peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_mstats_extras.py
""" | |
Additional statistics functions with support for masked arrays. | |
""" | |
# Original author (2007): Pierre GF Gerard-Marchant | |
__all__ = ['compare_medians_ms', | |
'hdquantiles', 'hdmedian', 'hdquantiles_sd', | |
'idealfourths', | |
'median_cihs','mjci','mquantiles_cimj', | |
'rsh', | |
'trimmed_mean_ci',] | |
import numpy as np | |
from numpy import float64, ndarray | |
import numpy.ma as ma | |
from numpy.ma import MaskedArray | |
from . import _mstats_basic as mstats | |
from scipy.stats.distributions import norm, beta, t, binom | |
def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,): | |
""" | |
Computes quantile estimates with the Harrell-Davis method. | |
The quantile estimates are calculated as a weighted linear combination | |
of order statistics. | |
Parameters | |
---------- | |
data : array_like | |
Data array. | |
prob : sequence, optional | |
Sequence of probabilities at which to compute the quantiles. | |
axis : int or None, optional | |
Axis along which to compute the quantiles. If None, use a flattened | |
array. | |
var : bool, optional | |
Whether to return the variance of the estimate. | |
Returns | |
------- | |
hdquantiles : MaskedArray | |
A (p,) array of quantiles (if `var` is False), or a (2,p) array of | |
quantiles and variances (if `var` is True), where ``p`` is the | |
number of quantiles. | |
See Also | |
-------- | |
hdquantiles_sd | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.stats.mstats import hdquantiles | |
>>> | |
>>> # Sample data | |
>>> data = np.array([1.2, 2.5, 3.7, 4.0, 5.1, 6.3, 7.0, 8.2, 9.4]) | |
>>> | |
>>> # Probabilities at which to compute quantiles | |
>>> probabilities = [0.25, 0.5, 0.75] | |
>>> | |
>>> # Compute Harrell-Davis quantile estimates | |
>>> quantile_estimates = hdquantiles(data, prob=probabilities) | |
>>> | |
>>> # Display the quantile estimates | |
>>> for i, quantile in enumerate(probabilities): | |
... print(f"{int(quantile * 100)}th percentile: {quantile_estimates[i]}") | |
25th percentile: 3.1505820231763066 # may vary | |
50th percentile: 5.194344084883956 | |
75th percentile: 7.430626414674935 | |
""" | |
def _hd_1D(data,prob,var): | |
"Computes the HD quantiles for a 1D array. Returns nan for invalid data." | |
xsorted = np.squeeze(np.sort(data.compressed().view(ndarray))) | |
# Don't use length here, in case we have a numpy scalar | |
n = xsorted.size | |
hd = np.empty((2,len(prob)), float64) | |
if n < 2: | |
hd.flat = np.nan | |
if var: | |
return hd | |
return hd[0] | |
v = np.arange(n+1) / float(n) | |
betacdf = beta.cdf | |
for (i,p) in enumerate(prob): | |
_w = betacdf(v, (n+1)*p, (n+1)*(1-p)) | |
w = _w[1:] - _w[:-1] | |
hd_mean = np.dot(w, xsorted) | |
hd[0,i] = hd_mean | |
# | |
hd[1,i] = np.dot(w, (xsorted-hd_mean)**2) | |
# | |
hd[0, prob == 0] = xsorted[0] | |
hd[0, prob == 1] = xsorted[-1] | |
if var: | |
hd[1, prob == 0] = hd[1, prob == 1] = np.nan | |
return hd | |
return hd[0] | |
# Initialization & checks | |
data = ma.array(data, copy=False, dtype=float64) | |
p = np.atleast_1d(np.asarray(prob)) | |
# Computes quantiles along axis (or globally) | |
if (axis is None) or (data.ndim == 1): | |
result = _hd_1D(data, p, var) | |
else: | |
if data.ndim > 2: | |
raise ValueError("Array 'data' must be at most two dimensional, " | |
"but got data.ndim = %d" % data.ndim) | |
result = ma.apply_along_axis(_hd_1D, axis, data, p, var) | |
return ma.fix_invalid(result, copy=False) | |
def hdmedian(data, axis=-1, var=False): | |
""" | |
Returns the Harrell-Davis estimate of the median along the given axis. | |
Parameters | |
---------- | |
data : ndarray | |
Data array. | |
axis : int, optional | |
Axis along which to compute the quantiles. If None, use a flattened | |
array. | |
var : bool, optional | |
Whether to return the variance of the estimate. | |
Returns | |
------- | |
hdmedian : MaskedArray | |
The median values. If ``var=True``, the variance is returned inside | |
the masked array. E.g. for a 1-D array the shape change from (1,) to | |
(2,). | |
""" | |
result = hdquantiles(data,[0.5], axis=axis, var=var) | |
return result.squeeze() | |
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None): | |
""" | |
The standard error of the Harrell-Davis quantile estimates by jackknife. | |
Parameters | |
---------- | |
data : array_like | |
Data array. | |
prob : sequence, optional | |
Sequence of quantiles to compute. | |
axis : int, optional | |
Axis along which to compute the quantiles. If None, use a flattened | |
array. | |
Returns | |
------- | |
hdquantiles_sd : MaskedArray | |
Standard error of the Harrell-Davis quantile estimates. | |
See Also | |
-------- | |
hdquantiles | |
""" | |
def _hdsd_1D(data, prob): | |
"Computes the std error for 1D arrays." | |
xsorted = np.sort(data.compressed()) | |
n = len(xsorted) | |
hdsd = np.empty(len(prob), float64) | |
if n < 2: | |
hdsd.flat = np.nan | |
vv = np.arange(n) / float(n-1) | |
betacdf = beta.cdf | |
for (i,p) in enumerate(prob): | |
_w = betacdf(vv, n*p, n*(1-p)) | |
w = _w[1:] - _w[:-1] | |
# cumulative sum of weights and data points if | |
# ith point is left out for jackknife | |
mx_ = np.zeros_like(xsorted) | |
mx_[1:] = np.cumsum(w * xsorted[:-1]) | |
# similar but from the right | |
mx_[:-1] += np.cumsum(w[::-1] * xsorted[:0:-1])[::-1] | |
hdsd[i] = np.sqrt(mx_.var() * (n - 1)) | |
return hdsd | |
# Initialization & checks | |
data = ma.array(data, copy=False, dtype=float64) | |
p = np.atleast_1d(np.asarray(prob)) | |
# Computes quantiles along axis (or globally) | |
if (axis is None): | |
result = _hdsd_1D(data, p) | |
else: | |
if data.ndim > 2: | |
raise ValueError("Array 'data' must be at most two dimensional, " | |
"but got data.ndim = %d" % data.ndim) | |
result = ma.apply_along_axis(_hdsd_1D, axis, data, p) | |
return ma.fix_invalid(result, copy=False).ravel() | |
def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True), | |
alpha=0.05, axis=None): | |
""" | |
Selected confidence interval of the trimmed mean along the given axis. | |
Parameters | |
---------- | |
data : array_like | |
Input data. | |
limits : {None, tuple}, optional | |
None or a two item tuple. | |
Tuple of the percentages to cut on each side of the array, with respect | |
to the number of unmasked data, as floats between 0. and 1. If ``n`` | |
is the number of unmasked data before trimming, then | |
(``n * limits[0]``)th smallest data and (``n * limits[1]``)th | |
largest data are masked. The total number of unmasked data after | |
trimming is ``n * (1. - sum(limits))``. | |
The value of one limit can be set to None to indicate an open interval. | |
Defaults to (0.2, 0.2). | |
inclusive : (2,) tuple of boolean, optional | |
If relative==False, tuple indicating whether values exactly equal to | |
the absolute limits are allowed. | |
If relative==True, tuple indicating whether the number of data being | |
masked on each side should be rounded (True) or truncated (False). | |
Defaults to (True, True). | |
alpha : float, optional | |
Confidence level of the intervals. | |
Defaults to 0.05. | |
axis : int, optional | |
Axis along which to cut. If None, uses a flattened version of `data`. | |
Defaults to None. | |
Returns | |
------- | |
trimmed_mean_ci : (2,) ndarray | |
The lower and upper confidence intervals of the trimmed data. | |
""" | |
data = ma.array(data, copy=False) | |
trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis) | |
tmean = trimmed.mean(axis) | |
tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis) | |
df = trimmed.count(axis) - 1 | |
tppf = t.ppf(1-alpha/2.,df) | |
return np.array((tmean - tppf*tstde, tmean+tppf*tstde)) | |
def mjci(data, prob=[0.25,0.5,0.75], axis=None): | |
""" | |
Returns the Maritz-Jarrett estimators of the standard error of selected | |
experimental quantiles of the data. | |
Parameters | |
---------- | |
data : ndarray | |
Data array. | |
prob : sequence, optional | |
Sequence of quantiles to compute. | |
axis : int or None, optional | |
Axis along which to compute the quantiles. If None, use a flattened | |
array. | |
""" | |
def _mjci_1D(data, p): | |
data = np.sort(data.compressed()) | |
n = data.size | |
prob = (np.array(p) * n + 0.5).astype(int) | |
betacdf = beta.cdf | |
mj = np.empty(len(prob), float64) | |
x = np.arange(1,n+1, dtype=float64) / n | |
y = x - 1./n | |
for (i,m) in enumerate(prob): | |
W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m) | |
C1 = np.dot(W,data) | |
C2 = np.dot(W,data**2) | |
mj[i] = np.sqrt(C2 - C1**2) | |
return mj | |
data = ma.array(data, copy=False) | |
if data.ndim > 2: | |
raise ValueError("Array 'data' must be at most two dimensional, " | |
"but got data.ndim = %d" % data.ndim) | |
p = np.atleast_1d(np.asarray(prob)) | |
# Computes quantiles along axis (or globally) | |
if (axis is None): | |
return _mjci_1D(data, p) | |
else: | |
return ma.apply_along_axis(_mjci_1D, axis, data, p) | |
def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None): | |
""" | |
Computes the alpha confidence interval for the selected quantiles of the | |
data, with Maritz-Jarrett estimators. | |
Parameters | |
---------- | |
data : ndarray | |
Data array. | |
prob : sequence, optional | |
Sequence of quantiles to compute. | |
alpha : float, optional | |
Confidence level of the intervals. | |
axis : int or None, optional | |
Axis along which to compute the quantiles. | |
If None, use a flattened array. | |
Returns | |
------- | |
ci_lower : ndarray | |
The lower boundaries of the confidence interval. Of the same length as | |
`prob`. | |
ci_upper : ndarray | |
The upper boundaries of the confidence interval. Of the same length as | |
`prob`. | |
""" | |
alpha = min(alpha, 1 - alpha) | |
z = norm.ppf(1 - alpha/2.) | |
xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis) | |
smj = mjci(data, prob, axis=axis) | |
return (xq - z * smj, xq + z * smj) | |
def median_cihs(data, alpha=0.05, axis=None): | |
""" | |
Computes the alpha-level confidence interval for the median of the data. | |
Uses the Hettmasperger-Sheather method. | |
Parameters | |
---------- | |
data : array_like | |
Input data. Masked values are discarded. The input should be 1D only, | |
or `axis` should be set to None. | |
alpha : float, optional | |
Confidence level of the intervals. | |
axis : int or None, optional | |
Axis along which to compute the quantiles. If None, use a flattened | |
array. | |
Returns | |
------- | |
median_cihs | |
Alpha level confidence interval. | |
""" | |
def _cihs_1D(data, alpha): | |
data = np.sort(data.compressed()) | |
n = len(data) | |
alpha = min(alpha, 1-alpha) | |
k = int(binom._ppf(alpha/2., n, 0.5)) | |
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5) | |
if gk < 1-alpha: | |
k -= 1 | |
gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5) | |
gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5) | |
I = (gk - 1 + alpha)/(gk - gkk) | |
lambd = (n-k) * I / float(k + (n-2*k)*I) | |
lims = (lambd*data[k] + (1-lambd)*data[k-1], | |
lambd*data[n-k-1] + (1-lambd)*data[n-k]) | |
return lims | |
data = ma.array(data, copy=False) | |
# Computes quantiles along axis (or globally) | |
if (axis is None): | |
result = _cihs_1D(data, alpha) | |
else: | |
if data.ndim > 2: | |
raise ValueError("Array 'data' must be at most two dimensional, " | |
"but got data.ndim = %d" % data.ndim) | |
result = ma.apply_along_axis(_cihs_1D, axis, data, alpha) | |
return result | |
def compare_medians_ms(group_1, group_2, axis=None): | |
""" | |
Compares the medians from two independent groups along the given axis. | |
The comparison is performed using the McKean-Schrader estimate of the | |
standard error of the medians. | |
Parameters | |
---------- | |
group_1 : array_like | |
First dataset. Has to be of size >=7. | |
group_2 : array_like | |
Second dataset. Has to be of size >=7. | |
axis : int, optional | |
Axis along which the medians are estimated. If None, the arrays are | |
flattened. If `axis` is not None, then `group_1` and `group_2` | |
should have the same shape. | |
Returns | |
------- | |
compare_medians_ms : {float, ndarray} | |
If `axis` is None, then returns a float, otherwise returns a 1-D | |
ndarray of floats with a length equal to the length of `group_1` | |
along `axis`. | |
Examples | |
-------- | |
>>> from scipy import stats | |
>>> a = [1, 2, 3, 4, 5, 6, 7] | |
>>> b = [8, 9, 10, 11, 12, 13, 14] | |
>>> stats.mstats.compare_medians_ms(a, b, axis=None) | |
1.0693225866553746e-05 | |
The function is vectorized to compute along a given axis. | |
>>> import numpy as np | |
>>> rng = np.random.default_rng() | |
>>> x = rng.random(size=(3, 7)) | |
>>> y = rng.random(size=(3, 8)) | |
>>> stats.mstats.compare_medians_ms(x, y, axis=1) | |
array([0.36908985, 0.36092538, 0.2765313 ]) | |
References | |
---------- | |
.. [1] McKean, Joseph W., and Ronald M. Schrader. "A comparison of methods | |
for studentizing the sample median." Communications in | |
Statistics-Simulation and Computation 13.6 (1984): 751-773. | |
""" | |
(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis)) | |
(std_1, std_2) = (mstats.stde_median(group_1, axis=axis), | |
mstats.stde_median(group_2, axis=axis)) | |
W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2) | |
return 1 - norm.cdf(W) | |
def idealfourths(data, axis=None): | |
""" | |
Returns an estimate of the lower and upper quartiles. | |
Uses the ideal fourths algorithm. | |
Parameters | |
---------- | |
data : array_like | |
Input array. | |
axis : int, optional | |
Axis along which the quartiles are estimated. If None, the arrays are | |
flattened. | |
Returns | |
------- | |
idealfourths : {list of floats, masked array} | |
Returns the two internal values that divide `data` into four parts | |
using the ideal fourths algorithm either along the flattened array | |
(if `axis` is None) or along `axis` of `data`. | |
""" | |
def _idf(data): | |
x = data.compressed() | |
n = len(x) | |
if n < 3: | |
return [np.nan,np.nan] | |
(j,h) = divmod(n/4. + 5/12.,1) | |
j = int(j) | |
qlo = (1-h)*x[j-1] + h*x[j] | |
k = n - j | |
qup = (1-h)*x[k] + h*x[k-1] | |
return [qlo, qup] | |
data = ma.sort(data, axis=axis).view(MaskedArray) | |
if (axis is None): | |
return _idf(data) | |
else: | |
return ma.apply_along_axis(_idf, axis, data) | |
def rsh(data, points=None): | |
""" | |
Evaluates Rosenblatt's shifted histogram estimators for each data point. | |
Rosenblatt's estimator is a centered finite-difference approximation to the | |
derivative of the empirical cumulative distribution function. | |
Parameters | |
---------- | |
data : sequence | |
Input data, should be 1-D. Masked values are ignored. | |
points : sequence or None, optional | |
Sequence of points where to evaluate Rosenblatt shifted histogram. | |
If None, use the data. | |
""" | |
data = ma.array(data, copy=False) | |
if points is None: | |
points = data | |
else: | |
points = np.atleast_1d(np.asarray(points)) | |
if data.ndim != 1: | |
raise AttributeError("The input array should be 1D only !") | |
n = data.count() | |
r = idealfourths(data, axis=None) | |
h = 1.2 * (r[-1]-r[0]) / n**(1./5) | |
nhi = (data[:,None] <= points[None,:] + h).sum(0) | |
nlo = (data[:,None] < points[None,:] - h).sum(0) | |
return (nhi-nlo) / (2.*n*h) | |