peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/tests
/test__plotutils.py
import pytest | |
import numpy as np | |
from numpy.testing import assert_, assert_array_equal, assert_allclose | |
try: | |
import matplotlib | |
matplotlib.rcParams['backend'] = 'Agg' | |
import matplotlib.pyplot as plt | |
has_matplotlib = True | |
except Exception: | |
has_matplotlib = False | |
from scipy.spatial import \ | |
delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ | |
Delaunay, Voronoi, ConvexHull | |
class TestPlotting: | |
points = [(0,0), (0,1), (1,0), (1,1)] | |
def test_delaunay(self): | |
# Smoke test | |
fig = plt.figure() | |
obj = Delaunay(self.points) | |
s_before = obj.simplices.copy() | |
r = delaunay_plot_2d(obj, ax=fig.gca()) | |
assert_array_equal(obj.simplices, s_before) # shouldn't modify | |
assert_(r is fig) | |
delaunay_plot_2d(obj, ax=fig.gca()) | |
def test_voronoi(self): | |
# Smoke test | |
fig = plt.figure() | |
obj = Voronoi(self.points) | |
r = voronoi_plot_2d(obj, ax=fig.gca()) | |
assert_(r is fig) | |
voronoi_plot_2d(obj) | |
voronoi_plot_2d(obj, show_vertices=False) | |
def test_convex_hull(self): | |
# Smoke test | |
fig = plt.figure() | |
tri = ConvexHull(self.points) | |
r = convex_hull_plot_2d(tri, ax=fig.gca()) | |
assert_(r is fig) | |
convex_hull_plot_2d(tri) | |
def test_gh_19653(self): | |
# aspect ratio sensitivity of voronoi_plot_2d | |
# infinite Voronoi edges | |
points = np.array([[245.059986986012, 10.971011721360075], | |
[320.49044143557785, 10.970258360366753], | |
[239.79023081978914, 13.108487516946218], | |
[263.38325791238833, 12.93241352743668], | |
[219.53334398353175, 13.346107628161008]]) | |
vor = Voronoi(points) | |
fig = voronoi_plot_2d(vor) | |
ax = fig.gca() | |
infinite_segments = ax.collections[1].get_segments() | |
expected_segments = np.array([[[282.77256, -254.76904], | |
[282.729714, -4544.744698]], | |
[[282.77256014, -254.76904029], | |
[430.08561382, 4032.67658742]], | |
[[229.26733285, -20.39957514], | |
[-168.17167404, -4291.92545966]], | |
[[289.93433364, 5151.40412217], | |
[330.40553385, 9441.18887532]]]) | |
assert_allclose(infinite_segments, expected_segments) | |
def test_gh_19653_smaller_aspect(self): | |
# reasonable behavior for less extreme aspect | |
# ratio | |
points = np.array([[24.059986986012, 10.971011721360075], | |
[32.49044143557785, 10.970258360366753], | |
[23.79023081978914, 13.108487516946218], | |
[26.38325791238833, 12.93241352743668], | |
[21.53334398353175, 13.346107628161008]]) | |
vor = Voronoi(points) | |
fig = voronoi_plot_2d(vor) | |
ax = fig.gca() | |
infinite_segments = ax.collections[1].get_segments() | |
expected_segments = np.array([[[28.274979, 8.335027], | |
[28.270463, -42.19763338]], | |
[[28.27497869, 8.33502697], | |
[43.73223829, 56.44555501]], | |
[[22.51805823, 11.8621754], | |
[-12.09266506, -24.95694485]], | |
[[29.53092448, 78.46952378], | |
[33.82572726, 128.81934455]]]) | |
assert_allclose(infinite_segments, expected_segments) | |