peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/_loss
/_loss.pxd
# Fused types for input like y_true, raw_prediction, sample_weights. | |
ctypedef fused floating_in: | |
double | |
float | |
# Fused types for output like gradient and hessian | |
# We use a different fused types for input (floating_in) and output (floating_out), such | |
# that input and output can have different dtypes in the same function call. A single | |
# fused type can only take on one single value (type) for all arguments in one function | |
# call. | |
ctypedef fused floating_out: | |
double | |
float | |
# Struct to return 2 doubles | |
ctypedef struct double_pair: | |
double val1 | |
double val2 | |
# C base class for loss functions | |
cdef class CyLossFunction: | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHalfSquaredError(CyLossFunction): | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyAbsoluteError(CyLossFunction): | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyPinballLoss(CyLossFunction): | |
cdef readonly double quantile # readonly makes it accessible from Python | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHuberLoss(CyLossFunction): | |
cdef public double delta # public makes it accessible from Python | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHalfPoissonLoss(CyLossFunction): | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHalfGammaLoss(CyLossFunction): | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHalfTweedieLoss(CyLossFunction): | |
cdef readonly double power # readonly makes it accessible from Python | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHalfTweedieLossIdentity(CyLossFunction): | |
cdef readonly double power # readonly makes it accessible from Python | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyHalfBinomialLoss(CyLossFunction): | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |
cdef class CyExponentialLoss(CyLossFunction): | |
cdef double cy_loss(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double cy_gradient(self, double y_true, double raw_prediction) noexcept nogil | |
cdef double_pair cy_grad_hess(self, double y_true, double raw_prediction) noexcept nogil | |