peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/plotting
/_matplotlib
/converter.py
from __future__ import annotations | |
import contextlib | |
import datetime as pydt | |
from datetime import ( | |
datetime, | |
timedelta, | |
tzinfo, | |
) | |
import functools | |
from typing import ( | |
TYPE_CHECKING, | |
Any, | |
cast, | |
) | |
import warnings | |
import matplotlib.dates as mdates | |
from matplotlib.ticker import ( | |
AutoLocator, | |
Formatter, | |
Locator, | |
) | |
from matplotlib.transforms import nonsingular | |
import matplotlib.units as munits | |
import numpy as np | |
from pandas._libs import lib | |
from pandas._libs.tslibs import ( | |
Timestamp, | |
to_offset, | |
) | |
from pandas._libs.tslibs.dtypes import ( | |
FreqGroup, | |
periods_per_day, | |
) | |
from pandas._typing import ( | |
F, | |
npt, | |
) | |
from pandas.core.dtypes.common import ( | |
is_float, | |
is_float_dtype, | |
is_integer, | |
is_integer_dtype, | |
is_nested_list_like, | |
) | |
from pandas import ( | |
Index, | |
Series, | |
get_option, | |
) | |
import pandas.core.common as com | |
from pandas.core.indexes.datetimes import date_range | |
from pandas.core.indexes.period import ( | |
Period, | |
PeriodIndex, | |
period_range, | |
) | |
import pandas.core.tools.datetimes as tools | |
if TYPE_CHECKING: | |
from collections.abc import Generator | |
from matplotlib.axis import Axis | |
from pandas._libs.tslibs.offsets import BaseOffset | |
_mpl_units = {} # Cache for units overwritten by us | |
def get_pairs(): | |
pairs = [ | |
(Timestamp, DatetimeConverter), | |
(Period, PeriodConverter), | |
(pydt.datetime, DatetimeConverter), | |
(pydt.date, DatetimeConverter), | |
(pydt.time, TimeConverter), | |
(np.datetime64, DatetimeConverter), | |
] | |
return pairs | |
def register_pandas_matplotlib_converters(func: F) -> F: | |
""" | |
Decorator applying pandas_converters. | |
""" | |
def wrapper(*args, **kwargs): | |
with pandas_converters(): | |
return func(*args, **kwargs) | |
return cast(F, wrapper) | |
def pandas_converters() -> Generator[None, None, None]: | |
""" | |
Context manager registering pandas' converters for a plot. | |
See Also | |
-------- | |
register_pandas_matplotlib_converters : Decorator that applies this. | |
""" | |
value = get_option("plotting.matplotlib.register_converters") | |
if value: | |
# register for True or "auto" | |
register() | |
try: | |
yield | |
finally: | |
if value == "auto": | |
# only deregister for "auto" | |
deregister() | |
def register() -> None: | |
pairs = get_pairs() | |
for type_, cls in pairs: | |
# Cache previous converter if present | |
if type_ in munits.registry and not isinstance(munits.registry[type_], cls): | |
previous = munits.registry[type_] | |
_mpl_units[type_] = previous | |
# Replace with pandas converter | |
munits.registry[type_] = cls() | |
def deregister() -> None: | |
# Renamed in pandas.plotting.__init__ | |
for type_, cls in get_pairs(): | |
# We use type to catch our classes directly, no inheritance | |
if type(munits.registry.get(type_)) is cls: | |
munits.registry.pop(type_) | |
# restore the old keys | |
for unit, formatter in _mpl_units.items(): | |
if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}: | |
# make it idempotent by excluding ours. | |
munits.registry[unit] = formatter | |
def _to_ordinalf(tm: pydt.time) -> float: | |
tot_sec = tm.hour * 3600 + tm.minute * 60 + tm.second + tm.microsecond / 10**6 | |
return tot_sec | |
def time2num(d): | |
if isinstance(d, str): | |
parsed = Timestamp(d) | |
return _to_ordinalf(parsed.time()) | |
if isinstance(d, pydt.time): | |
return _to_ordinalf(d) | |
return d | |
class TimeConverter(munits.ConversionInterface): | |
def convert(value, unit, axis): | |
valid_types = (str, pydt.time) | |
if isinstance(value, valid_types) or is_integer(value) or is_float(value): | |
return time2num(value) | |
if isinstance(value, Index): | |
return value.map(time2num) | |
if isinstance(value, (list, tuple, np.ndarray, Index)): | |
return [time2num(x) for x in value] | |
return value | |
def axisinfo(unit, axis) -> munits.AxisInfo | None: | |
if unit != "time": | |
return None | |
majloc = AutoLocator() | |
majfmt = TimeFormatter(majloc) | |
return munits.AxisInfo(majloc=majloc, majfmt=majfmt, label="time") | |
def default_units(x, axis) -> str: | |
return "time" | |
# time formatter | |
class TimeFormatter(Formatter): | |
def __init__(self, locs) -> None: | |
self.locs = locs | |
def __call__(self, x, pos: int | None = 0) -> str: | |
""" | |
Return the time of day as a formatted string. | |
Parameters | |
---------- | |
x : float | |
The time of day specified as seconds since 00:00 (midnight), | |
with up to microsecond precision. | |
pos | |
Unused | |
Returns | |
------- | |
str | |
A string in HH:MM:SS.mmmuuu format. Microseconds, | |
milliseconds and seconds are only displayed if non-zero. | |
""" | |
fmt = "%H:%M:%S.%f" | |
s = int(x) | |
msus = round((x - s) * 10**6) | |
ms = msus // 1000 | |
us = msus % 1000 | |
m, s = divmod(s, 60) | |
h, m = divmod(m, 60) | |
_, h = divmod(h, 24) | |
if us != 0: | |
return pydt.time(h, m, s, msus).strftime(fmt) | |
elif ms != 0: | |
return pydt.time(h, m, s, msus).strftime(fmt)[:-3] | |
elif s != 0: | |
return pydt.time(h, m, s).strftime("%H:%M:%S") | |
return pydt.time(h, m).strftime("%H:%M") | |
# Period Conversion | |
class PeriodConverter(mdates.DateConverter): | |
def convert(values, units, axis): | |
if is_nested_list_like(values): | |
values = [PeriodConverter._convert_1d(v, units, axis) for v in values] | |
else: | |
values = PeriodConverter._convert_1d(values, units, axis) | |
return values | |
def _convert_1d(values, units, axis): | |
if not hasattr(axis, "freq"): | |
raise TypeError("Axis must have `freq` set to convert to Periods") | |
valid_types = (str, datetime, Period, pydt.date, pydt.time, np.datetime64) | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", "Period with BDay freq is deprecated", category=FutureWarning | |
) | |
warnings.filterwarnings( | |
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning | |
) | |
if ( | |
isinstance(values, valid_types) | |
or is_integer(values) | |
or is_float(values) | |
): | |
return get_datevalue(values, axis.freq) | |
elif isinstance(values, PeriodIndex): | |
return values.asfreq(axis.freq).asi8 | |
elif isinstance(values, Index): | |
return values.map(lambda x: get_datevalue(x, axis.freq)) | |
elif lib.infer_dtype(values, skipna=False) == "period": | |
# https://github.com/pandas-dev/pandas/issues/24304 | |
# convert ndarray[period] -> PeriodIndex | |
return PeriodIndex(values, freq=axis.freq).asi8 | |
elif isinstance(values, (list, tuple, np.ndarray, Index)): | |
return [get_datevalue(x, axis.freq) for x in values] | |
return values | |
def get_datevalue(date, freq): | |
if isinstance(date, Period): | |
return date.asfreq(freq).ordinal | |
elif isinstance(date, (str, datetime, pydt.date, pydt.time, np.datetime64)): | |
return Period(date, freq).ordinal | |
elif ( | |
is_integer(date) | |
or is_float(date) | |
or (isinstance(date, (np.ndarray, Index)) and (date.size == 1)) | |
): | |
return date | |
elif date is None: | |
return None | |
raise ValueError(f"Unrecognizable date '{date}'") | |
# Datetime Conversion | |
class DatetimeConverter(mdates.DateConverter): | |
def convert(values, unit, axis): | |
# values might be a 1-d array, or a list-like of arrays. | |
if is_nested_list_like(values): | |
values = [DatetimeConverter._convert_1d(v, unit, axis) for v in values] | |
else: | |
values = DatetimeConverter._convert_1d(values, unit, axis) | |
return values | |
def _convert_1d(values, unit, axis): | |
def try_parse(values): | |
try: | |
return mdates.date2num(tools.to_datetime(values)) | |
except Exception: | |
return values | |
if isinstance(values, (datetime, pydt.date, np.datetime64, pydt.time)): | |
return mdates.date2num(values) | |
elif is_integer(values) or is_float(values): | |
return values | |
elif isinstance(values, str): | |
return try_parse(values) | |
elif isinstance(values, (list, tuple, np.ndarray, Index, Series)): | |
if isinstance(values, Series): | |
# https://github.com/matplotlib/matplotlib/issues/11391 | |
# Series was skipped. Convert to DatetimeIndex to get asi8 | |
values = Index(values) | |
if isinstance(values, Index): | |
values = values.values | |
if not isinstance(values, np.ndarray): | |
values = com.asarray_tuplesafe(values) | |
if is_integer_dtype(values) or is_float_dtype(values): | |
return values | |
try: | |
values = tools.to_datetime(values) | |
except Exception: | |
pass | |
values = mdates.date2num(values) | |
return values | |
def axisinfo(unit: tzinfo | None, axis) -> munits.AxisInfo: | |
""" | |
Return the :class:`~matplotlib.units.AxisInfo` for *unit*. | |
*unit* is a tzinfo instance or None. | |
The *axis* argument is required but not used. | |
""" | |
tz = unit | |
majloc = PandasAutoDateLocator(tz=tz) | |
majfmt = PandasAutoDateFormatter(majloc, tz=tz) | |
datemin = pydt.date(2000, 1, 1) | |
datemax = pydt.date(2010, 1, 1) | |
return munits.AxisInfo( | |
majloc=majloc, majfmt=majfmt, label="", default_limits=(datemin, datemax) | |
) | |
class PandasAutoDateFormatter(mdates.AutoDateFormatter): | |
def __init__(self, locator, tz=None, defaultfmt: str = "%Y-%m-%d") -> None: | |
mdates.AutoDateFormatter.__init__(self, locator, tz, defaultfmt) | |
class PandasAutoDateLocator(mdates.AutoDateLocator): | |
def get_locator(self, dmin, dmax): | |
"""Pick the best locator based on a distance.""" | |
tot_sec = (dmax - dmin).total_seconds() | |
if abs(tot_sec) < self.minticks: | |
self._freq = -1 | |
locator = MilliSecondLocator(self.tz) | |
locator.set_axis(self.axis) | |
# error: Item "None" of "Axis | _DummyAxis | _AxisWrapper | None" | |
# has no attribute "get_data_interval" | |
locator.axis.set_view_interval( # type: ignore[union-attr] | |
*self.axis.get_view_interval() # type: ignore[union-attr] | |
) | |
locator.axis.set_data_interval( # type: ignore[union-attr] | |
*self.axis.get_data_interval() # type: ignore[union-attr] | |
) | |
return locator | |
return mdates.AutoDateLocator.get_locator(self, dmin, dmax) | |
def _get_unit(self): | |
return MilliSecondLocator.get_unit_generic(self._freq) | |
class MilliSecondLocator(mdates.DateLocator): | |
UNIT = 1.0 / (24 * 3600 * 1000) | |
def __init__(self, tz) -> None: | |
mdates.DateLocator.__init__(self, tz) | |
self._interval = 1.0 | |
def _get_unit(self): | |
return self.get_unit_generic(-1) | |
def get_unit_generic(freq): | |
unit = mdates.RRuleLocator.get_unit_generic(freq) | |
if unit < 0: | |
return MilliSecondLocator.UNIT | |
return unit | |
def __call__(self): | |
# if no data have been set, this will tank with a ValueError | |
try: | |
dmin, dmax = self.viewlim_to_dt() | |
except ValueError: | |
return [] | |
# We need to cap at the endpoints of valid datetime | |
nmax, nmin = mdates.date2num((dmax, dmin)) | |
num = (nmax - nmin) * 86400 * 1000 | |
max_millis_ticks = 6 | |
for interval in [1, 10, 50, 100, 200, 500]: | |
if num <= interval * (max_millis_ticks - 1): | |
self._interval = interval | |
break | |
# We went through the whole loop without breaking, default to 1 | |
self._interval = 1000.0 | |
estimate = (nmax - nmin) / (self._get_unit() * self._get_interval()) | |
if estimate > self.MAXTICKS * 2: | |
raise RuntimeError( | |
"MillisecondLocator estimated to generate " | |
f"{estimate:d} ticks from {dmin} to {dmax}: exceeds Locator.MAXTICKS" | |
f"* 2 ({self.MAXTICKS * 2:d}) " | |
) | |
interval = self._get_interval() | |
freq = f"{interval}ms" | |
tz = self.tz.tzname(None) | |
st = dmin.replace(tzinfo=None) | |
ed = dmin.replace(tzinfo=None) | |
all_dates = date_range(start=st, end=ed, freq=freq, tz=tz).astype(object) | |
try: | |
if len(all_dates) > 0: | |
locs = self.raise_if_exceeds(mdates.date2num(all_dates)) | |
return locs | |
except Exception: # pragma: no cover | |
pass | |
lims = mdates.date2num([dmin, dmax]) | |
return lims | |
def _get_interval(self): | |
return self._interval | |
def autoscale(self): | |
""" | |
Set the view limits to include the data range. | |
""" | |
# We need to cap at the endpoints of valid datetime | |
dmin, dmax = self.datalim_to_dt() | |
vmin = mdates.date2num(dmin) | |
vmax = mdates.date2num(dmax) | |
return self.nonsingular(vmin, vmax) | |
def _from_ordinal(x, tz: tzinfo | None = None) -> datetime: | |
ix = int(x) | |
dt = datetime.fromordinal(ix) | |
remainder = float(x) - ix | |
hour, remainder = divmod(24 * remainder, 1) | |
minute, remainder = divmod(60 * remainder, 1) | |
second, remainder = divmod(60 * remainder, 1) | |
microsecond = int(1_000_000 * remainder) | |
if microsecond < 10: | |
microsecond = 0 # compensate for rounding errors | |
dt = datetime( | |
dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond | |
) | |
if tz is not None: | |
dt = dt.astimezone(tz) | |
if microsecond > 999990: # compensate for rounding errors | |
dt += timedelta(microseconds=1_000_000 - microsecond) | |
return dt | |
# Fixed frequency dynamic tick locators and formatters | |
# ------------------------------------------------------------------------- | |
# --- Locators --- | |
# ------------------------------------------------------------------------- | |
def _get_default_annual_spacing(nyears) -> tuple[int, int]: | |
""" | |
Returns a default spacing between consecutive ticks for annual data. | |
""" | |
if nyears < 11: | |
(min_spacing, maj_spacing) = (1, 1) | |
elif nyears < 20: | |
(min_spacing, maj_spacing) = (1, 2) | |
elif nyears < 50: | |
(min_spacing, maj_spacing) = (1, 5) | |
elif nyears < 100: | |
(min_spacing, maj_spacing) = (5, 10) | |
elif nyears < 200: | |
(min_spacing, maj_spacing) = (5, 25) | |
elif nyears < 600: | |
(min_spacing, maj_spacing) = (10, 50) | |
else: | |
factor = nyears // 1000 + 1 | |
(min_spacing, maj_spacing) = (factor * 20, factor * 100) | |
return (min_spacing, maj_spacing) | |
def _period_break(dates: PeriodIndex, period: str) -> npt.NDArray[np.intp]: | |
""" | |
Returns the indices where the given period changes. | |
Parameters | |
---------- | |
dates : PeriodIndex | |
Array of intervals to monitor. | |
period : str | |
Name of the period to monitor. | |
""" | |
mask = _period_break_mask(dates, period) | |
return np.nonzero(mask)[0] | |
def _period_break_mask(dates: PeriodIndex, period: str) -> npt.NDArray[np.bool_]: | |
current = getattr(dates, period) | |
previous = getattr(dates - 1 * dates.freq, period) | |
return current != previous | |
def has_level_label(label_flags: npt.NDArray[np.intp], vmin: float) -> bool: | |
""" | |
Returns true if the ``label_flags`` indicate there is at least one label | |
for this level. | |
if the minimum view limit is not an exact integer, then the first tick | |
label won't be shown, so we must adjust for that. | |
""" | |
if label_flags.size == 0 or ( | |
label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0 | |
): | |
return False | |
else: | |
return True | |
def _get_periods_per_ymd(freq: BaseOffset) -> tuple[int, int, int]: | |
# error: "BaseOffset" has no attribute "_period_dtype_code" | |
dtype_code = freq._period_dtype_code # type: ignore[attr-defined] | |
freq_group = FreqGroup.from_period_dtype_code(dtype_code) | |
ppd = -1 # placeholder for above-day freqs | |
if dtype_code >= FreqGroup.FR_HR.value: | |
# error: "BaseOffset" has no attribute "_creso" | |
ppd = periods_per_day(freq._creso) # type: ignore[attr-defined] | |
ppm = 28 * ppd | |
ppy = 365 * ppd | |
elif freq_group == FreqGroup.FR_BUS: | |
ppm = 19 | |
ppy = 261 | |
elif freq_group == FreqGroup.FR_DAY: | |
ppm = 28 | |
ppy = 365 | |
elif freq_group == FreqGroup.FR_WK: | |
ppm = 3 | |
ppy = 52 | |
elif freq_group == FreqGroup.FR_MTH: | |
ppm = 1 | |
ppy = 12 | |
elif freq_group == FreqGroup.FR_QTR: | |
ppm = -1 # placerholder | |
ppy = 4 | |
elif freq_group == FreqGroup.FR_ANN: | |
ppm = -1 # placeholder | |
ppy = 1 | |
else: | |
raise NotImplementedError(f"Unsupported frequency: {dtype_code}") | |
return ppd, ppm, ppy | |
def _daily_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray: | |
# error: "BaseOffset" has no attribute "_period_dtype_code" | |
dtype_code = freq._period_dtype_code # type: ignore[attr-defined] | |
periodsperday, periodspermonth, periodsperyear = _get_periods_per_ymd(freq) | |
# save this for later usage | |
vmin_orig = vmin | |
(vmin, vmax) = (int(vmin), int(vmax)) | |
span = vmax - vmin + 1 | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", "Period with BDay freq is deprecated", category=FutureWarning | |
) | |
warnings.filterwarnings( | |
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning | |
) | |
dates_ = period_range( | |
start=Period(ordinal=vmin, freq=freq), | |
end=Period(ordinal=vmax, freq=freq), | |
freq=freq, | |
) | |
# Initialize the output | |
info = np.zeros( | |
span, dtype=[("val", np.int64), ("maj", bool), ("min", bool), ("fmt", "|S20")] | |
) | |
info["val"][:] = dates_.asi8 | |
info["fmt"][:] = "" | |
info["maj"][[0, -1]] = True | |
# .. and set some shortcuts | |
info_maj = info["maj"] | |
info_min = info["min"] | |
info_fmt = info["fmt"] | |
def first_label(label_flags): | |
if (label_flags[0] == 0) and (label_flags.size > 1) and ((vmin_orig % 1) > 0.0): | |
return label_flags[1] | |
else: | |
return label_flags[0] | |
# Case 1. Less than a month | |
if span <= periodspermonth: | |
day_start = _period_break(dates_, "day") | |
month_start = _period_break(dates_, "month") | |
year_start = _period_break(dates_, "year") | |
def _hour_finder(label_interval: int, force_year_start: bool) -> None: | |
target = dates_.hour | |
mask = _period_break_mask(dates_, "hour") | |
info_maj[day_start] = True | |
info_min[mask & (target % label_interval == 0)] = True | |
info_fmt[mask & (target % label_interval == 0)] = "%H:%M" | |
info_fmt[day_start] = "%H:%M\n%d-%b" | |
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y" | |
if force_year_start and not has_level_label(year_start, vmin_orig): | |
info_fmt[first_label(day_start)] = "%H:%M\n%d-%b\n%Y" | |
def _minute_finder(label_interval: int) -> None: | |
target = dates_.minute | |
hour_start = _period_break(dates_, "hour") | |
mask = _period_break_mask(dates_, "minute") | |
info_maj[hour_start] = True | |
info_min[mask & (target % label_interval == 0)] = True | |
info_fmt[mask & (target % label_interval == 0)] = "%H:%M" | |
info_fmt[day_start] = "%H:%M\n%d-%b" | |
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y" | |
def _second_finder(label_interval: int) -> None: | |
target = dates_.second | |
minute_start = _period_break(dates_, "minute") | |
mask = _period_break_mask(dates_, "second") | |
info_maj[minute_start] = True | |
info_min[mask & (target % label_interval == 0)] = True | |
info_fmt[mask & (target % label_interval == 0)] = "%H:%M:%S" | |
info_fmt[day_start] = "%H:%M:%S\n%d-%b" | |
info_fmt[year_start] = "%H:%M:%S\n%d-%b\n%Y" | |
if span < periodsperday / 12000: | |
_second_finder(1) | |
elif span < periodsperday / 6000: | |
_second_finder(2) | |
elif span < periodsperday / 2400: | |
_second_finder(5) | |
elif span < periodsperday / 1200: | |
_second_finder(10) | |
elif span < periodsperday / 800: | |
_second_finder(15) | |
elif span < periodsperday / 400: | |
_second_finder(30) | |
elif span < periodsperday / 150: | |
_minute_finder(1) | |
elif span < periodsperday / 70: | |
_minute_finder(2) | |
elif span < periodsperday / 24: | |
_minute_finder(5) | |
elif span < periodsperday / 12: | |
_minute_finder(15) | |
elif span < periodsperday / 6: | |
_minute_finder(30) | |
elif span < periodsperday / 2.5: | |
_hour_finder(1, False) | |
elif span < periodsperday / 1.5: | |
_hour_finder(2, False) | |
elif span < periodsperday * 1.25: | |
_hour_finder(3, False) | |
elif span < periodsperday * 2.5: | |
_hour_finder(6, True) | |
elif span < periodsperday * 4: | |
_hour_finder(12, True) | |
else: | |
info_maj[month_start] = True | |
info_min[day_start] = True | |
info_fmt[day_start] = "%d" | |
info_fmt[month_start] = "%d\n%b" | |
info_fmt[year_start] = "%d\n%b\n%Y" | |
if not has_level_label(year_start, vmin_orig): | |
if not has_level_label(month_start, vmin_orig): | |
info_fmt[first_label(day_start)] = "%d\n%b\n%Y" | |
else: | |
info_fmt[first_label(month_start)] = "%d\n%b\n%Y" | |
# Case 2. Less than three months | |
elif span <= periodsperyear // 4: | |
month_start = _period_break(dates_, "month") | |
info_maj[month_start] = True | |
if dtype_code < FreqGroup.FR_HR.value: | |
info["min"] = True | |
else: | |
day_start = _period_break(dates_, "day") | |
info["min"][day_start] = True | |
week_start = _period_break(dates_, "week") | |
year_start = _period_break(dates_, "year") | |
info_fmt[week_start] = "%d" | |
info_fmt[month_start] = "\n\n%b" | |
info_fmt[year_start] = "\n\n%b\n%Y" | |
if not has_level_label(year_start, vmin_orig): | |
if not has_level_label(month_start, vmin_orig): | |
info_fmt[first_label(week_start)] = "\n\n%b\n%Y" | |
else: | |
info_fmt[first_label(month_start)] = "\n\n%b\n%Y" | |
# Case 3. Less than 14 months ............... | |
elif span <= 1.15 * periodsperyear: | |
year_start = _period_break(dates_, "year") | |
month_start = _period_break(dates_, "month") | |
week_start = _period_break(dates_, "week") | |
info_maj[month_start] = True | |
info_min[week_start] = True | |
info_min[year_start] = False | |
info_min[month_start] = False | |
info_fmt[month_start] = "%b" | |
info_fmt[year_start] = "%b\n%Y" | |
if not has_level_label(year_start, vmin_orig): | |
info_fmt[first_label(month_start)] = "%b\n%Y" | |
# Case 4. Less than 2.5 years ............... | |
elif span <= 2.5 * periodsperyear: | |
year_start = _period_break(dates_, "year") | |
quarter_start = _period_break(dates_, "quarter") | |
month_start = _period_break(dates_, "month") | |
info_maj[quarter_start] = True | |
info_min[month_start] = True | |
info_fmt[quarter_start] = "%b" | |
info_fmt[year_start] = "%b\n%Y" | |
# Case 4. Less than 4 years ................. | |
elif span <= 4 * periodsperyear: | |
year_start = _period_break(dates_, "year") | |
month_start = _period_break(dates_, "month") | |
info_maj[year_start] = True | |
info_min[month_start] = True | |
info_min[year_start] = False | |
month_break = dates_[month_start].month | |
jan_or_jul = month_start[(month_break == 1) | (month_break == 7)] | |
info_fmt[jan_or_jul] = "%b" | |
info_fmt[year_start] = "%b\n%Y" | |
# Case 5. Less than 11 years ................ | |
elif span <= 11 * periodsperyear: | |
year_start = _period_break(dates_, "year") | |
quarter_start = _period_break(dates_, "quarter") | |
info_maj[year_start] = True | |
info_min[quarter_start] = True | |
info_min[year_start] = False | |
info_fmt[year_start] = "%Y" | |
# Case 6. More than 12 years ................ | |
else: | |
year_start = _period_break(dates_, "year") | |
year_break = dates_[year_start].year | |
nyears = span / periodsperyear | |
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears) | |
major_idx = year_start[(year_break % maj_anndef == 0)] | |
info_maj[major_idx] = True | |
minor_idx = year_start[(year_break % min_anndef == 0)] | |
info_min[minor_idx] = True | |
info_fmt[major_idx] = "%Y" | |
return info | |
def _monthly_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray: | |
_, _, periodsperyear = _get_periods_per_ymd(freq) | |
vmin_orig = vmin | |
(vmin, vmax) = (int(vmin), int(vmax)) | |
span = vmax - vmin + 1 | |
# Initialize the output | |
info = np.zeros( | |
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")] | |
) | |
info["val"] = np.arange(vmin, vmax + 1) | |
dates_ = info["val"] | |
info["fmt"] = "" | |
year_start = (dates_ % 12 == 0).nonzero()[0] | |
info_maj = info["maj"] | |
info_fmt = info["fmt"] | |
if span <= 1.15 * periodsperyear: | |
info_maj[year_start] = True | |
info["min"] = True | |
info_fmt[:] = "%b" | |
info_fmt[year_start] = "%b\n%Y" | |
if not has_level_label(year_start, vmin_orig): | |
if dates_.size > 1: | |
idx = 1 | |
else: | |
idx = 0 | |
info_fmt[idx] = "%b\n%Y" | |
elif span <= 2.5 * periodsperyear: | |
quarter_start = (dates_ % 3 == 0).nonzero() | |
info_maj[year_start] = True | |
# TODO: Check the following : is it really info['fmt'] ? | |
# 2023-09-15 this is reached in test_finder_monthly | |
info["fmt"][quarter_start] = True | |
info["min"] = True | |
info_fmt[quarter_start] = "%b" | |
info_fmt[year_start] = "%b\n%Y" | |
elif span <= 4 * periodsperyear: | |
info_maj[year_start] = True | |
info["min"] = True | |
jan_or_jul = (dates_ % 12 == 0) | (dates_ % 12 == 6) | |
info_fmt[jan_or_jul] = "%b" | |
info_fmt[year_start] = "%b\n%Y" | |
elif span <= 11 * periodsperyear: | |
quarter_start = (dates_ % 3 == 0).nonzero() | |
info_maj[year_start] = True | |
info["min"][quarter_start] = True | |
info_fmt[year_start] = "%Y" | |
else: | |
nyears = span / periodsperyear | |
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears) | |
years = dates_[year_start] // 12 + 1 | |
major_idx = year_start[(years % maj_anndef == 0)] | |
info_maj[major_idx] = True | |
info["min"][year_start[(years % min_anndef == 0)]] = True | |
info_fmt[major_idx] = "%Y" | |
return info | |
def _quarterly_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray: | |
_, _, periodsperyear = _get_periods_per_ymd(freq) | |
vmin_orig = vmin | |
(vmin, vmax) = (int(vmin), int(vmax)) | |
span = vmax - vmin + 1 | |
info = np.zeros( | |
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")] | |
) | |
info["val"] = np.arange(vmin, vmax + 1) | |
info["fmt"] = "" | |
dates_ = info["val"] | |
info_maj = info["maj"] | |
info_fmt = info["fmt"] | |
year_start = (dates_ % 4 == 0).nonzero()[0] | |
if span <= 3.5 * periodsperyear: | |
info_maj[year_start] = True | |
info["min"] = True | |
info_fmt[:] = "Q%q" | |
info_fmt[year_start] = "Q%q\n%F" | |
if not has_level_label(year_start, vmin_orig): | |
if dates_.size > 1: | |
idx = 1 | |
else: | |
idx = 0 | |
info_fmt[idx] = "Q%q\n%F" | |
elif span <= 11 * periodsperyear: | |
info_maj[year_start] = True | |
info["min"] = True | |
info_fmt[year_start] = "%F" | |
else: | |
# https://github.com/pandas-dev/pandas/pull/47602 | |
years = dates_[year_start] // 4 + 1970 | |
nyears = span / periodsperyear | |
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears) | |
major_idx = year_start[(years % maj_anndef == 0)] | |
info_maj[major_idx] = True | |
info["min"][year_start[(years % min_anndef == 0)]] = True | |
info_fmt[major_idx] = "%F" | |
return info | |
def _annual_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray: | |
# Note: small difference here vs other finders in adding 1 to vmax | |
(vmin, vmax) = (int(vmin), int(vmax + 1)) | |
span = vmax - vmin + 1 | |
info = np.zeros( | |
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")] | |
) | |
info["val"] = np.arange(vmin, vmax + 1) | |
info["fmt"] = "" | |
dates_ = info["val"] | |
(min_anndef, maj_anndef) = _get_default_annual_spacing(span) | |
major_idx = dates_ % maj_anndef == 0 | |
minor_idx = dates_ % min_anndef == 0 | |
info["maj"][major_idx] = True | |
info["min"][minor_idx] = True | |
info["fmt"][major_idx] = "%Y" | |
return info | |
def get_finder(freq: BaseOffset): | |
# error: "BaseOffset" has no attribute "_period_dtype_code" | |
dtype_code = freq._period_dtype_code # type: ignore[attr-defined] | |
fgroup = FreqGroup.from_period_dtype_code(dtype_code) | |
if fgroup == FreqGroup.FR_ANN: | |
return _annual_finder | |
elif fgroup == FreqGroup.FR_QTR: | |
return _quarterly_finder | |
elif fgroup == FreqGroup.FR_MTH: | |
return _monthly_finder | |
elif (dtype_code >= FreqGroup.FR_BUS.value) or fgroup == FreqGroup.FR_WK: | |
return _daily_finder | |
else: # pragma: no cover | |
raise NotImplementedError(f"Unsupported frequency: {dtype_code}") | |
class TimeSeries_DateLocator(Locator): | |
""" | |
Locates the ticks along an axis controlled by a :class:`Series`. | |
Parameters | |
---------- | |
freq : BaseOffset | |
Valid frequency specifier. | |
minor_locator : {False, True}, optional | |
Whether the locator is for minor ticks (True) or not. | |
dynamic_mode : {True, False}, optional | |
Whether the locator should work in dynamic mode. | |
base : {int}, optional | |
quarter : {int}, optional | |
month : {int}, optional | |
day : {int}, optional | |
""" | |
axis: Axis | |
def __init__( | |
self, | |
freq: BaseOffset, | |
minor_locator: bool = False, | |
dynamic_mode: bool = True, | |
base: int = 1, | |
quarter: int = 1, | |
month: int = 1, | |
day: int = 1, | |
plot_obj=None, | |
) -> None: | |
freq = to_offset(freq, is_period=True) | |
self.freq = freq | |
self.base = base | |
(self.quarter, self.month, self.day) = (quarter, month, day) | |
self.isminor = minor_locator | |
self.isdynamic = dynamic_mode | |
self.offset = 0 | |
self.plot_obj = plot_obj | |
self.finder = get_finder(freq) | |
def _get_default_locs(self, vmin, vmax): | |
"""Returns the default locations of ticks.""" | |
locator = self.finder(vmin, vmax, self.freq) | |
if self.isminor: | |
return np.compress(locator["min"], locator["val"]) | |
return np.compress(locator["maj"], locator["val"]) | |
def __call__(self): | |
"""Return the locations of the ticks.""" | |
# axis calls Locator.set_axis inside set_m<xxxx>_formatter | |
vi = tuple(self.axis.get_view_interval()) | |
vmin, vmax = vi | |
if vmax < vmin: | |
vmin, vmax = vmax, vmin | |
if self.isdynamic: | |
locs = self._get_default_locs(vmin, vmax) | |
else: # pragma: no cover | |
base = self.base | |
(d, m) = divmod(vmin, base) | |
vmin = (d + 1) * base | |
# error: No overload variant of "range" matches argument types "float", | |
# "float", "int" | |
locs = list(range(vmin, vmax + 1, base)) # type: ignore[call-overload] | |
return locs | |
def autoscale(self): | |
""" | |
Sets the view limits to the nearest multiples of base that contain the | |
data. | |
""" | |
# requires matplotlib >= 0.98.0 | |
(vmin, vmax) = self.axis.get_data_interval() | |
locs = self._get_default_locs(vmin, vmax) | |
(vmin, vmax) = locs[[0, -1]] | |
if vmin == vmax: | |
vmin -= 1 | |
vmax += 1 | |
return nonsingular(vmin, vmax) | |
# ------------------------------------------------------------------------- | |
# --- Formatter --- | |
# ------------------------------------------------------------------------- | |
class TimeSeries_DateFormatter(Formatter): | |
""" | |
Formats the ticks along an axis controlled by a :class:`PeriodIndex`. | |
Parameters | |
---------- | |
freq : BaseOffset | |
Valid frequency specifier. | |
minor_locator : bool, default False | |
Whether the current formatter should apply to minor ticks (True) or | |
major ticks (False). | |
dynamic_mode : bool, default True | |
Whether the formatter works in dynamic mode or not. | |
""" | |
axis: Axis | |
def __init__( | |
self, | |
freq: BaseOffset, | |
minor_locator: bool = False, | |
dynamic_mode: bool = True, | |
plot_obj=None, | |
) -> None: | |
freq = to_offset(freq, is_period=True) | |
self.format = None | |
self.freq = freq | |
self.locs: list[Any] = [] # unused, for matplotlib compat | |
self.formatdict: dict[Any, Any] | None = None | |
self.isminor = minor_locator | |
self.isdynamic = dynamic_mode | |
self.offset = 0 | |
self.plot_obj = plot_obj | |
self.finder = get_finder(freq) | |
def _set_default_format(self, vmin, vmax): | |
"""Returns the default ticks spacing.""" | |
info = self.finder(vmin, vmax, self.freq) | |
if self.isminor: | |
format = np.compress(info["min"] & np.logical_not(info["maj"]), info) | |
else: | |
format = np.compress(info["maj"], info) | |
self.formatdict = {x: f for (x, _, _, f) in format} | |
return self.formatdict | |
def set_locs(self, locs) -> None: | |
"""Sets the locations of the ticks""" | |
# don't actually use the locs. This is just needed to work with | |
# matplotlib. Force to use vmin, vmax | |
self.locs = locs | |
(vmin, vmax) = tuple(self.axis.get_view_interval()) | |
if vmax < vmin: | |
(vmin, vmax) = (vmax, vmin) | |
self._set_default_format(vmin, vmax) | |
def __call__(self, x, pos: int | None = 0) -> str: | |
if self.formatdict is None: | |
return "" | |
else: | |
fmt = self.formatdict.pop(x, "") | |
if isinstance(fmt, np.bytes_): | |
fmt = fmt.decode("utf-8") | |
with warnings.catch_warnings(): | |
warnings.filterwarnings( | |
"ignore", | |
"Period with BDay freq is deprecated", | |
category=FutureWarning, | |
) | |
period = Period(ordinal=int(x), freq=self.freq) | |
assert isinstance(period, Period) | |
return period.strftime(fmt) | |
class TimeSeries_TimedeltaFormatter(Formatter): | |
""" | |
Formats the ticks along an axis controlled by a :class:`TimedeltaIndex`. | |
""" | |
axis: Axis | |
def format_timedelta_ticks(x, pos, n_decimals: int) -> str: | |
""" | |
Convert seconds to 'D days HH:MM:SS.F' | |
""" | |
s, ns = divmod(x, 10**9) # TODO(non-nano): this looks like it assumes ns | |
m, s = divmod(s, 60) | |
h, m = divmod(m, 60) | |
d, h = divmod(h, 24) | |
decimals = int(ns * 10 ** (n_decimals - 9)) | |
s = f"{int(h):02d}:{int(m):02d}:{int(s):02d}" | |
if n_decimals > 0: | |
s += f".{decimals:0{n_decimals}d}" | |
if d != 0: | |
s = f"{int(d):d} days {s}" | |
return s | |
def __call__(self, x, pos: int | None = 0) -> str: | |
(vmin, vmax) = tuple(self.axis.get_view_interval()) | |
n_decimals = min(int(np.ceil(np.log10(100 * 10**9 / abs(vmax - vmin)))), 9) | |
return self.format_timedelta_ticks(x, pos, n_decimals) | |