peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/accelerate
/checkpointing.py
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import random | |
| from pathlib import Path | |
| from typing import List | |
| import numpy as np | |
| import torch | |
| from safetensors.torch import load_file | |
| from torch.cuda.amp import GradScaler | |
| from .utils import ( | |
| MODEL_NAME, | |
| OPTIMIZER_NAME, | |
| RNG_STATE_NAME, | |
| SAFE_MODEL_NAME, | |
| SAFE_WEIGHTS_NAME, | |
| SAMPLER_NAME, | |
| SCALER_NAME, | |
| SCHEDULER_NAME, | |
| WEIGHTS_NAME, | |
| get_pretty_name, | |
| is_torch_xla_available, | |
| is_xpu_available, | |
| save, | |
| ) | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| from .logging import get_logger | |
| from .state import PartialState | |
| logger = get_logger(__name__) | |
| def save_accelerator_state( | |
| output_dir: str, | |
| model_states: List[dict], | |
| optimizers: list, | |
| schedulers: list, | |
| dataloaders: list, | |
| process_index: int, | |
| scaler: GradScaler = None, | |
| save_on_each_node: bool = False, | |
| safe_serialization: bool = True, | |
| ): | |
| """ | |
| Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory. | |
| <Tip> | |
| If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native | |
| `pickle`. | |
| </Tip> | |
| Args: | |
| output_dir (`str` or `os.PathLike`): | |
| The name of the folder to save all relevant weights and states. | |
| model_states (`List[torch.nn.Module]`): | |
| A list of model states | |
| optimizers (`List[torch.optim.Optimizer]`): | |
| A list of optimizer instances | |
| schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`): | |
| A list of learning rate schedulers | |
| dataloaders (`List[torch.utils.data.DataLoader]`): | |
| A list of dataloader instances to save their sampler states | |
| process_index (`int`): | |
| The current process index in the Accelerator state | |
| scaler (`torch.cuda.amp.GradScaler`, *optional*): | |
| An optional gradient scaler instance to save | |
| save_on_each_node (`bool`, *optional*): | |
| Whether to save on every node, or only the main node. | |
| safe_serialization (`bool`, *optional*, defaults to `True`): | |
| Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). | |
| """ | |
| output_dir = Path(output_dir) | |
| # Model states | |
| for i, state in enumerate(model_states): | |
| weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME | |
| if i > 0: | |
| weights_name = weights_name.replace(".", f"_{i}.") | |
| output_model_file = output_dir.joinpath(weights_name) | |
| save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization) | |
| logger.info(f"Model weights saved in {output_model_file}") | |
| # Optimizer states | |
| for i, opt in enumerate(optimizers): | |
| state = opt.state_dict() | |
| optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin" | |
| output_optimizer_file = output_dir.joinpath(optimizer_name) | |
| save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False) | |
| logger.info(f"Optimizer state saved in {output_optimizer_file}") | |
| # Scheduler states | |
| for i, scheduler in enumerate(schedulers): | |
| state = scheduler.state_dict() | |
| scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin" | |
| output_scheduler_file = output_dir.joinpath(scheduler_name) | |
| save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False) | |
| logger.info(f"Scheduler state saved in {output_scheduler_file}") | |
| # DataLoader states | |
| for i, dataloader in enumerate(dataloaders): | |
| sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin" | |
| output_sampler_file = output_dir.joinpath(sampler_name) | |
| # Only save if we have our custom sampler | |
| from .data_loader import IterableDatasetShard, SeedableRandomSampler | |
| if isinstance(dataloader.dataset, IterableDatasetShard): | |
| sampler = dataloader.sampler.sampler | |
| if isinstance(sampler, SeedableRandomSampler): | |
| save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False) | |
| logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}") | |
| # GradScaler state | |
| if scaler is not None: | |
| state = scaler.state_dict() | |
| output_scaler_file = output_dir.joinpath(SCALER_NAME) | |
| torch.save(state, output_scaler_file) | |
| logger.info(f"Gradient scaler state saved in {output_scaler_file}") | |
| # Random number generator states | |
| states = {} | |
| states_name = f"{RNG_STATE_NAME}_{process_index}.pkl" | |
| states["random_state"] = random.getstate() | |
| states["numpy_random_seed"] = np.random.get_state() | |
| states["torch_manual_seed"] = torch.get_rng_state() | |
| if is_xpu_available(): | |
| states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all() | |
| else: | |
| states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all() | |
| if is_torch_xla_available(): | |
| states["xm_seed"] = xm.get_rng_state() | |
| output_states_file = output_dir.joinpath(states_name) | |
| torch.save(states, output_states_file) | |
| logger.info(f"Random states saved in {output_states_file}") | |
| return output_dir | |
| def load_accelerator_state( | |
| input_dir, | |
| models, | |
| optimizers, | |
| schedulers, | |
| dataloaders, | |
| process_index, | |
| scaler=None, | |
| map_location=None, | |
| **load_model_func_kwargs, | |
| ): | |
| """ | |
| Loads states of the models, optimizers, scaler, and RNG generators from a given directory. | |
| Args: | |
| input_dir (`str` or `os.PathLike`): | |
| The name of the folder to load all relevant weights and states. | |
| models (`List[torch.nn.Module]`): | |
| A list of model instances | |
| optimizers (`List[torch.optim.Optimizer]`): | |
| A list of optimizer instances | |
| schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`): | |
| A list of learning rate schedulers | |
| process_index (`int`): | |
| The current process index in the Accelerator state | |
| scaler (`torch.cuda.amp.GradScaler`, *optional*): | |
| An optional *GradScaler* instance to load | |
| map_location (`str`, *optional*): | |
| What device to load the optimizer state onto. Should be one of either "cpu" or "on_device". | |
| load_model_func_kwargs (`dict`, *optional*): | |
| Additional arguments that can be passed to the model's `load_state_dict` method. | |
| """ | |
| if map_location not in [None, "cpu", "on_device"]: | |
| raise TypeError( | |
| "Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`" | |
| ) | |
| if map_location is None: | |
| map_location = "cpu" | |
| elif map_location == "on_device": | |
| map_location = PartialState().device | |
| input_dir = Path(input_dir) | |
| # Model states | |
| for i, model in enumerate(models): | |
| ending = f"_{i}" if i > 0 else "" | |
| input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors") | |
| if input_model_file.exists(): | |
| state_dict = load_file(input_model_file, device=str(map_location)) | |
| else: | |
| # Load with torch | |
| input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin") | |
| state_dict = torch.load(input_model_file, map_location=map_location) | |
| models[i].load_state_dict(state_dict, **load_model_func_kwargs) | |
| logger.info("All model weights loaded successfully") | |
| # Optimizer states | |
| for i, opt in enumerate(optimizers): | |
| optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin" | |
| input_optimizer_file = input_dir.joinpath(optimizer_name) | |
| optimizer_state = torch.load(input_optimizer_file, map_location=map_location) | |
| optimizers[i].load_state_dict(optimizer_state) | |
| logger.info("All optimizer states loaded successfully") | |
| # Scheduler states | |
| for i, scheduler in enumerate(schedulers): | |
| scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin" | |
| input_scheduler_file = input_dir.joinpath(scheduler_name) | |
| scheduler.load_state_dict(torch.load(input_scheduler_file)) | |
| logger.info("All scheduler states loaded successfully") | |
| for i, dataloader in enumerate(dataloaders): | |
| sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin" | |
| input_sampler_file = input_dir.joinpath(sampler_name) | |
| # Only load if we have our custom sampler | |
| from .data_loader import IterableDatasetShard, SeedableRandomSampler | |
| if isinstance(dataloader.dataset, IterableDatasetShard): | |
| sampler = dataloader.sampler.sampler | |
| if isinstance(sampler, SeedableRandomSampler): | |
| dataloader.sampler.sampler = torch.load(input_sampler_file) | |
| logger.info("All dataloader sampler states loaded successfully") | |
| # GradScaler state | |
| if scaler is not None: | |
| input_scaler_file = input_dir.joinpath(SCALER_NAME) | |
| scaler.load_state_dict(torch.load(input_scaler_file)) | |
| logger.info("GradScaler state loaded successfully") | |
| # Random states | |
| try: | |
| states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl")) | |
| random.setstate(states["random_state"]) | |
| np.random.set_state(states["numpy_random_seed"]) | |
| torch.set_rng_state(states["torch_manual_seed"]) | |
| if is_xpu_available(): | |
| torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"]) | |
| else: | |
| torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"]) | |
| if is_torch_xla_available(): | |
| xm.set_rng_state(states["xm_seed"]) | |
| logger.info("All random states loaded successfully") | |
| except Exception: | |
| logger.info("Could not load random states") | |
| def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False): | |
| """ | |
| Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl` | |
| """ | |
| # Should this be the right way to get a qual_name type value from `obj`? | |
| save_location = Path(path) / f"custom_checkpoint_{index}.pkl" | |
| logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}") | |
| save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node) | |
| def load_custom_state(obj, path, index: int = 0): | |
| """ | |
| Loads the state of `obj` at `{path}/custom_checkpoint_{index}.pkl` | |
| """ | |
| load_location = f"{path}/custom_checkpoint_{index}.pkl" | |
| logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}") | |
| obj.load_state_dict(torch.load(load_location, map_location="cpu")) | |