n = 3 | |
>>> A = rng.random(size=(n, n)) | |
>>> cov_array = A @ A.T # make matrix symmetric positive definite | |
>>> cholesky = np.linalg.cholesky(cov_array) | |
>>> cov_object = stats.Covariance.from_cholesky(cholesky) | |
>>> x = rng.multivariate_normal(np.zeros(n), np.eye(n), size=(10000)) | |
>>> x_ = cov_object.colorize(x) | |
>>> cov_data = np.cov(x_, rowvar=False) | |
>>> np.allclose(cov_data, cov_array, rtol=3e-2) | |
True | |
""" | |
return self._colorize(np.asarray(x)) | |
def log_pdet(self): | |
""" | |
Log of the pseudo-determinant of the covariance matrix | |
""" | |
return np.array(self._log_pdet, dtype=float)[()] | |
def rank(self): | |
""" | |
Rank of the covariance matrix | |
""" | |
return np.array(self._rank, dtype=int)[()] | |
def covariance(self): | |
""" | |
Explicit representation of the covariance matrix | |
""" | |
return self._covariance | |
def shape(self): | |
""" | |
Shape of the covariance array | |
""" | |
return self._shape | |
def _validate_matrix(self, A, name): | |
A = np.atleast_2d(A) | |
m, n = A.shape[-2:] | |
if m != n or A.ndim != 2 or not (np.issubdtype(A.dtype, np.integer) or | |
np.issubdtype(A.dtype, np.floating)): | |
message = (f"The input `{name}` must be a square, " | |
"two-dimensional array of real numbers.") | |
raise ValueError(message) | |
return A | |
def _validate_vector(self, A, name): | |
A = np.atleast_1d(A) | |
if A.ndim != 1 or not (np.issubdtype(A.dtype, np.integer) or | |
np.issubdtype(A.dtype, np.floating)): | |
message = (f"The input `{name}` must be a one-dimensional array " | |
"of real numbers.") | |
raise ValueError(message) | |
return A | |
class CovViaPrecision(Covariance): | |
def __init__(self, precision, covariance=None): | |
precision = self._validate_matrix(precision, 'precision') | |
if covariance is not None: | |
covariance = self._validate_matrix(covariance, 'covariance') | |
message = "`precision.shape` must equal `covariance.shape`." | |
if precision.shape != covariance.shape: | |
raise ValueError(message) | |
self._chol_P = np.linalg.cholesky(precision) | |
self._log_pdet = -2*np.log(np.diag(self._chol_P)).sum(axis=-1) | |
self._rank = precision.shape[-1] # must be full rank if invertible | |
self._precision = precision | |
self._cov_matrix = covariance | |
self._shape = precision.shape | |
self._allow_singular = False | |
def _whiten(self, x): | |
return x @ self._chol_P | |
def _covariance(self): | |
n = self._shape[-1] | |
return (linalg.cho_solve((self._chol_P, True), np.eye(n)) | |
if self._cov_matrix is None else self._cov_matrix) | |
def _colorize(self, x): | |
return linalg.solve_triangular(self._chol_P.T, x.T, lower=False).T | |
def _dot_diag(x, d): | |
# If d were a full diagonal matrix, x @ d would always do what we want. | |
# Special treatment is needed for n-dimensional `d` in which each row | |
# includes only the diagonal elements of a covariance matrix. | |
return x * d if x.ndim < 2 else x * np.expand_dims(d, -2) | |
class CovViaDiagonal(Covariance): | |
def __init__(self, diagonal): | |
diagonal = self._validate_vector(diagonal, 'diagonal') | |
i_zero = diagonal <= 0 | |
positive_diagonal = np.array(diagonal, dtype=np.float64) | |
positive_diagonal[i_zero] = 1 # ones don't affect determinant | |
self._log_pdet = np.sum(np.log(positive_diagonal), axis=-1) | |
psuedo_reciprocals = 1 / np.sqrt(positive_diagonal) | |
psuedo_reciprocals[i_zero] = 0 | |
self._sqrt_diagonal = np.sqrt(diagonal) | |
self._LP = psuedo_reciprocals | |
self._rank = positive_diagonal.shape[-1] - i_zero.sum(axis=-1) | |
self._covariance = np.apply_along_axis(np.diag, -1, diagonal) | |
self._i_zero = i_zero | |
self._shape = self._covariance.shape | |
self._allow_singular = True | |
def _whiten(self, x): | |
return _dot_diag(x, self._LP) | |
def _colorize(self, x): | |
return _dot_diag(x, self._sqrt_diagonal) | |
def _support_mask(self, x): | |
""" | |
Check whether x lies in the support of the distribution. | |
""" | |
return ~np.any(_dot_diag(x, self._i_zero), axis=-1) | |
class CovViaCholesky(Covariance): | |
def __init__(self, cholesky): | |
L = self._validate_matrix(cholesky, 'cholesky') | |
self._factor = L | |
self._log_pdet = 2*np.log(np.diag(self._factor)).sum(axis=-1) | |
self._rank = L.shape[-1] # must be full rank for cholesky | |
self._shape = L.shape | |
self._allow_singular = False | |
def _covariance(self): | |
return self._factor @ self._factor.T | |
def _whiten(self, x): | |
res = linalg.solve_triangular(self._factor, x.T, lower=True).T | |
return res | |
def _colorize(self, x): | |
return x @ self._factor.T | |
class CovViaEigendecomposition(Covariance): | |
def __init__(self, eigendecomposition): | |
eigenvalues, eigenvectors = eigendecomposition | |
eigenvalues = self._validate_vector(eigenvalues, 'eigenvalues') | |
eigenvectors = self._validate_matrix(eigenvectors, 'eigenvectors') | |
message = ("The shapes of `eigenvalues` and `eigenvectors` " | |
"must be compatible.") | |
try: | |
eigenvalues = np.expand_dims(eigenvalues, -2) | |
eigenvectors, eigenvalues = np.broadcast_arrays(eigenvectors, | |
eigenvalues) | |
eigenvalues = eigenvalues[..., 0, :] | |
except ValueError: | |
raise ValueError(message) | |
i_zero = eigenvalues <= 0 | |
positive_eigenvalues = np.array(eigenvalues, dtype=np.float64) | |
positive_eigenvalues[i_zero] = 1 # ones don't affect determinant | |
self._log_pdet = np.sum(np.log(positive_eigenvalues), axis=-1) | |
psuedo_reciprocals = 1 / np.sqrt(positive_eigenvalues) | |
psuedo_reciprocals[i_zero] = 0 | |
self._LP = eigenvectors * psuedo_reciprocals | |
self._LA = eigenvectors * np.sqrt(eigenvalues) | |
self._rank = positive_eigenvalues.shape[-1] - i_zero.sum(axis=-1) | |
self._w = eigenvalues | |
self._v = eigenvectors | |
self._shape = eigenvectors.shape | |
self._null_basis = eigenvectors * i_zero | |
# This is only used for `_support_mask`, not to decide whether | |
# the covariance is singular or not. | |
self._eps = _multivariate._eigvalsh_to_eps(eigenvalues) * 10**3 | |
self._allow_singular = True | |
def _whiten(self, x): | |
return x @ self._LP | |
def _colorize(self, x): | |
return x @ self._LA.T | |
def _covariance(self): | |
return (self._v * self._w) @ self._v.T | |
def _support_mask(self, x): | |
""" | |
Check whether x lies in the support of the distribution. | |
""" | |
residual = np.linalg.norm(x @ self._null_basis, axis=-1) | |
in_support = residual < self._eps | |
return in_support | |
class CovViaPSD(Covariance): | |
""" | |
Representation of a covariance provided via an instance of _PSD | |
""" | |
def __init__(self, psd): | |
self._LP = psd.U | |
self._log_pdet = psd.log_pdet | |
self._rank = psd.rank | |
self._covariance = psd._M | |
self._shape = psd._M.shape | |
self._psd = psd | |
self._allow_singular = False # by default | |
def _whiten(self, x): | |
return x @ self._LP | |
def _support_mask(self, x): | |
return self._psd._support_mask(x) | |