peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/_mds.py
""" | |
Multi-dimensional Scaling (MDS). | |
""" | |
# author: Nelle Varoquaux <[email protected]> | |
# License: BSD | |
import warnings | |
from numbers import Integral, Real | |
import numpy as np | |
from joblib import effective_n_jobs | |
from ..base import BaseEstimator, _fit_context | |
from ..isotonic import IsotonicRegression | |
from ..metrics import euclidean_distances | |
from ..utils import check_array, check_random_state, check_symmetric | |
from ..utils._param_validation import Interval, StrOptions, validate_params | |
from ..utils.parallel import Parallel, delayed | |
def _smacof_single( | |
dissimilarities, | |
metric=True, | |
n_components=2, | |
init=None, | |
max_iter=300, | |
verbose=0, | |
eps=1e-3, | |
random_state=None, | |
normalized_stress=False, | |
): | |
"""Computes multidimensional scaling using SMACOF algorithm. | |
Parameters | |
---------- | |
dissimilarities : ndarray of shape (n_samples, n_samples) | |
Pairwise dissimilarities between the points. Must be symmetric. | |
metric : bool, default=True | |
Compute metric or nonmetric SMACOF algorithm. | |
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as | |
missing values. | |
n_components : int, default=2 | |
Number of dimensions in which to immerse the dissimilarities. If an | |
``init`` array is provided, this option is overridden and the shape of | |
``init`` is used to determine the dimensionality of the embedding | |
space. | |
init : ndarray of shape (n_samples, n_components), default=None | |
Starting configuration of the embedding to initialize the algorithm. By | |
default, the algorithm is initialized with a randomly chosen array. | |
max_iter : int, default=300 | |
Maximum number of iterations of the SMACOF algorithm for a single run. | |
verbose : int, default=0 | |
Level of verbosity. | |
eps : float, default=1e-3 | |
Relative tolerance with respect to stress at which to declare | |
convergence. The value of `eps` should be tuned separately depending | |
on whether or not `normalized_stress` is being used. | |
random_state : int, RandomState instance or None, default=None | |
Determines the random number generator used to initialize the centers. | |
Pass an int for reproducible results across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
normalized_stress : bool, default=False | |
Whether use and return normed stress value (Stress-1) instead of raw | |
stress calculated by default. Only supported in non-metric MDS. The | |
caller must ensure that if `normalized_stress=True` then `metric=False` | |
.. versionadded:: 1.2 | |
Returns | |
------- | |
X : ndarray of shape (n_samples, n_components) | |
Coordinates of the points in a ``n_components``-space. | |
stress : float | |
The final value of the stress (sum of squared distance of the | |
disparities and the distances for all constrained points). | |
If `normalized_stress=True`, and `metric=False` returns Stress-1. | |
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good, | |
0.1 fair, and 0.2 poor [1]_. | |
n_iter : int | |
The number of iterations corresponding to the best stress. | |
References | |
---------- | |
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. | |
Psychometrika, 29 (1964) | |
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric | |
hypothesis" Kruskal, J. Psychometrika, 29, (1964) | |
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; | |
Groenen P. Springer Series in Statistics (1997) | |
""" | |
dissimilarities = check_symmetric(dissimilarities, raise_exception=True) | |
n_samples = dissimilarities.shape[0] | |
random_state = check_random_state(random_state) | |
sim_flat = ((1 - np.tri(n_samples)) * dissimilarities).ravel() | |
sim_flat_w = sim_flat[sim_flat != 0] | |
if init is None: | |
# Randomly choose initial configuration | |
X = random_state.uniform(size=n_samples * n_components) | |
X = X.reshape((n_samples, n_components)) | |
else: | |
# overrides the parameter p | |
n_components = init.shape[1] | |
if n_samples != init.shape[0]: | |
raise ValueError( | |
"init matrix should be of shape (%d, %d)" % (n_samples, n_components) | |
) | |
X = init | |
old_stress = None | |
ir = IsotonicRegression() | |
for it in range(max_iter): | |
# Compute distance and monotonic regression | |
dis = euclidean_distances(X) | |
if metric: | |
disparities = dissimilarities | |
else: | |
dis_flat = dis.ravel() | |
# dissimilarities with 0 are considered as missing values | |
dis_flat_w = dis_flat[sim_flat != 0] | |
# Compute the disparities using a monotonic regression | |
disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w) | |
disparities = dis_flat.copy() | |
disparities[sim_flat != 0] = disparities_flat | |
disparities = disparities.reshape((n_samples, n_samples)) | |
disparities *= np.sqrt( | |
(n_samples * (n_samples - 1) / 2) / (disparities**2).sum() | |
) | |
# Compute stress | |
stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2 | |
if normalized_stress: | |
stress = np.sqrt(stress / ((disparities.ravel() ** 2).sum() / 2)) | |
# Update X using the Guttman transform | |
dis[dis == 0] = 1e-5 | |
ratio = disparities / dis | |
B = -ratio | |
B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1) | |
X = 1.0 / n_samples * np.dot(B, X) | |
dis = np.sqrt((X**2).sum(axis=1)).sum() | |
if verbose >= 2: | |
print("it: %d, stress %s" % (it, stress)) | |
if old_stress is not None: | |
if (old_stress - stress / dis) < eps: | |
if verbose: | |
print("breaking at iteration %d with stress %s" % (it, stress)) | |
break | |
old_stress = stress / dis | |
return X, stress, it + 1 | |
def smacof( | |
dissimilarities, | |
*, | |
metric=True, | |
n_components=2, | |
init=None, | |
n_init=8, | |
n_jobs=None, | |
max_iter=300, | |
verbose=0, | |
eps=1e-3, | |
random_state=None, | |
return_n_iter=False, | |
normalized_stress="auto", | |
): | |
"""Compute multidimensional scaling using the SMACOF algorithm. | |
The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a | |
multidimensional scaling algorithm which minimizes an objective function | |
(the *stress*) using a majorization technique. Stress majorization, also | |
known as the Guttman Transform, guarantees a monotone convergence of | |
stress, and is more powerful than traditional techniques such as gradient | |
descent. | |
The SMACOF algorithm for metric MDS can be summarized by the following | |
steps: | |
1. Set an initial start configuration, randomly or not. | |
2. Compute the stress | |
3. Compute the Guttman Transform | |
4. Iterate 2 and 3 until convergence. | |
The nonmetric algorithm adds a monotonic regression step before computing | |
the stress. | |
Parameters | |
---------- | |
dissimilarities : array-like of shape (n_samples, n_samples) | |
Pairwise dissimilarities between the points. Must be symmetric. | |
metric : bool, default=True | |
Compute metric or nonmetric SMACOF algorithm. | |
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as | |
missing values. | |
n_components : int, default=2 | |
Number of dimensions in which to immerse the dissimilarities. If an | |
``init`` array is provided, this option is overridden and the shape of | |
``init`` is used to determine the dimensionality of the embedding | |
space. | |
init : array-like of shape (n_samples, n_components), default=None | |
Starting configuration of the embedding to initialize the algorithm. By | |
default, the algorithm is initialized with a randomly chosen array. | |
n_init : int, default=8 | |
Number of times the SMACOF algorithm will be run with different | |
initializations. The final results will be the best output of the runs, | |
determined by the run with the smallest final stress. If ``init`` is | |
provided, this option is overridden and a single run is performed. | |
n_jobs : int, default=None | |
The number of jobs to use for the computation. If multiple | |
initializations are used (``n_init``), each run of the algorithm is | |
computed in parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
max_iter : int, default=300 | |
Maximum number of iterations of the SMACOF algorithm for a single run. | |
verbose : int, default=0 | |
Level of verbosity. | |
eps : float, default=1e-3 | |
Relative tolerance with respect to stress at which to declare | |
convergence. The value of `eps` should be tuned separately depending | |
on whether or not `normalized_stress` is being used. | |
random_state : int, RandomState instance or None, default=None | |
Determines the random number generator used to initialize the centers. | |
Pass an int for reproducible results across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
return_n_iter : bool, default=False | |
Whether or not to return the number of iterations. | |
normalized_stress : bool or "auto" default="auto" | |
Whether use and return normed stress value (Stress-1) instead of raw | |
stress calculated by default. Only supported in non-metric MDS. | |
.. versionadded:: 1.2 | |
.. versionchanged:: 1.4 | |
The default value changed from `False` to `"auto"` in version 1.4. | |
Returns | |
------- | |
X : ndarray of shape (n_samples, n_components) | |
Coordinates of the points in a ``n_components``-space. | |
stress : float | |
The final value of the stress (sum of squared distance of the | |
disparities and the distances for all constrained points). | |
If `normalized_stress=True`, and `metric=False` returns Stress-1. | |
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good, | |
0.1 fair, and 0.2 poor [1]_. | |
n_iter : int | |
The number of iterations corresponding to the best stress. Returned | |
only if ``return_n_iter`` is set to ``True``. | |
References | |
---------- | |
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. | |
Psychometrika, 29 (1964) | |
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric | |
hypothesis" Kruskal, J. Psychometrika, 29, (1964) | |
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; | |
Groenen P. Springer Series in Statistics (1997) | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.manifold import smacof | |
>>> from sklearn.metrics import euclidean_distances | |
>>> X = np.array([[0, 1, 2], [1, 0, 3],[2, 3, 0]]) | |
>>> dissimilarities = euclidean_distances(X) | |
>>> mds_result, stress = smacof(dissimilarities, n_components=2, random_state=42) | |
>>> mds_result | |
array([[ 0.05... -1.07... ], | |
[ 1.74..., -0.75...], | |
[-1.79..., 1.83...]]) | |
>>> stress | |
0.0012... | |
""" | |
dissimilarities = check_array(dissimilarities) | |
random_state = check_random_state(random_state) | |
if normalized_stress == "auto": | |
normalized_stress = not metric | |
if normalized_stress and metric: | |
raise ValueError( | |
"Normalized stress is not supported for metric MDS. Either set" | |
" `normalized_stress=False` or use `metric=False`." | |
) | |
if hasattr(init, "__array__"): | |
init = np.asarray(init).copy() | |
if not n_init == 1: | |
warnings.warn( | |
"Explicit initial positions passed: " | |
"performing only one init of the MDS instead of %d" % n_init | |
) | |
n_init = 1 | |
best_pos, best_stress = None, None | |
if effective_n_jobs(n_jobs) == 1: | |
for it in range(n_init): | |
pos, stress, n_iter_ = _smacof_single( | |
dissimilarities, | |
metric=metric, | |
n_components=n_components, | |
init=init, | |
max_iter=max_iter, | |
verbose=verbose, | |
eps=eps, | |
random_state=random_state, | |
normalized_stress=normalized_stress, | |
) | |
if best_stress is None or stress < best_stress: | |
best_stress = stress | |
best_pos = pos.copy() | |
best_iter = n_iter_ | |
else: | |
seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) | |
results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))( | |
delayed(_smacof_single)( | |
dissimilarities, | |
metric=metric, | |
n_components=n_components, | |
init=init, | |
max_iter=max_iter, | |
verbose=verbose, | |
eps=eps, | |
random_state=seed, | |
normalized_stress=normalized_stress, | |
) | |
for seed in seeds | |
) | |
positions, stress, n_iters = zip(*results) | |
best = np.argmin(stress) | |
best_stress = stress[best] | |
best_pos = positions[best] | |
best_iter = n_iters[best] | |
if return_n_iter: | |
return best_pos, best_stress, best_iter | |
else: | |
return best_pos, best_stress | |
class MDS(BaseEstimator): | |
"""Multidimensional scaling. | |
Read more in the :ref:`User Guide <multidimensional_scaling>`. | |
Parameters | |
---------- | |
n_components : int, default=2 | |
Number of dimensions in which to immerse the dissimilarities. | |
metric : bool, default=True | |
If ``True``, perform metric MDS; otherwise, perform nonmetric MDS. | |
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as | |
missing values. | |
n_init : int, default=4 | |
Number of times the SMACOF algorithm will be run with different | |
initializations. The final results will be the best output of the runs, | |
determined by the run with the smallest final stress. | |
max_iter : int, default=300 | |
Maximum number of iterations of the SMACOF algorithm for a single run. | |
verbose : int, default=0 | |
Level of verbosity. | |
eps : float, default=1e-3 | |
Relative tolerance with respect to stress at which to declare | |
convergence. The value of `eps` should be tuned separately depending | |
on whether or not `normalized_stress` is being used. | |
n_jobs : int, default=None | |
The number of jobs to use for the computation. If multiple | |
initializations are used (``n_init``), each run of the algorithm is | |
computed in parallel. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
random_state : int, RandomState instance or None, default=None | |
Determines the random number generator used to initialize the centers. | |
Pass an int for reproducible results across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
dissimilarity : {'euclidean', 'precomputed'}, default='euclidean' | |
Dissimilarity measure to use: | |
- 'euclidean': | |
Pairwise Euclidean distances between points in the dataset. | |
- 'precomputed': | |
Pre-computed dissimilarities are passed directly to ``fit`` and | |
``fit_transform``. | |
normalized_stress : bool or "auto" default="auto" | |
Whether use and return normed stress value (Stress-1) instead of raw | |
stress calculated by default. Only supported in non-metric MDS. | |
.. versionadded:: 1.2 | |
.. versionchanged:: 1.4 | |
The default value changed from `False` to `"auto"` in version 1.4. | |
Attributes | |
---------- | |
embedding_ : ndarray of shape (n_samples, n_components) | |
Stores the position of the dataset in the embedding space. | |
stress_ : float | |
The final value of the stress (sum of squared distance of the | |
disparities and the distances for all constrained points). | |
If `normalized_stress=True`, and `metric=False` returns Stress-1. | |
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good, | |
0.1 fair, and 0.2 poor [1]_. | |
dissimilarity_matrix_ : ndarray of shape (n_samples, n_samples) | |
Pairwise dissimilarities between the points. Symmetric matrix that: | |
- either uses a custom dissimilarity matrix by setting `dissimilarity` | |
to 'precomputed'; | |
- or constructs a dissimilarity matrix from data using | |
Euclidean distances. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
n_iter_ : int | |
The number of iterations corresponding to the best stress. | |
See Also | |
-------- | |
sklearn.decomposition.PCA : Principal component analysis that is a linear | |
dimensionality reduction method. | |
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using | |
kernels and PCA. | |
TSNE : T-distributed Stochastic Neighbor Embedding. | |
Isomap : Manifold learning based on Isometric Mapping. | |
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding. | |
SpectralEmbedding : Spectral embedding for non-linear dimensionality. | |
References | |
---------- | |
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. | |
Psychometrika, 29 (1964) | |
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric | |
hypothesis" Kruskal, J. Psychometrika, 29, (1964) | |
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; | |
Groenen P. Springer Series in Statistics (1997) | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_digits | |
>>> from sklearn.manifold import MDS | |
>>> X, _ = load_digits(return_X_y=True) | |
>>> X.shape | |
(1797, 64) | |
>>> embedding = MDS(n_components=2, normalized_stress='auto') | |
>>> X_transformed = embedding.fit_transform(X[:100]) | |
>>> X_transformed.shape | |
(100, 2) | |
For a more detailed example of usage, see: | |
:ref:`sphx_glr_auto_examples_manifold_plot_mds.py` | |
""" | |
_parameter_constraints: dict = { | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"metric": ["boolean"], | |
"n_init": [Interval(Integral, 1, None, closed="left")], | |
"max_iter": [Interval(Integral, 1, None, closed="left")], | |
"verbose": ["verbose"], | |
"eps": [Interval(Real, 0.0, None, closed="left")], | |
"n_jobs": [None, Integral], | |
"random_state": ["random_state"], | |
"dissimilarity": [StrOptions({"euclidean", "precomputed"})], | |
"normalized_stress": ["boolean", StrOptions({"auto"})], | |
} | |
def __init__( | |
self, | |
n_components=2, | |
*, | |
metric=True, | |
n_init=4, | |
max_iter=300, | |
verbose=0, | |
eps=1e-3, | |
n_jobs=None, | |
random_state=None, | |
dissimilarity="euclidean", | |
normalized_stress="auto", | |
): | |
self.n_components = n_components | |
self.dissimilarity = dissimilarity | |
self.metric = metric | |
self.n_init = n_init | |
self.max_iter = max_iter | |
self.eps = eps | |
self.verbose = verbose | |
self.n_jobs = n_jobs | |
self.random_state = random_state | |
self.normalized_stress = normalized_stress | |
def _more_tags(self): | |
return {"pairwise": self.dissimilarity == "precomputed"} | |
def fit(self, X, y=None, init=None): | |
""" | |
Compute the position of the points in the embedding space. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) or \ | |
(n_samples, n_samples) | |
Input data. If ``dissimilarity=='precomputed'``, the input should | |
be the dissimilarity matrix. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
init : ndarray of shape (n_samples, n_components), default=None | |
Starting configuration of the embedding to initialize the SMACOF | |
algorithm. By default, the algorithm is initialized with a randomly | |
chosen array. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
self.fit_transform(X, init=init) | |
return self | |
def fit_transform(self, X, y=None, init=None): | |
""" | |
Fit the data from `X`, and returns the embedded coordinates. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) or \ | |
(n_samples, n_samples) | |
Input data. If ``dissimilarity=='precomputed'``, the input should | |
be the dissimilarity matrix. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
init : ndarray of shape (n_samples, n_components), default=None | |
Starting configuration of the embedding to initialize the SMACOF | |
algorithm. By default, the algorithm is initialized with a randomly | |
chosen array. | |
Returns | |
------- | |
X_new : ndarray of shape (n_samples, n_components) | |
X transformed in the new space. | |
""" | |
X = self._validate_data(X) | |
if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed": | |
warnings.warn( | |
"The MDS API has changed. ``fit`` now constructs an" | |
" dissimilarity matrix from data. To use a custom " | |
"dissimilarity matrix, set " | |
"``dissimilarity='precomputed'``." | |
) | |
if self.dissimilarity == "precomputed": | |
self.dissimilarity_matrix_ = X | |
elif self.dissimilarity == "euclidean": | |
self.dissimilarity_matrix_ = euclidean_distances(X) | |
self.embedding_, self.stress_, self.n_iter_ = smacof( | |
self.dissimilarity_matrix_, | |
metric=self.metric, | |
n_components=self.n_components, | |
init=init, | |
n_init=self.n_init, | |
n_jobs=self.n_jobs, | |
max_iter=self.max_iter, | |
verbose=self.verbose, | |
eps=self.eps, | |
random_state=self.random_state, | |
return_n_iter=True, | |
normalized_stress=self.normalized_stress, | |
) | |
return self.embedding_ | |