peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/kernel_approximation.py
""" | |
The :mod:`sklearn.kernel_approximation` module implements several | |
approximate kernel feature maps based on Fourier transforms and Count Sketches. | |
""" | |
# Author: Andreas Mueller <[email protected]> | |
# Daniel Lopez-Sanchez (TensorSketch) <[email protected]> | |
# License: BSD 3 clause | |
import warnings | |
from numbers import Integral, Real | |
import numpy as np | |
import scipy.sparse as sp | |
from scipy.linalg import svd | |
try: | |
from scipy.fft import fft, ifft | |
except ImportError: # scipy < 1.4 | |
from scipy.fftpack import fft, ifft | |
from .base import ( | |
BaseEstimator, | |
ClassNamePrefixFeaturesOutMixin, | |
TransformerMixin, | |
_fit_context, | |
) | |
from .metrics.pairwise import KERNEL_PARAMS, PAIRWISE_KERNEL_FUNCTIONS, pairwise_kernels | |
from .utils import check_random_state, deprecated | |
from .utils._param_validation import Interval, StrOptions | |
from .utils.extmath import safe_sparse_dot | |
from .utils.validation import ( | |
_check_feature_names_in, | |
check_is_fitted, | |
check_non_negative, | |
) | |
class PolynomialCountSketch( | |
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator | |
): | |
"""Polynomial kernel approximation via Tensor Sketch. | |
Implements Tensor Sketch, which approximates the feature map | |
of the polynomial kernel:: | |
K(X, Y) = (gamma * <X, Y> + coef0)^degree | |
by efficiently computing a Count Sketch of the outer product of a | |
vector with itself using Fast Fourier Transforms (FFT). Read more in the | |
:ref:`User Guide <polynomial_kernel_approx>`. | |
.. versionadded:: 0.24 | |
Parameters | |
---------- | |
gamma : float, default=1.0 | |
Parameter of the polynomial kernel whose feature map | |
will be approximated. | |
degree : int, default=2 | |
Degree of the polynomial kernel whose feature map | |
will be approximated. | |
coef0 : int, default=0 | |
Constant term of the polynomial kernel whose feature map | |
will be approximated. | |
n_components : int, default=100 | |
Dimensionality of the output feature space. Usually, `n_components` | |
should be greater than the number of features in input samples in | |
order to achieve good performance. The optimal score / run time | |
balance is typically achieved around `n_components` = 10 * `n_features`, | |
but this depends on the specific dataset being used. | |
random_state : int, RandomState instance, default=None | |
Determines random number generation for indexHash and bitHash | |
initialization. Pass an int for reproducible results across multiple | |
function calls. See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
indexHash_ : ndarray of shape (degree, n_features), dtype=int64 | |
Array of indexes in range [0, n_components) used to represent | |
the 2-wise independent hash functions for Count Sketch computation. | |
bitHash_ : ndarray of shape (degree, n_features), dtype=float32 | |
Array with random entries in {+1, -1}, used to represent | |
the 2-wise independent hash functions for Count Sketch computation. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel. | |
Nystroem : Approximate a kernel map using a subset of the training data. | |
RBFSampler : Approximate a RBF kernel feature map using random Fourier | |
features. | |
SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel. | |
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. | |
Examples | |
-------- | |
>>> from sklearn.kernel_approximation import PolynomialCountSketch | |
>>> from sklearn.linear_model import SGDClassifier | |
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] | |
>>> y = [0, 0, 1, 1] | |
>>> ps = PolynomialCountSketch(degree=3, random_state=1) | |
>>> X_features = ps.fit_transform(X) | |
>>> clf = SGDClassifier(max_iter=10, tol=1e-3) | |
>>> clf.fit(X_features, y) | |
SGDClassifier(max_iter=10) | |
>>> clf.score(X_features, y) | |
1.0 | |
For a more detailed example of usage, see | |
:ref:`sphx_glr_auto_examples_kernel_approximation_plot_scalable_poly_kernels.py` | |
""" | |
_parameter_constraints: dict = { | |
"gamma": [Interval(Real, 0, None, closed="left")], | |
"degree": [Interval(Integral, 1, None, closed="left")], | |
"coef0": [Interval(Real, None, None, closed="neither")], | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, *, gamma=1.0, degree=2, coef0=0, n_components=100, random_state=None | |
): | |
self.gamma = gamma | |
self.degree = degree | |
self.coef0 = coef0 | |
self.n_components = n_components | |
self.random_state = random_state | |
def fit(self, X, y=None): | |
"""Fit the model with X. | |
Initializes the internal variables. The method needs no information | |
about the distribution of data, so we only care about n_features in X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ | |
default=None | |
Target values (None for unsupervised transformations). | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
X = self._validate_data(X, accept_sparse="csc") | |
random_state = check_random_state(self.random_state) | |
n_features = X.shape[1] | |
if self.coef0 != 0: | |
n_features += 1 | |
self.indexHash_ = random_state.randint( | |
0, high=self.n_components, size=(self.degree, n_features) | |
) | |
self.bitHash_ = random_state.choice(a=[-1, 1], size=(self.degree, n_features)) | |
self._n_features_out = self.n_components | |
return self | |
def transform(self, X): | |
"""Generate the feature map approximation for X. | |
Parameters | |
---------- | |
X : {array-like}, shape (n_samples, n_features) | |
New data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
Returns | |
------- | |
X_new : array-like, shape (n_samples, n_components) | |
Returns the instance itself. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, accept_sparse="csc", reset=False) | |
X_gamma = np.sqrt(self.gamma) * X | |
if sp.issparse(X_gamma) and self.coef0 != 0: | |
X_gamma = sp.hstack( | |
[X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))], | |
format="csc", | |
) | |
elif not sp.issparse(X_gamma) and self.coef0 != 0: | |
X_gamma = np.hstack( | |
[X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))] | |
) | |
if X_gamma.shape[1] != self.indexHash_.shape[1]: | |
raise ValueError( | |
"Number of features of test samples does not" | |
" match that of training samples." | |
) | |
count_sketches = np.zeros((X_gamma.shape[0], self.degree, self.n_components)) | |
if sp.issparse(X_gamma): | |
for j in range(X_gamma.shape[1]): | |
for d in range(self.degree): | |
iHashIndex = self.indexHash_[d, j] | |
iHashBit = self.bitHash_[d, j] | |
count_sketches[:, d, iHashIndex] += ( | |
(iHashBit * X_gamma[:, [j]]).toarray().ravel() | |
) | |
else: | |
for j in range(X_gamma.shape[1]): | |
for d in range(self.degree): | |
iHashIndex = self.indexHash_[d, j] | |
iHashBit = self.bitHash_[d, j] | |
count_sketches[:, d, iHashIndex] += iHashBit * X_gamma[:, j] | |
# For each same, compute a count sketch of phi(x) using the polynomial | |
# multiplication (via FFT) of p count sketches of x. | |
count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True) | |
count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1) | |
data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True)) | |
return data_sketch | |
class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
"""Approximate a RBF kernel feature map using random Fourier features. | |
It implements a variant of Random Kitchen Sinks.[1] | |
Read more in the :ref:`User Guide <rbf_kernel_approx>`. | |
Parameters | |
---------- | |
gamma : 'scale' or float, default=1.0 | |
Parameter of RBF kernel: exp(-gamma * x^2). | |
If ``gamma='scale'`` is passed then it uses | |
1 / (n_features * X.var()) as value of gamma. | |
.. versionadded:: 1.2 | |
The option `"scale"` was added in 1.2. | |
n_components : int, default=100 | |
Number of Monte Carlo samples per original feature. | |
Equals the dimensionality of the computed feature space. | |
random_state : int, RandomState instance or None, default=None | |
Pseudo-random number generator to control the generation of the random | |
weights and random offset when fitting the training data. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
random_offset_ : ndarray of shape (n_components,), dtype={np.float64, np.float32} | |
Random offset used to compute the projection in the `n_components` | |
dimensions of the feature space. | |
random_weights_ : ndarray of shape (n_features, n_components),\ | |
dtype={np.float64, np.float32} | |
Random projection directions drawn from the Fourier transform | |
of the RBF kernel. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel. | |
Nystroem : Approximate a kernel map using a subset of the training data. | |
PolynomialCountSketch : Polynomial kernel approximation via Tensor Sketch. | |
SkewedChi2Sampler : Approximate feature map for | |
"skewed chi-squared" kernel. | |
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. | |
Notes | |
----- | |
See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and | |
Benjamin Recht. | |
[1] "Weighted Sums of Random Kitchen Sinks: Replacing | |
minimization with randomization in learning" by A. Rahimi and | |
Benjamin Recht. | |
(https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf) | |
Examples | |
-------- | |
>>> from sklearn.kernel_approximation import RBFSampler | |
>>> from sklearn.linear_model import SGDClassifier | |
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] | |
>>> y = [0, 0, 1, 1] | |
>>> rbf_feature = RBFSampler(gamma=1, random_state=1) | |
>>> X_features = rbf_feature.fit_transform(X) | |
>>> clf = SGDClassifier(max_iter=5, tol=1e-3) | |
>>> clf.fit(X_features, y) | |
SGDClassifier(max_iter=5) | |
>>> clf.score(X_features, y) | |
1.0 | |
""" | |
_parameter_constraints: dict = { | |
"gamma": [ | |
StrOptions({"scale"}), | |
Interval(Real, 0.0, None, closed="left"), | |
], | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"random_state": ["random_state"], | |
} | |
def __init__(self, *, gamma=1.0, n_components=100, random_state=None): | |
self.gamma = gamma | |
self.n_components = n_components | |
self.random_state = random_state | |
def fit(self, X, y=None): | |
"""Fit the model with X. | |
Samples random projection according to n_features. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix}, shape (n_samples, n_features) | |
Training data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ | |
default=None | |
Target values (None for unsupervised transformations). | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
X = self._validate_data(X, accept_sparse="csr") | |
random_state = check_random_state(self.random_state) | |
n_features = X.shape[1] | |
sparse = sp.issparse(X) | |
if self.gamma == "scale": | |
# var = E[X^2] - E[X]^2 if sparse | |
X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var() | |
self._gamma = 1.0 / (n_features * X_var) if X_var != 0 else 1.0 | |
else: | |
self._gamma = self.gamma | |
self.random_weights_ = (2.0 * self._gamma) ** 0.5 * random_state.normal( | |
size=(n_features, self.n_components) | |
) | |
self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) | |
if X.dtype == np.float32: | |
# Setting the data type of the fitted attribute will ensure the | |
# output data type during `transform`. | |
self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False) | |
self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False) | |
self._n_features_out = self.n_components | |
return self | |
def transform(self, X): | |
"""Apply the approximate feature map to X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix}, shape (n_samples, n_features) | |
New data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
Returns | |
------- | |
X_new : array-like, shape (n_samples, n_components) | |
Returns the instance itself. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, accept_sparse="csr", reset=False) | |
projection = safe_sparse_dot(X, self.random_weights_) | |
projection += self.random_offset_ | |
np.cos(projection, projection) | |
projection *= (2.0 / self.n_components) ** 0.5 | |
return projection | |
def _more_tags(self): | |
return {"preserves_dtype": [np.float64, np.float32]} | |
class SkewedChi2Sampler( | |
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator | |
): | |
"""Approximate feature map for "skewed chi-squared" kernel. | |
Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`. | |
Parameters | |
---------- | |
skewedness : float, default=1.0 | |
"skewedness" parameter of the kernel. Needs to be cross-validated. | |
n_components : int, default=100 | |
Number of Monte Carlo samples per original feature. | |
Equals the dimensionality of the computed feature space. | |
random_state : int, RandomState instance or None, default=None | |
Pseudo-random number generator to control the generation of the random | |
weights and random offset when fitting the training data. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
random_weights_ : ndarray of shape (n_features, n_components) | |
Weight array, sampled from a secant hyperbolic distribution, which will | |
be used to linearly transform the log of the data. | |
random_offset_ : ndarray of shape (n_features, n_components) | |
Bias term, which will be added to the data. It is uniformly distributed | |
between 0 and 2*pi. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel. | |
Nystroem : Approximate a kernel map using a subset of the training data. | |
RBFSampler : Approximate a RBF kernel feature map using random Fourier | |
features. | |
SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel. | |
sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. | |
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. | |
References | |
---------- | |
See "Random Fourier Approximations for Skewed Multiplicative Histogram | |
Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. | |
Examples | |
-------- | |
>>> from sklearn.kernel_approximation import SkewedChi2Sampler | |
>>> from sklearn.linear_model import SGDClassifier | |
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]] | |
>>> y = [0, 0, 1, 1] | |
>>> chi2_feature = SkewedChi2Sampler(skewedness=.01, | |
... n_components=10, | |
... random_state=0) | |
>>> X_features = chi2_feature.fit_transform(X, y) | |
>>> clf = SGDClassifier(max_iter=10, tol=1e-3) | |
>>> clf.fit(X_features, y) | |
SGDClassifier(max_iter=10) | |
>>> clf.score(X_features, y) | |
1.0 | |
""" | |
_parameter_constraints: dict = { | |
"skewedness": [Interval(Real, None, None, closed="neither")], | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"random_state": ["random_state"], | |
} | |
def __init__(self, *, skewedness=1.0, n_components=100, random_state=None): | |
self.skewedness = skewedness | |
self.n_components = n_components | |
self.random_state = random_state | |
def fit(self, X, y=None): | |
"""Fit the model with X. | |
Samples random projection according to n_features. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
Training data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ | |
default=None | |
Target values (None for unsupervised transformations). | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
X = self._validate_data(X) | |
random_state = check_random_state(self.random_state) | |
n_features = X.shape[1] | |
uniform = random_state.uniform(size=(n_features, self.n_components)) | |
# transform by inverse CDF of sech | |
self.random_weights_ = 1.0 / np.pi * np.log(np.tan(np.pi / 2.0 * uniform)) | |
self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) | |
if X.dtype == np.float32: | |
# Setting the data type of the fitted attribute will ensure the | |
# output data type during `transform`. | |
self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False) | |
self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False) | |
self._n_features_out = self.n_components | |
return self | |
def transform(self, X): | |
"""Apply the approximate feature map to X. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
New data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. All values of X must be | |
strictly greater than "-skewedness". | |
Returns | |
------- | |
X_new : array-like, shape (n_samples, n_components) | |
Returns the instance itself. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data( | |
X, copy=True, dtype=[np.float64, np.float32], reset=False | |
) | |
if (X <= -self.skewedness).any(): | |
raise ValueError("X may not contain entries smaller than -skewedness.") | |
X += self.skewedness | |
np.log(X, X) | |
projection = safe_sparse_dot(X, self.random_weights_) | |
projection += self.random_offset_ | |
np.cos(projection, projection) | |
projection *= np.sqrt(2.0) / np.sqrt(self.n_components) | |
return projection | |
def _more_tags(self): | |
return {"preserves_dtype": [np.float64, np.float32]} | |
class AdditiveChi2Sampler(TransformerMixin, BaseEstimator): | |
"""Approximate feature map for additive chi2 kernel. | |
Uses sampling the fourier transform of the kernel characteristic | |
at regular intervals. | |
Since the kernel that is to be approximated is additive, the components of | |
the input vectors can be treated separately. Each entry in the original | |
space is transformed into 2*sample_steps-1 features, where sample_steps is | |
a parameter of the method. Typical values of sample_steps include 1, 2 and | |
3. | |
Optimal choices for the sampling interval for certain data ranges can be | |
computed (see the reference). The default values should be reasonable. | |
Read more in the :ref:`User Guide <additive_chi_kernel_approx>`. | |
Parameters | |
---------- | |
sample_steps : int, default=2 | |
Gives the number of (complex) sampling points. | |
sample_interval : float, default=None | |
Sampling interval. Must be specified when sample_steps not in {1,2,3}. | |
Attributes | |
---------- | |
sample_interval_ : float | |
Stored sampling interval. Specified as a parameter if `sample_steps` | |
not in {1,2,3}. | |
.. deprecated:: 1.3 | |
`sample_interval_` serves internal purposes only and will be removed in 1.5. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of | |
the chi squared kernel. | |
sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. | |
sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi | |
squared kernel. | |
Notes | |
----- | |
This estimator approximates a slightly different version of the additive | |
chi squared kernel then ``metric.additive_chi2`` computes. | |
This estimator is stateless and does not need to be fitted. However, we | |
recommend to call :meth:`fit_transform` instead of :meth:`transform`, as | |
parameter validation is only performed in :meth:`fit`. | |
References | |
---------- | |
See `"Efficient additive kernels via explicit feature maps" | |
<http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ | |
A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, | |
2011 | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_digits | |
>>> from sklearn.linear_model import SGDClassifier | |
>>> from sklearn.kernel_approximation import AdditiveChi2Sampler | |
>>> X, y = load_digits(return_X_y=True) | |
>>> chi2sampler = AdditiveChi2Sampler(sample_steps=2) | |
>>> X_transformed = chi2sampler.fit_transform(X, y) | |
>>> clf = SGDClassifier(max_iter=5, random_state=0, tol=1e-3) | |
>>> clf.fit(X_transformed, y) | |
SGDClassifier(max_iter=5, random_state=0) | |
>>> clf.score(X_transformed, y) | |
0.9499... | |
""" | |
_parameter_constraints: dict = { | |
"sample_steps": [Interval(Integral, 1, None, closed="left")], | |
"sample_interval": [Interval(Real, 0, None, closed="left"), None], | |
} | |
def __init__(self, *, sample_steps=2, sample_interval=None): | |
self.sample_steps = sample_steps | |
self.sample_interval = sample_interval | |
def fit(self, X, y=None): | |
"""Only validates estimator's parameters. | |
This method allows to: (i) validate the estimator's parameters and | |
(ii) be consistent with the scikit-learn transformer API. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
Training data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ | |
default=None | |
Target values (None for unsupervised transformations). | |
Returns | |
------- | |
self : object | |
Returns the transformer. | |
""" | |
X = self._validate_data(X, accept_sparse="csr") | |
check_non_negative(X, "X in AdditiveChi2Sampler.fit") | |
# TODO(1.5): remove the setting of _sample_interval from fit | |
if self.sample_interval is None: | |
# See figure 2 c) of "Efficient additive kernels via explicit feature maps" | |
# <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf> | |
# A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, | |
# 2011 | |
if self.sample_steps == 1: | |
self._sample_interval = 0.8 | |
elif self.sample_steps == 2: | |
self._sample_interval = 0.5 | |
elif self.sample_steps == 3: | |
self._sample_interval = 0.4 | |
else: | |
raise ValueError( | |
"If sample_steps is not in [1, 2, 3]," | |
" you need to provide sample_interval" | |
) | |
else: | |
self._sample_interval = self.sample_interval | |
return self | |
# TODO(1.5): remove | |
def sample_interval_(self): | |
return self._sample_interval | |
def transform(self, X): | |
"""Apply approximate feature map to X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix}, shape (n_samples, n_features) | |
Training data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
Returns | |
------- | |
X_new : {ndarray, sparse matrix}, \ | |
shape = (n_samples, n_features * (2*sample_steps - 1)) | |
Whether the return value is an array or sparse matrix depends on | |
the type of the input X. | |
""" | |
X = self._validate_data(X, accept_sparse="csr", reset=False) | |
check_non_negative(X, "X in AdditiveChi2Sampler.transform") | |
sparse = sp.issparse(X) | |
if hasattr(self, "_sample_interval"): | |
# TODO(1.5): remove this branch | |
sample_interval = self._sample_interval | |
else: | |
if self.sample_interval is None: | |
# See figure 2 c) of "Efficient additive kernels via explicit feature maps" # noqa | |
# <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf> | |
# A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, # noqa | |
# 2011 | |
if self.sample_steps == 1: | |
sample_interval = 0.8 | |
elif self.sample_steps == 2: | |
sample_interval = 0.5 | |
elif self.sample_steps == 3: | |
sample_interval = 0.4 | |
else: | |
raise ValueError( | |
"If sample_steps is not in [1, 2, 3]," | |
" you need to provide sample_interval" | |
) | |
else: | |
sample_interval = self.sample_interval | |
# zeroth component | |
# 1/cosh = sech | |
# cosh(0) = 1.0 | |
transf = self._transform_sparse if sparse else self._transform_dense | |
return transf(X, self.sample_steps, sample_interval) | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Only used to validate feature names with the names seen in :meth:`fit`. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
check_is_fitted(self, "n_features_in_") | |
input_features = _check_feature_names_in( | |
self, input_features, generate_names=True | |
) | |
est_name = self.__class__.__name__.lower() | |
names_list = [f"{est_name}_{name}_sqrt" for name in input_features] | |
for j in range(1, self.sample_steps): | |
cos_names = [f"{est_name}_{name}_cos{j}" for name in input_features] | |
sin_names = [f"{est_name}_{name}_sin{j}" for name in input_features] | |
names_list.extend(cos_names + sin_names) | |
return np.asarray(names_list, dtype=object) | |
def _transform_dense(X, sample_steps, sample_interval): | |
non_zero = X != 0.0 | |
X_nz = X[non_zero] | |
X_step = np.zeros_like(X) | |
X_step[non_zero] = np.sqrt(X_nz * sample_interval) | |
X_new = [X_step] | |
log_step_nz = sample_interval * np.log(X_nz) | |
step_nz = 2 * X_nz * sample_interval | |
for j in range(1, sample_steps): | |
factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * sample_interval)) | |
X_step = np.zeros_like(X) | |
X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) | |
X_new.append(X_step) | |
X_step = np.zeros_like(X) | |
X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) | |
X_new.append(X_step) | |
return np.hstack(X_new) | |
def _transform_sparse(X, sample_steps, sample_interval): | |
indices = X.indices.copy() | |
indptr = X.indptr.copy() | |
data_step = np.sqrt(X.data * sample_interval) | |
X_step = sp.csr_matrix( | |
(data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False | |
) | |
X_new = [X_step] | |
log_step_nz = sample_interval * np.log(X.data) | |
step_nz = 2 * X.data * sample_interval | |
for j in range(1, sample_steps): | |
factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * sample_interval)) | |
data_step = factor_nz * np.cos(j * log_step_nz) | |
X_step = sp.csr_matrix( | |
(data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False | |
) | |
X_new.append(X_step) | |
data_step = factor_nz * np.sin(j * log_step_nz) | |
X_step = sp.csr_matrix( | |
(data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False | |
) | |
X_new.append(X_step) | |
return sp.hstack(X_new) | |
def _more_tags(self): | |
return {"stateless": True, "requires_positive_X": True} | |
class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
"""Approximate a kernel map using a subset of the training data. | |
Constructs an approximate feature map for an arbitrary kernel | |
using a subset of the data as basis. | |
Read more in the :ref:`User Guide <nystroem_kernel_approx>`. | |
.. versionadded:: 0.13 | |
Parameters | |
---------- | |
kernel : str or callable, default='rbf' | |
Kernel map to be approximated. A callable should accept two arguments | |
and the keyword arguments passed to this object as `kernel_params`, and | |
should return a floating point number. | |
gamma : float, default=None | |
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 | |
and sigmoid kernels. Interpretation of the default value is left to | |
the kernel; see the documentation for sklearn.metrics.pairwise. | |
Ignored by other kernels. | |
coef0 : float, default=None | |
Zero coefficient for polynomial and sigmoid kernels. | |
Ignored by other kernels. | |
degree : float, default=None | |
Degree of the polynomial kernel. Ignored by other kernels. | |
kernel_params : dict, default=None | |
Additional parameters (keyword arguments) for kernel function passed | |
as callable object. | |
n_components : int, default=100 | |
Number of features to construct. | |
How many data points will be used to construct the mapping. | |
random_state : int, RandomState instance or None, default=None | |
Pseudo-random number generator to control the uniform sampling without | |
replacement of `n_components` of the training data to construct the | |
basis kernel. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
n_jobs : int, default=None | |
The number of jobs to use for the computation. This works by breaking | |
down the kernel matrix into `n_jobs` even slices and computing them in | |
parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
.. versionadded:: 0.24 | |
Attributes | |
---------- | |
components_ : ndarray of shape (n_components, n_features) | |
Subset of training points used to construct the feature map. | |
component_indices_ : ndarray of shape (n_components) | |
Indices of ``components_`` in the training set. | |
normalization_ : ndarray of shape (n_components, n_components) | |
Normalization matrix needed for embedding. | |
Square root of the kernel matrix on ``components_``. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel. | |
PolynomialCountSketch : Polynomial kernel approximation via Tensor Sketch. | |
RBFSampler : Approximate a RBF kernel feature map using random Fourier | |
features. | |
SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel. | |
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. | |
References | |
---------- | |
* Williams, C.K.I. and Seeger, M. | |
"Using the Nystroem method to speed up kernel machines", | |
Advances in neural information processing systems 2001 | |
* T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou | |
"Nystroem Method vs Random Fourier Features: A Theoretical and Empirical | |
Comparison", | |
Advances in Neural Information Processing Systems 2012 | |
Examples | |
-------- | |
>>> from sklearn import datasets, svm | |
>>> from sklearn.kernel_approximation import Nystroem | |
>>> X, y = datasets.load_digits(n_class=9, return_X_y=True) | |
>>> data = X / 16. | |
>>> clf = svm.LinearSVC(dual="auto") | |
>>> feature_map_nystroem = Nystroem(gamma=.2, | |
... random_state=1, | |
... n_components=300) | |
>>> data_transformed = feature_map_nystroem.fit_transform(data) | |
>>> clf.fit(data_transformed, y) | |
LinearSVC(dual='auto') | |
>>> clf.score(data_transformed, y) | |
0.9987... | |
""" | |
_parameter_constraints: dict = { | |
"kernel": [ | |
StrOptions(set(PAIRWISE_KERNEL_FUNCTIONS.keys()) | {"precomputed"}), | |
callable, | |
], | |
"gamma": [Interval(Real, 0, None, closed="left"), None], | |
"coef0": [Interval(Real, None, None, closed="neither"), None], | |
"degree": [Interval(Real, 1, None, closed="left"), None], | |
"kernel_params": [dict, None], | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"random_state": ["random_state"], | |
"n_jobs": [Integral, None], | |
} | |
def __init__( | |
self, | |
kernel="rbf", | |
*, | |
gamma=None, | |
coef0=None, | |
degree=None, | |
kernel_params=None, | |
n_components=100, | |
random_state=None, | |
n_jobs=None, | |
): | |
self.kernel = kernel | |
self.gamma = gamma | |
self.coef0 = coef0 | |
self.degree = degree | |
self.kernel_params = kernel_params | |
self.n_components = n_components | |
self.random_state = random_state | |
self.n_jobs = n_jobs | |
def fit(self, X, y=None): | |
"""Fit estimator to data. | |
Samples a subset of training points, computes kernel | |
on these and computes normalization matrix. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
Training data, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ | |
default=None | |
Target values (None for unsupervised transformations). | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
X = self._validate_data(X, accept_sparse="csr") | |
rnd = check_random_state(self.random_state) | |
n_samples = X.shape[0] | |
# get basis vectors | |
if self.n_components > n_samples: | |
# XXX should we just bail? | |
n_components = n_samples | |
warnings.warn( | |
"n_components > n_samples. This is not possible.\n" | |
"n_components was set to n_samples, which results" | |
" in inefficient evaluation of the full kernel." | |
) | |
else: | |
n_components = self.n_components | |
n_components = min(n_samples, n_components) | |
inds = rnd.permutation(n_samples) | |
basis_inds = inds[:n_components] | |
basis = X[basis_inds] | |
basis_kernel = pairwise_kernels( | |
basis, | |
metric=self.kernel, | |
filter_params=True, | |
n_jobs=self.n_jobs, | |
**self._get_kernel_params(), | |
) | |
# sqrt of kernel matrix on basis vectors | |
U, S, V = svd(basis_kernel) | |
S = np.maximum(S, 1e-12) | |
self.normalization_ = np.dot(U / np.sqrt(S), V) | |
self.components_ = basis | |
self.component_indices_ = basis_inds | |
self._n_features_out = n_components | |
return self | |
def transform(self, X): | |
"""Apply feature map to X. | |
Computes an approximate feature map using the kernel | |
between some training points and X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Data to transform. | |
Returns | |
------- | |
X_transformed : ndarray of shape (n_samples, n_components) | |
Transformed data. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, accept_sparse="csr", reset=False) | |
kernel_params = self._get_kernel_params() | |
embedded = pairwise_kernels( | |
X, | |
self.components_, | |
metric=self.kernel, | |
filter_params=True, | |
n_jobs=self.n_jobs, | |
**kernel_params, | |
) | |
return np.dot(embedded, self.normalization_.T) | |
def _get_kernel_params(self): | |
params = self.kernel_params | |
if params is None: | |
params = {} | |
if not callable(self.kernel) and self.kernel != "precomputed": | |
for param in KERNEL_PARAMS[self.kernel]: | |
if getattr(self, param) is not None: | |
params[param] = getattr(self, param) | |
else: | |
if ( | |
self.gamma is not None | |
or self.coef0 is not None | |
or self.degree is not None | |
): | |
raise ValueError( | |
"Don't pass gamma, coef0 or degree to " | |
"Nystroem if using a callable " | |
"or precomputed kernel" | |
) | |
return params | |
def _more_tags(self): | |
return { | |
"_xfail_checks": { | |
"check_transformer_preserve_dtypes": ( | |
"dtypes are preserved but not at a close enough precision" | |
) | |
}, | |
"preserves_dtype": [np.float64, np.float32], | |
} | |