peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_crosstab.py
import numpy as np | |
from scipy.sparse import coo_matrix | |
from scipy._lib._bunch import _make_tuple_bunch | |
CrosstabResult = _make_tuple_bunch( | |
"CrosstabResult", ["elements", "count"] | |
) | |
def crosstab(*args, levels=None, sparse=False): | |
""" | |
Return table of counts for each possible unique combination in ``*args``. | |
When ``len(args) > 1``, the array computed by this function is | |
often referred to as a *contingency table* [1]_. | |
The arguments must be sequences with the same length. The second return | |
value, `count`, is an integer array with ``len(args)`` dimensions. If | |
`levels` is None, the shape of `count` is ``(n0, n1, ...)``, where ``nk`` | |
is the number of unique elements in ``args[k]``. | |
Parameters | |
---------- | |
*args : sequences | |
A sequence of sequences whose unique aligned elements are to be | |
counted. The sequences in args must all be the same length. | |
levels : sequence, optional | |
If `levels` is given, it must be a sequence that is the same length as | |
`args`. Each element in `levels` is either a sequence or None. If it | |
is a sequence, it gives the values in the corresponding sequence in | |
`args` that are to be counted. If any value in the sequences in `args` | |
does not occur in the corresponding sequence in `levels`, that value | |
is ignored and not counted in the returned array `count`. The default | |
value of `levels` for ``args[i]`` is ``np.unique(args[i])`` | |
sparse : bool, optional | |
If True, return a sparse matrix. The matrix will be an instance of | |
the `scipy.sparse.coo_matrix` class. Because SciPy's sparse matrices | |
must be 2-d, only two input sequences are allowed when `sparse` is | |
True. Default is False. | |
Returns | |
------- | |
res : CrosstabResult | |
An object containing the following attributes: | |
elements : tuple of numpy.ndarrays. | |
Tuple of length ``len(args)`` containing the arrays of elements | |
that are counted in `count`. These can be interpreted as the | |
labels of the corresponding dimensions of `count`. If `levels` was | |
given, then if ``levels[i]`` is not None, ``elements[i]`` will | |
hold the values given in ``levels[i]``. | |
count : numpy.ndarray or scipy.sparse.coo_matrix | |
Counts of the unique elements in ``zip(*args)``, stored in an | |
array. Also known as a *contingency table* when ``len(args) > 1``. | |
See Also | |
-------- | |
numpy.unique | |
Notes | |
----- | |
.. versionadded:: 1.7.0 | |
References | |
---------- | |
.. [1] "Contingency table", http://en.wikipedia.org/wiki/Contingency_table | |
Examples | |
-------- | |
>>> from scipy.stats.contingency import crosstab | |
Given the lists `a` and `x`, create a contingency table that counts the | |
frequencies of the corresponding pairs. | |
>>> a = ['A', 'B', 'A', 'A', 'B', 'B', 'A', 'A', 'B', 'B'] | |
>>> x = ['X', 'X', 'X', 'Y', 'Z', 'Z', 'Y', 'Y', 'Z', 'Z'] | |
>>> res = crosstab(a, x) | |
>>> avals, xvals = res.elements | |
>>> avals | |
array(['A', 'B'], dtype='<U1') | |
>>> xvals | |
array(['X', 'Y', 'Z'], dtype='<U1') | |
>>> res.count | |
array([[2, 3, 0], | |
[1, 0, 4]]) | |
So `('A', 'X')` occurs twice, `('A', 'Y')` occurs three times, etc. | |
Higher dimensional contingency tables can be created. | |
>>> p = [0, 0, 0, 0, 1, 1, 1, 0, 0, 1] | |
>>> res = crosstab(a, x, p) | |
>>> res.count | |
array([[[2, 0], | |
[2, 1], | |
[0, 0]], | |
[[1, 0], | |
[0, 0], | |
[1, 3]]]) | |
>>> res.count.shape | |
(2, 3, 2) | |
The values to be counted can be set by using the `levels` argument. | |
It allows the elements of interest in each input sequence to be | |
given explicitly instead finding the unique elements of the sequence. | |
For example, suppose one of the arguments is an array containing the | |
answers to a survey question, with integer values 1 to 4. Even if the | |
value 1 does not occur in the data, we want an entry for it in the table. | |
>>> q1 = [2, 3, 3, 2, 4, 4, 2, 3, 4, 4, 4, 3, 3, 3, 4] # 1 does not occur. | |
>>> q2 = [4, 4, 2, 2, 2, 4, 1, 1, 2, 2, 4, 2, 2, 2, 4] # 3 does not occur. | |
>>> options = [1, 2, 3, 4] | |
>>> res = crosstab(q1, q2, levels=(options, options)) | |
>>> res.count | |
array([[0, 0, 0, 0], | |
[1, 1, 0, 1], | |
[1, 4, 0, 1], | |
[0, 3, 0, 3]]) | |
If `levels` is given, but an element of `levels` is None, the unique values | |
of the corresponding argument are used. For example, | |
>>> res = crosstab(q1, q2, levels=(None, options)) | |
>>> res.elements | |
[array([2, 3, 4]), [1, 2, 3, 4]] | |
>>> res.count | |
array([[1, 1, 0, 1], | |
[1, 4, 0, 1], | |
[0, 3, 0, 3]]) | |
If we want to ignore the pairs where 4 occurs in ``q2``, we can | |
give just the values [1, 2] to `levels`, and the 4 will be ignored: | |
>>> res = crosstab(q1, q2, levels=(None, [1, 2])) | |
>>> res.elements | |
[array([2, 3, 4]), [1, 2]] | |
>>> res.count | |
array([[1, 1], | |
[1, 4], | |
[0, 3]]) | |
Finally, let's repeat the first example, but return a sparse matrix: | |
>>> res = crosstab(a, x, sparse=True) | |
>>> res.count | |
<2x3 sparse matrix of type '<class 'numpy.int64'>' | |
with 4 stored elements in COOrdinate format> | |
>>> res.count.A | |
array([[2, 3, 0], | |
[1, 0, 4]]) | |
""" | |
nargs = len(args) | |
if nargs == 0: | |
raise TypeError("At least one input sequence is required.") | |
len0 = len(args[0]) | |
if not all(len(a) == len0 for a in args[1:]): | |
raise ValueError("All input sequences must have the same length.") | |
if sparse and nargs != 2: | |
raise ValueError("When `sparse` is True, only two input sequences " | |
"are allowed.") | |
if levels is None: | |
# Call np.unique with return_inverse=True on each argument. | |
actual_levels, indices = zip(*[np.unique(a, return_inverse=True) | |
for a in args]) | |
else: | |
# `levels` is not None... | |
if len(levels) != nargs: | |
raise ValueError('len(levels) must equal the number of input ' | |
'sequences') | |
args = [np.asarray(arg) for arg in args] | |
mask = np.zeros((nargs, len0), dtype=np.bool_) | |
inv = np.zeros((nargs, len0), dtype=np.intp) | |
actual_levels = [] | |
for k, (levels_list, arg) in enumerate(zip(levels, args)): | |
if levels_list is None: | |
levels_list, inv[k, :] = np.unique(arg, return_inverse=True) | |
mask[k, :] = True | |
else: | |
q = arg == np.asarray(levels_list).reshape(-1, 1) | |
mask[k, :] = np.any(q, axis=0) | |
qnz = q.T.nonzero() | |
inv[k, qnz[0]] = qnz[1] | |
actual_levels.append(levels_list) | |
mask_all = mask.all(axis=0) | |
indices = tuple(inv[:, mask_all]) | |
if sparse: | |
count = coo_matrix((np.ones(len(indices[0]), dtype=int), | |
(indices[0], indices[1]))) | |
count.sum_duplicates() | |
else: | |
shape = [len(u) for u in actual_levels] | |
count = np.zeros(shape, dtype=int) | |
np.add.at(count, indices, 1) | |
return CrosstabResult(actual_levels, count) | |