peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/stats
/_sensitivity_analysis.py
from __future__ import annotations | |
import inspect | |
from dataclasses import dataclass | |
from typing import ( | |
Callable, Literal, Protocol, TYPE_CHECKING | |
) | |
import numpy as np | |
from scipy.stats._common import ConfidenceInterval | |
from scipy.stats._qmc import check_random_state | |
from scipy.stats._resampling import BootstrapResult | |
from scipy.stats import qmc, bootstrap | |
if TYPE_CHECKING: | |
import numpy.typing as npt | |
from scipy._lib._util import DecimalNumber, IntNumber, SeedType | |
__all__ = [ | |
'sobol_indices' | |
] | |
def f_ishigami(x: npt.ArrayLike) -> np.ndarray: | |
r"""Ishigami function. | |
.. math:: | |
Y(\mathbf{x}) = \sin x_1 + 7 \sin^2 x_2 + 0.1 x_3^4 \sin x_1 | |
with :math:`\mathbf{x} \in [-\pi, \pi]^3`. | |
Parameters | |
---------- | |
x : array_like ([x1, x2, x3], n) | |
Returns | |
------- | |
f : array_like (n,) | |
Function evaluation. | |
References | |
---------- | |
.. [1] Ishigami, T. and T. Homma. "An importance quantification technique | |
in uncertainty analysis for computer models." IEEE, | |
:doi:`10.1109/ISUMA.1990.151285`, 1990. | |
""" | |
x = np.atleast_2d(x) | |
f_eval = ( | |
np.sin(x[0]) | |
+ 7 * np.sin(x[1])**2 | |
+ 0.1 * (x[2]**4) * np.sin(x[0]) | |
) | |
return f_eval | |
def sample_A_B( | |
n: IntNumber, | |
dists: list[PPFDist], | |
random_state: SeedType = None | |
) -> np.ndarray: | |
"""Sample two matrices A and B. | |
Uses a Sobol' sequence with 2`d` columns to have 2 uncorrelated matrices. | |
This is more efficient than using 2 random draw of Sobol'. | |
See sec. 5 from [1]_. | |
Output shape is (d, n). | |
References | |
---------- | |
.. [1] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and | |
S. Tarantola. "Variance based sensitivity analysis of model | |
output. Design and estimator for the total sensitivity index." | |
Computer Physics Communications, 181(2):259-270, | |
:doi:`10.1016/j.cpc.2009.09.018`, 2010. | |
""" | |
d = len(dists) | |
A_B = qmc.Sobol(d=2*d, seed=random_state, bits=64).random(n).T | |
A_B = A_B.reshape(2, d, -1) | |
try: | |
for d_, dist in enumerate(dists): | |
A_B[:, d_] = dist.ppf(A_B[:, d_]) | |
except AttributeError as exc: | |
message = "Each distribution in `dists` must have method `ppf`." | |
raise ValueError(message) from exc | |
return A_B | |
def sample_AB(A: np.ndarray, B: np.ndarray) -> np.ndarray: | |
"""AB matrix. | |
AB: rows of B into A. Shape (d, d, n). | |
- Copy A into d "pages" | |
- In the first page, replace 1st rows of A with 1st row of B. | |
... | |
- In the dth page, replace dth row of A with dth row of B. | |
- return the stack of pages | |
""" | |
d, n = A.shape | |
AB = np.tile(A, (d, 1, 1)) | |
i = np.arange(d) | |
AB[i, i] = B[i] | |
return AB | |
def saltelli_2010( | |
f_A: np.ndarray, f_B: np.ndarray, f_AB: np.ndarray | |
) -> tuple[np.ndarray, np.ndarray]: | |
r"""Saltelli2010 formulation. | |
.. math:: | |
S_i = \frac{1}{N} \sum_{j=1}^N | |
f(\mathbf{B})_j (f(\mathbf{AB}^{(i)})_j - f(\mathbf{A})_j) | |
.. math:: | |
S_{T_i} = \frac{1}{N} \sum_{j=1}^N | |
(f(\mathbf{A})_j - f(\mathbf{AB}^{(i)})_j)^2 | |
Parameters | |
---------- | |
f_A, f_B : array_like (s, n) | |
Function values at A and B, respectively | |
f_AB : array_like (d, s, n) | |
Function values at each of the AB pages | |
Returns | |
------- | |
s, st : array_like (s, d) | |
First order and total order Sobol' indices. | |
References | |
---------- | |
.. [1] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and | |
S. Tarantola. "Variance based sensitivity analysis of model | |
output. Design and estimator for the total sensitivity index." | |
Computer Physics Communications, 181(2):259-270, | |
:doi:`10.1016/j.cpc.2009.09.018`, 2010. | |
""" | |
# Empirical variance calculated using output from A and B which are | |
# independent. Output of AB is not independent and cannot be used | |
var = np.var([f_A, f_B], axis=(0, -1)) | |
# We divide by the variance to have a ratio of variance | |
# this leads to eq. 2 | |
s = np.mean(f_B * (f_AB - f_A), axis=-1) / var # Table 2 (b) | |
st = 0.5 * np.mean((f_A - f_AB) ** 2, axis=-1) / var # Table 2 (f) | |
return s.T, st.T | |
class BootstrapSobolResult: | |
first_order: BootstrapResult | |
total_order: BootstrapResult | |
class SobolResult: | |
first_order: np.ndarray | |
total_order: np.ndarray | |
_indices_method: Callable | |
_f_A: np.ndarray | |
_f_B: np.ndarray | |
_f_AB: np.ndarray | |
_A: np.ndarray | None = None | |
_B: np.ndarray | None = None | |
_AB: np.ndarray | None = None | |
_bootstrap_result: BootstrapResult | None = None | |
def bootstrap( | |
self, | |
confidence_level: DecimalNumber = 0.95, | |
n_resamples: IntNumber = 999 | |
) -> BootstrapSobolResult: | |
"""Bootstrap Sobol' indices to provide confidence intervals. | |
Parameters | |
---------- | |
confidence_level : float, default: ``0.95`` | |
The confidence level of the confidence intervals. | |
n_resamples : int, default: ``999`` | |
The number of resamples performed to form the bootstrap | |
distribution of the indices. | |
Returns | |
------- | |
res : BootstrapSobolResult | |
Bootstrap result containing the confidence intervals and the | |
bootstrap distribution of the indices. | |
An object with attributes: | |
first_order : BootstrapResult | |
Bootstrap result of the first order indices. | |
total_order : BootstrapResult | |
Bootstrap result of the total order indices. | |
See `BootstrapResult` for more details. | |
""" | |
def statistic(idx): | |
f_A_ = self._f_A[:, idx] | |
f_B_ = self._f_B[:, idx] | |
f_AB_ = self._f_AB[..., idx] | |
return self._indices_method(f_A_, f_B_, f_AB_) | |
n = self._f_A.shape[1] | |
res = bootstrap( | |
[np.arange(n)], statistic=statistic, method="BCa", | |
n_resamples=n_resamples, | |
confidence_level=confidence_level, | |
bootstrap_result=self._bootstrap_result | |
) | |
self._bootstrap_result = res | |
first_order = BootstrapResult( | |
confidence_interval=ConfidenceInterval( | |
res.confidence_interval.low[0], res.confidence_interval.high[0] | |
), | |
bootstrap_distribution=res.bootstrap_distribution[0], | |
standard_error=res.standard_error[0], | |
) | |
total_order = BootstrapResult( | |
confidence_interval=ConfidenceInterval( | |
res.confidence_interval.low[1], res.confidence_interval.high[1] | |
), | |
bootstrap_distribution=res.bootstrap_distribution[1], | |
standard_error=res.standard_error[1], | |
) | |
return BootstrapSobolResult( | |
first_order=first_order, total_order=total_order | |
) | |
class PPFDist(Protocol): | |
def ppf(self) -> Callable[..., float]: | |
... | |
def sobol_indices( | |
*, | |
func: Callable[[np.ndarray], npt.ArrayLike] | | |
dict[Literal['f_A', 'f_B', 'f_AB'], np.ndarray], | |
n: IntNumber, | |
dists: list[PPFDist] | None = None, | |
method: Callable | Literal['saltelli_2010'] = 'saltelli_2010', | |
random_state: SeedType = None | |
) -> SobolResult: | |
r"""Global sensitivity indices of Sobol'. | |
Parameters | |
---------- | |
func : callable or dict(str, array_like) | |
If `func` is a callable, function to compute the Sobol' indices from. | |
Its signature must be:: | |
func(x: ArrayLike) -> ArrayLike | |
with ``x`` of shape ``(d, n)`` and output of shape ``(s, n)`` where: | |
- ``d`` is the input dimensionality of `func` | |
(number of input variables), | |
- ``s`` is the output dimensionality of `func` | |
(number of output variables), and | |
- ``n`` is the number of samples (see `n` below). | |
Function evaluation values must be finite. | |
If `func` is a dictionary, contains the function evaluations from three | |
different arrays. Keys must be: ``f_A``, ``f_B`` and ``f_AB``. | |
``f_A`` and ``f_B`` should have a shape ``(s, n)`` and ``f_AB`` | |
should have a shape ``(d, s, n)``. | |
This is an advanced feature and misuse can lead to wrong analysis. | |
n : int | |
Number of samples used to generate the matrices ``A`` and ``B``. | |
Must be a power of 2. The total number of points at which `func` is | |
evaluated will be ``n*(d+2)``. | |
dists : list(distributions), optional | |
List of each parameter's distribution. The distribution of parameters | |
depends on the application and should be carefully chosen. | |
Parameters are assumed to be independently distributed, meaning there | |
is no constraint nor relationship between their values. | |
Distributions must be an instance of a class with a ``ppf`` | |
method. | |
Must be specified if `func` is a callable, and ignored otherwise. | |
method : Callable or str, default: 'saltelli_2010' | |
Method used to compute the first and total Sobol' indices. | |
If a callable, its signature must be:: | |
func(f_A: np.ndarray, f_B: np.ndarray, f_AB: np.ndarray) | |
-> Tuple[np.ndarray, np.ndarray] | |
with ``f_A, f_B`` of shape ``(s, n)`` and ``f_AB`` of shape | |
``(d, s, n)``. | |
These arrays contain the function evaluations from three different sets | |
of samples. | |
The output is a tuple of the first and total indices with | |
shape ``(s, d)``. | |
This is an advanced feature and misuse can lead to wrong analysis. | |
random_state : {None, int, `numpy.random.Generator`}, optional | |
If `random_state` is an int or None, a new `numpy.random.Generator` is | |
created using ``np.random.default_rng(random_state)``. | |
If `random_state` is already a ``Generator`` instance, then the | |
provided instance is used. | |
Returns | |
------- | |
res : SobolResult | |
An object with attributes: | |
first_order : ndarray of shape (s, d) | |
First order Sobol' indices. | |
total_order : ndarray of shape (s, d) | |
Total order Sobol' indices. | |
And method: | |
bootstrap(confidence_level: float, n_resamples: int) | |
-> BootstrapSobolResult | |
A method providing confidence intervals on the indices. | |
See `scipy.stats.bootstrap` for more details. | |
The bootstrapping is done on both first and total order indices, | |
and they are available in `BootstrapSobolResult` as attributes | |
``first_order`` and ``total_order``. | |
Notes | |
----- | |
The Sobol' method [1]_, [2]_ is a variance-based Sensitivity Analysis which | |
obtains the contribution of each parameter to the variance of the | |
quantities of interest (QoIs; i.e., the outputs of `func`). | |
Respective contributions can be used to rank the parameters and | |
also gauge the complexity of the model by computing the | |
model's effective (or mean) dimension. | |
.. note:: | |
Parameters are assumed to be independently distributed. Each | |
parameter can still follow any distribution. In fact, the distribution | |
is very important and should match the real distribution of the | |
parameters. | |
It uses a functional decomposition of the variance of the function to | |
explore | |
.. math:: | |
\mathbb{V}(Y) = \sum_{i}^{d} \mathbb{V}_i (Y) + \sum_{i<j}^{d} | |
\mathbb{V}_{ij}(Y) + ... + \mathbb{V}_{1,2,...,d}(Y), | |
introducing conditional variances: | |
.. math:: | |
\mathbb{V}_i(Y) = \mathbb{\mathbb{V}}[\mathbb{E}(Y|x_i)] | |
\qquad | |
\mathbb{V}_{ij}(Y) = \mathbb{\mathbb{V}}[\mathbb{E}(Y|x_i x_j)] | |
- \mathbb{V}_i(Y) - \mathbb{V}_j(Y), | |
Sobol' indices are expressed as | |
.. math:: | |
S_i = \frac{\mathbb{V}_i(Y)}{\mathbb{V}[Y]} | |
\qquad | |
S_{ij} =\frac{\mathbb{V}_{ij}(Y)}{\mathbb{V}[Y]}. | |
:math:`S_{i}` corresponds to the first-order term which apprises the | |
contribution of the i-th parameter, while :math:`S_{ij}` corresponds to the | |
second-order term which informs about the contribution of interactions | |
between the i-th and the j-th parameters. These equations can be | |
generalized to compute higher order terms; however, they are expensive to | |
compute and their interpretation is complex. | |
This is why only first order indices are provided. | |
Total order indices represent the global contribution of the parameters | |
to the variance of the QoI and are defined as: | |
.. math:: | |
S_{T_i} = S_i + \sum_j S_{ij} + \sum_{j,k} S_{ijk} + ... | |
= 1 - \frac{\mathbb{V}[\mathbb{E}(Y|x_{\sim i})]}{\mathbb{V}[Y]}. | |
First order indices sum to at most 1, while total order indices sum to at | |
least 1. If there are no interactions, then first and total order indices | |
are equal, and both first and total order indices sum to 1. | |
.. warning:: | |
Negative Sobol' values are due to numerical errors. Increasing the | |
number of points `n` should help. | |
The number of sample required to have a good analysis increases with | |
the dimensionality of the problem. e.g. for a 3 dimension problem, | |
consider at minima ``n >= 2**12``. The more complex the model is, | |
the more samples will be needed. | |
Even for a purely addiditive model, the indices may not sum to 1 due | |
to numerical noise. | |
References | |
---------- | |
.. [1] Sobol, I. M.. "Sensitivity analysis for nonlinear mathematical | |
models." Mathematical Modeling and Computational Experiment, 1:407-414, | |
1993. | |
.. [2] Sobol, I. M. (2001). "Global sensitivity indices for nonlinear | |
mathematical models and their Monte Carlo estimates." Mathematics | |
and Computers in Simulation, 55(1-3):271-280, | |
:doi:`10.1016/S0378-4754(00)00270-6`, 2001. | |
.. [3] Saltelli, A. "Making best use of model evaluations to | |
compute sensitivity indices." Computer Physics Communications, | |
145(2):280-297, :doi:`10.1016/S0010-4655(02)00280-1`, 2002. | |
.. [4] Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, | |
D. Gatelli, M. Saisana, and S. Tarantola. "Global Sensitivity Analysis. | |
The Primer." 2007. | |
.. [5] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and | |
S. Tarantola. "Variance based sensitivity analysis of model | |
output. Design and estimator for the total sensitivity index." | |
Computer Physics Communications, 181(2):259-270, | |
:doi:`10.1016/j.cpc.2009.09.018`, 2010. | |
.. [6] Ishigami, T. and T. Homma. "An importance quantification technique | |
in uncertainty analysis for computer models." IEEE, | |
:doi:`10.1109/ISUMA.1990.151285`, 1990. | |
Examples | |
-------- | |
The following is an example with the Ishigami function [6]_ | |
.. math:: | |
Y(\mathbf{x}) = \sin x_1 + 7 \sin^2 x_2 + 0.1 x_3^4 \sin x_1, | |
with :math:`\mathbf{x} \in [-\pi, \pi]^3`. This function exhibits strong | |
non-linearity and non-monotonicity. | |
Remember, Sobol' indices assumes that samples are independently | |
distributed. In this case we use a uniform distribution on each marginals. | |
>>> import numpy as np | |
>>> from scipy.stats import sobol_indices, uniform | |
>>> rng = np.random.default_rng() | |
>>> def f_ishigami(x): | |
... f_eval = ( | |
... np.sin(x[0]) | |
... + 7 * np.sin(x[1])**2 | |
... + 0.1 * (x[2]**4) * np.sin(x[0]) | |
... ) | |
... return f_eval | |
>>> indices = sobol_indices( | |
... func=f_ishigami, n=1024, | |
... dists=[ | |
... uniform(loc=-np.pi, scale=2*np.pi), | |
... uniform(loc=-np.pi, scale=2*np.pi), | |
... uniform(loc=-np.pi, scale=2*np.pi) | |
... ], | |
... random_state=rng | |
... ) | |
>>> indices.first_order | |
array([0.31637954, 0.43781162, 0.00318825]) | |
>>> indices.total_order | |
array([0.56122127, 0.44287857, 0.24229595]) | |
Confidence interval can be obtained using bootstrapping. | |
>>> boot = indices.bootstrap() | |
Then, this information can be easily visualized. | |
>>> import matplotlib.pyplot as plt | |
>>> fig, axs = plt.subplots(1, 2, figsize=(9, 4)) | |
>>> _ = axs[0].errorbar( | |
... [1, 2, 3], indices.first_order, fmt='o', | |
... yerr=[ | |
... indices.first_order - boot.first_order.confidence_interval.low, | |
... boot.first_order.confidence_interval.high - indices.first_order | |
... ], | |
... ) | |
>>> axs[0].set_ylabel("First order Sobol' indices") | |
>>> axs[0].set_xlabel('Input parameters') | |
>>> axs[0].set_xticks([1, 2, 3]) | |
>>> _ = axs[1].errorbar( | |
... [1, 2, 3], indices.total_order, fmt='o', | |
... yerr=[ | |
... indices.total_order - boot.total_order.confidence_interval.low, | |
... boot.total_order.confidence_interval.high - indices.total_order | |
... ], | |
... ) | |
>>> axs[1].set_ylabel("Total order Sobol' indices") | |
>>> axs[1].set_xlabel('Input parameters') | |
>>> axs[1].set_xticks([1, 2, 3]) | |
>>> plt.tight_layout() | |
>>> plt.show() | |
.. note:: | |
By default, `scipy.stats.uniform` has support ``[0, 1]``. | |
Using the parameters ``loc`` and ``scale``, one obtains the uniform | |
distribution on ``[loc, loc + scale]``. | |
This result is particularly interesting because the first order index | |
:math:`S_{x_3} = 0` whereas its total order is :math:`S_{T_{x_3}} = 0.244`. | |
This means that higher order interactions with :math:`x_3` are responsible | |
for the difference. Almost 25% of the observed variance | |
on the QoI is due to the correlations between :math:`x_3` and :math:`x_1`, | |
although :math:`x_3` by itself has no impact on the QoI. | |
The following gives a visual explanation of Sobol' indices on this | |
function. Let's generate 1024 samples in :math:`[-\pi, \pi]^3` and | |
calculate the value of the output. | |
>>> from scipy.stats import qmc | |
>>> n_dim = 3 | |
>>> p_labels = ['$x_1$', '$x_2$', '$x_3$'] | |
>>> sample = qmc.Sobol(d=n_dim, seed=rng).random(1024) | |
>>> sample = qmc.scale( | |
... sample=sample, | |
... l_bounds=[-np.pi, -np.pi, -np.pi], | |
... u_bounds=[np.pi, np.pi, np.pi] | |
... ) | |
>>> output = f_ishigami(sample.T) | |
Now we can do scatter plots of the output with respect to each parameter. | |
This gives a visual way to understand how each parameter impacts the | |
output of the function. | |
>>> fig, ax = plt.subplots(1, n_dim, figsize=(12, 4)) | |
>>> for i in range(n_dim): | |
... xi = sample[:, i] | |
... ax[i].scatter(xi, output, marker='+') | |
... ax[i].set_xlabel(p_labels[i]) | |
>>> ax[0].set_ylabel('Y') | |
>>> plt.tight_layout() | |
>>> plt.show() | |
Now Sobol' goes a step further: | |
by conditioning the output value by given values of the parameter | |
(black lines), the conditional output mean is computed. It corresponds to | |
the term :math:`\mathbb{E}(Y|x_i)`. Taking the variance of this term gives | |
the numerator of the Sobol' indices. | |
>>> mini = np.min(output) | |
>>> maxi = np.max(output) | |
>>> n_bins = 10 | |
>>> bins = np.linspace(-np.pi, np.pi, num=n_bins, endpoint=False) | |
>>> dx = bins[1] - bins[0] | |
>>> fig, ax = plt.subplots(1, n_dim, figsize=(12, 4)) | |
>>> for i in range(n_dim): | |
... xi = sample[:, i] | |
... ax[i].scatter(xi, output, marker='+') | |
... ax[i].set_xlabel(p_labels[i]) | |
... for bin_ in bins: | |
... idx = np.where((bin_ <= xi) & (xi <= bin_ + dx)) | |
... xi_ = xi[idx] | |
... y_ = output[idx] | |
... ave_y_ = np.mean(y_) | |
... ax[i].plot([bin_ + dx/2] * 2, [mini, maxi], c='k') | |
... ax[i].scatter(bin_ + dx/2, ave_y_, c='r') | |
>>> ax[0].set_ylabel('Y') | |
>>> plt.tight_layout() | |
>>> plt.show() | |
Looking at :math:`x_3`, the variance | |
of the mean is zero leading to :math:`S_{x_3} = 0`. But we can further | |
observe that the variance of the output is not constant along the parameter | |
values of :math:`x_3`. This heteroscedasticity is explained by higher order | |
interactions. Moreover, an heteroscedasticity is also noticeable on | |
:math:`x_1` leading to an interaction between :math:`x_3` and :math:`x_1`. | |
On :math:`x_2`, the variance seems to be constant and thus null interaction | |
with this parameter can be supposed. | |
This case is fairly simple to analyse visually---although it is only a | |
qualitative analysis. Nevertheless, when the number of input parameters | |
increases such analysis becomes unrealistic as it would be difficult to | |
conclude on high-order terms. Hence the benefit of using Sobol' indices. | |
""" | |
random_state = check_random_state(random_state) | |
n_ = int(n) | |
if not (n_ & (n_ - 1) == 0) or n != n_: | |
raise ValueError( | |
"The balance properties of Sobol' points require 'n' " | |
"to be a power of 2." | |
) | |
n = n_ | |
if not callable(method): | |
indices_methods: dict[str, Callable] = { | |
"saltelli_2010": saltelli_2010, | |
} | |
try: | |
method = method.lower() # type: ignore[assignment] | |
indices_method_ = indices_methods[method] | |
except KeyError as exc: | |
message = ( | |
f"{method!r} is not a valid 'method'. It must be one of" | |
f" {set(indices_methods)!r} or a callable." | |
) | |
raise ValueError(message) from exc | |
else: | |
indices_method_ = method | |
sig = inspect.signature(indices_method_) | |
if set(sig.parameters) != {'f_A', 'f_B', 'f_AB'}: | |
message = ( | |
"If 'method' is a callable, it must have the following" | |
f" signature: {inspect.signature(saltelli_2010)}" | |
) | |
raise ValueError(message) | |
def indices_method(f_A, f_B, f_AB): | |
"""Wrap indices method to ensure proper output dimension. | |
1D when single output, 2D otherwise. | |
""" | |
return np.squeeze(indices_method_(f_A=f_A, f_B=f_B, f_AB=f_AB)) | |
if callable(func): | |
if dists is None: | |
raise ValueError( | |
"'dists' must be defined when 'func' is a callable." | |
) | |
def wrapped_func(x): | |
return np.atleast_2d(func(x)) | |
A, B = sample_A_B(n=n, dists=dists, random_state=random_state) | |
AB = sample_AB(A=A, B=B) | |
f_A = wrapped_func(A) | |
if f_A.shape[1] != n: | |
raise ValueError( | |
"'func' output should have a shape ``(s, -1)`` with ``s`` " | |
"the number of output." | |
) | |
def funcAB(AB): | |
d, d, n = AB.shape | |
AB = np.moveaxis(AB, 0, -1).reshape(d, n*d) | |
f_AB = wrapped_func(AB) | |
return np.moveaxis(f_AB.reshape((-1, n, d)), -1, 0) | |
f_B = wrapped_func(B) | |
f_AB = funcAB(AB) | |
else: | |
message = ( | |
"When 'func' is a dictionary, it must contain the following " | |
"keys: 'f_A', 'f_B' and 'f_AB'." | |
"'f_A' and 'f_B' should have a shape ``(s, n)`` and 'f_AB' " | |
"should have a shape ``(d, s, n)``." | |
) | |
try: | |
f_A, f_B, f_AB = np.atleast_2d( | |
func['f_A'], func['f_B'], func['f_AB'] | |
) | |
except KeyError as exc: | |
raise ValueError(message) from exc | |
if f_A.shape[1] != n or f_A.shape != f_B.shape or \ | |
f_AB.shape == f_A.shape or f_AB.shape[-1] % n != 0: | |
raise ValueError(message) | |
# Normalization by mean | |
# Sobol', I. and Levitan, Y. L. (1999). On the use of variance reducing | |
# multipliers in monte carlo computations of a global sensitivity index. | |
# Computer Physics Communications, 117(1) :52-61. | |
mean = np.mean([f_A, f_B], axis=(0, -1)).reshape(-1, 1) | |
f_A -= mean | |
f_B -= mean | |
f_AB -= mean | |
# Compute indices | |
# Filter warnings for constant output as var = 0 | |
with np.errstate(divide='ignore', invalid='ignore'): | |
first_order, total_order = indices_method(f_A=f_A, f_B=f_B, f_AB=f_AB) | |
# null variance means null indices | |
first_order[~np.isfinite(first_order)] = 0 | |
total_order[~np.isfinite(total_order)] = 0 | |
res = dict( | |
first_order=first_order, | |
total_order=total_order, | |
_indices_method=indices_method, | |
_f_A=f_A, | |
_f_B=f_B, | |
_f_AB=f_AB | |
) | |
if callable(func): | |
res.update( | |
dict( | |
_A=A, | |
_B=B, | |
_AB=AB, | |
) | |
) | |
return SobolResult(**res) | |