peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/load_checkpoint.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| from torch import nn | |
| from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference | |
| from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference | |
| from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference | |
| from deepspeed.model_implementations.transformers.ds_megatron_gpt import DeepSpeedMegatronGPTInference | |
| from deepspeed.model_implementations.transformers.ds_opt import DeepSpeedOPTInference | |
| from deepspeed.model_implementations.transformers.ds_llama2 import DeepSpeedLlama2Inference | |
| import deepspeed.ops.transformer as transformer_inference | |
| from .layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding, RMSNormalize | |
| import torch | |
| import gc | |
| from deepspeed.accelerator import get_accelerator | |
| import re | |
| def load_model_with_checkpoint(r_module, | |
| sd, | |
| mp_replace, | |
| ckpt_type, | |
| ckpt_mp_size, | |
| weight_quantizer=None, | |
| rank=0, | |
| container=None): | |
| error_msgs = [] | |
| def prefix_check(): | |
| # if keys start with 'model.' or 'transformer.', don't skip level 0 prefix | |
| for key in sd[0].keys(): | |
| # OPT models | |
| if re.match("^model[.]", key): | |
| return False | |
| # BLOOM models | |
| if re.match("^transformer[.]", key): | |
| return False | |
| return True | |
| skip_level_0_prefix = prefix_check() and container.policy.use_load_prefix | |
| def transpose(data): | |
| with torch.no_grad(): | |
| data = data.contiguous() | |
| data1 = data.transpose(-1, -2).reshape(-1) | |
| data.reshape(-1).copy_(data1) | |
| data1 = None | |
| return data.reshape(data.shape[-1], data.shape[-2]) | |
| def load(module, prefix): | |
| args = (sd[0], prefix, {}, True, [], [], error_msgs) | |
| if hasattr(module, 'weight'): | |
| module.weight = mp_replace.copy(module.weight.data, sd[0][prefix + 'weight']) | |
| if prefix + 'bias' in sd[0].keys(): | |
| if module.bias.data.is_meta: | |
| # meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
| module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"), | |
| requires_grad=module.bias.data.requires_grad) | |
| module.bias = mp_replace.copy(module.bias.data, sd[0][prefix + 'bias']) | |
| args = None | |
| gc.collect() | |
| def load_transformer_layer(module, prefix): | |
| if ckpt_type == "tp": | |
| def load_parameters(module, prefix): | |
| for n, p in module.named_parameters(): | |
| if prefix + n in sd[0] and len(n.split('.')) == 1: | |
| if type(sd[0][prefix + n]) is list: | |
| tmp_data, scale = sd[0][prefix + n] | |
| tmp_data = tmp_data | |
| scale = scale.to(get_accelerator().current_device_name()) | |
| # set the quantizer number of groups using the checkpoint scale shape | |
| weight_quantizer.num_groups = scale.shape[0] | |
| else: | |
| tmp_data = sd[0][prefix + n].to(get_accelerator().current_device_name()) | |
| scale = None | |
| src_shape = tmp_data.shape | |
| dst_shape = p.shape | |
| inner_dim = 1 if tmp_data.dtype == torch.int8 else 0 | |
| outer_dim = 0 if tmp_data.dtype == torch.int8 else 1 | |
| if (len(src_shape) == 2 and len(dst_shape) == 2): | |
| if (src_shape[inner_dim] == dst_shape[0] and src_shape[outer_dim] == dst_shape[1]): | |
| if tmp_data.dtype != torch.int8: | |
| p = weight_quantizer.quantize( | |
| transpose(tmp_data) if weight_quantizer.q_int8 else tmp_data) | |
| else: | |
| p = torch.nn.parameter.Parameter(tmp_data, requires_grad=False) | |
| p.scale = scale | |
| setattr(module, n, p) | |
| else: | |
| dim = inner_dim if src_shape[inner_dim] != dst_shape[0] else outer_dim | |
| dim1 = 0 if src_shape[inner_dim] != dst_shape[0] else 1 | |
| if src_shape[dim] > dst_shape[dim1]: | |
| weight_partition = torch.split(tmp_data, dst_shape[dim1], dim=dim)[rank].to( | |
| get_accelerator().current_device_name()) | |
| assert tmp_data.dtype != torch.int8 or scale.numel() > weight_quantizer.num_groups * (rank+1), \ | |
| '''ERROR: We require the quantization scales for larger TP-size when loading INT8 checkpoint!\ | |
| Please use the FP16 checkpoint to generate INT8 checkpoint with the sharding parameters!''' | |
| scale = scale.view(-1)[weight_quantizer.num_groups * (rank + 1):].reshape( | |
| weight_quantizer.num_groups, -1).contiguous() | |
| else: | |
| assert tmp_data.dtype != torch.int8, \ | |
| '''Merging of the checkpoints are not supported when using INT8 checkpoint! \ | |
| Please use a as many GPUs as TP-size for the checkpoint''' | |
| all_data = [ | |
| sd[j][prefix + n] if type(sd[j][prefix + n]) is list else sd[j][prefix + n].to( | |
| get_accelerator().current_device_name()) for j in range(len(sd)) | |
| ] | |
| # Check if the weight tensor is for the QKV parameter | |
| if src_shape[1] == (3 * src_shape[0]) // ckpt_mp_size: | |
| qkv_size = src_shape[outer_dim] // 3 | |
| src_split = [ | |
| torch.split(src[0].data, qkv_size, dim=outer_dim) for src in all_data | |
| ] | |
| weight_partition = torch.cat([ | |
| torch.cat([qkv_s[i] for qkv_s in src_split], axis=outer_dim) | |
| for i in range(len(src_split[0])) | |
| ], | |
| dim=dim) | |
| else: | |
| weight_partition = torch.cat([ | |
| ad[0].to(get_accelerator().current_device_name()) | |
| if type(ad) is list else ad for ad in all_data | |
| ], | |
| dim=dim) | |
| if tmp_data.dtype == torch.int8: | |
| scale = torch.cat( | |
| [ad[1].to(get_accelerator().current_device_name()) for ad in all_data], | |
| dim=dim) | |
| if tmp_data.dtype != torch.int8: | |
| weight_partition = weight_quantizer.quantize( | |
| transpose(weight_partition), \ | |
| parallel_dim=(0 if dim == 1 else 1)) if weight_quantizer.q_int8 else \ | |
| weight_quantizer.quantize(weight_partition) | |
| else: | |
| weight_partition = torch.nn.parameter.Parameter(weight_partition, | |
| requires_grad=False) | |
| weight_partition.scale = scale | |
| setattr(module, n, weight_partition) | |
| else: | |
| if src_shape[0] == dst_shape[0]: | |
| p.data.copy_(tmp_data) | |
| else: | |
| if src_shape[0] > dst_shape[0]: | |
| bias_split = torch.split(tmp_data, dst_shape[-1])[rank].to( | |
| get_accelerator().current_device_name()).contiguous() | |
| p.data.copy_(bias_split) | |
| else: | |
| # Check if the weight tensor is for the QKV parameter | |
| if src_shape[0] == (3 * r_module.config.hidden_size) // ckpt_mp_size: | |
| qkv_size = src_shape[0] // 3 | |
| src_split = [ | |
| torch.split(sd[j][prefix + n], qkv_size, dim=0) for j in range(len(sd)) | |
| ] | |
| p.data.copy_( | |
| torch.cat([ | |
| torch.cat([qkv_s[i] for qkv_s in src_split], axis=0) | |
| for i in range(len(src_split[0])) | |
| ], | |
| dim=0).to(get_accelerator().current_device_name()).contiguous()) | |
| else: | |
| p.data.copy_( | |
| torch.cat([sd[j][prefix + n] for j in range(len(sd))], | |
| dim=0).to(get_accelerator().current_device_name()).contiguous()) | |
| load_parameters(module, prefix) | |
| for n, child in module.named_children(): | |
| load_parameters(child, prefix + n + '.') | |
| else: | |
| container.load_params(module, sd[0], weight_quantizer, mp_replace, prefix) | |
| try: | |
| import transformers | |
| OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding | |
| if hasattr(transformers.models, "llama"): | |
| LlamaRMSNorm = transformers.models.llama.modeling_llama.LlamaRMSNorm | |
| else: | |
| LlamaRMSNorm = None | |
| except: | |
| OPTLearnedPositionalEmbedding = None | |
| try: | |
| from fairscale.nn.model_parallel.layers import ( | |
| ColumnParallelLinear, | |
| ParallelEmbedding, | |
| RowParallelLinear, | |
| ) | |
| except: | |
| ColumnParallelLinear = None | |
| ParallelEmbedding = None | |
| RowParallelLinear = None | |
| try: | |
| from llama.model import RMSNorm | |
| except: | |
| RMSNorm = None | |
| layer_policies = { | |
| nn.Linear: load, | |
| nn.Embedding: load, | |
| nn.LayerNorm: load, | |
| EmbeddingLayer: load, | |
| LinearLayer: load, | |
| Normalize: load, | |
| transformer_inference.DeepSpeedTransformerInference: load_transformer_layer, | |
| DeepSpeedBloomInference: load_transformer_layer, | |
| DeepSpeedGPTInference: load_transformer_layer, | |
| DeepSpeedBERTInference: load_transformer_layer, | |
| DeepSpeedMegatronGPTInference: load_transformer_layer, | |
| DeepSpeedOPTInference: load_transformer_layer, | |
| DeepSpeedLlama2Inference: load_transformer_layer, | |
| OPTLearnedPositionalEmbedding: load, | |
| OPTEmbedding: load, | |
| LlamaRMSNorm: load, | |
| RMSNormalize: load, | |
| ColumnParallelLinear: load, | |
| ParallelEmbedding: load, | |
| RowParallelLinear: load, | |
| RMSNorm: load | |
| } | |
| all_ds_ids = {} | |
| def load_module_recursive(module, prefix='', level=0): | |
| for name, child in module.named_children(): | |
| if child.__class__ in layer_policies: | |
| checking_key = prefix + name + '.' | |
| if not any(checking_key in item for item in sd[0].keys()): | |
| if hasattr(child, 'weight') and \ | |
| (hasattr(child.weight, 'ds_id') and \ | |
| child.weight.ds_id in all_ds_ids): | |
| prefix1 = all_ds_ids[child.weight.ds_id] | |
| if child.__class__ is nn.Linear: | |
| child = LinearLayer(weight=all_ds_ids[child.weight.ds_id]) | |
| setattr(module, name, child) | |
| continue | |
| child_params = list(child.parameters()) | |
| if len(child_params) > 0 and (child_params[0].numel() == 0 or child_params[0].is_meta): | |
| if child.weight.is_meta: | |
| ds_shape = child.weight.shape | |
| else: | |
| ds_shape = child.weight.ds_shape | |
| if child.__class__ is nn.LayerNorm: | |
| child = Normalize(dim=ds_shape[-1], dtype=child.weight.dtype, eps=child.eps) | |
| setattr(module, name, child) | |
| elif child.__class__ in [nn.Linear, ColumnParallelLinear, RowParallelLinear]: | |
| child = LinearLayer(weight_shape=child.weight.shape, dtype=child.weight.dtype, bias=child.bias) | |
| setattr(module, name, child) | |
| elif child.__class__ is OPTLearnedPositionalEmbedding: | |
| child = OPTEmbedding(weight_shape=ds_shape) | |
| setattr(module, name, child) | |
| elif child.__class__ in [LlamaRMSNorm, RMSNorm]: | |
| child = RMSNormalize(dim=ds_shape[-1], | |
| dtype=child.weight.dtype, | |
| eps=child.eps if hasattr(child, 'eps') else child.variance_epsilon) | |
| setattr(module, name, child) | |
| else: | |
| ds_id = None | |
| if hasattr(child.weight, 'ds_id'): | |
| ds_id = child.weight.ds_id | |
| child = EmbeddingLayer(weight_shape=ds_shape, dtype=child.weight.dtype) | |
| if ds_id is not None: | |
| all_ds_ids[ds_id] = child.weight | |
| setattr(module, name, child) | |
| layer_policies[child.__class__](child, prefix + name + '.') | |
| else: | |
| load_module_recursive( | |
| child, | |
| prefix if (level == 0 and ckpt_type == 'pp') and skip_level_0_prefix else \ | |
| prefix + name + '.', | |
| level + 1) | |
| load_module_recursive(r_module) | |
| for sd_ in sd: | |
| del sd_ | |
| sd = None | |
| gc.collect() | |