peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/plotting
/_matplotlib
/groupby.py
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
import numpy as np | |
from pandas.core.dtypes.missing import remove_na_arraylike | |
from pandas import ( | |
MultiIndex, | |
concat, | |
) | |
from pandas.plotting._matplotlib.misc import unpack_single_str_list | |
if TYPE_CHECKING: | |
from collections.abc import Hashable | |
from pandas._typing import IndexLabel | |
from pandas import ( | |
DataFrame, | |
Series, | |
) | |
def create_iter_data_given_by( | |
data: DataFrame, kind: str = "hist" | |
) -> dict[Hashable, DataFrame | Series]: | |
""" | |
Create data for iteration given `by` is assigned or not, and it is only | |
used in both hist and boxplot. | |
If `by` is assigned, return a dictionary of DataFrames in which the key of | |
dictionary is the values in groups. | |
If `by` is not assigned, return input as is, and this preserves current | |
status of iter_data. | |
Parameters | |
---------- | |
data : reformatted grouped data from `_compute_plot_data` method. | |
kind : str, plot kind. This function is only used for `hist` and `box` plots. | |
Returns | |
------- | |
iter_data : DataFrame or Dictionary of DataFrames | |
Examples | |
-------- | |
If `by` is assigned: | |
>>> import numpy as np | |
>>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')] | |
>>> mi = pd.MultiIndex.from_tuples(tuples) | |
>>> value = [[1, 3, np.nan, np.nan], | |
... [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]] | |
>>> data = pd.DataFrame(value, columns=mi) | |
>>> create_iter_data_given_by(data) | |
{'h1': h1 | |
a b | |
0 1.0 3.0 | |
1 3.0 4.0 | |
2 NaN NaN, 'h2': h2 | |
a b | |
0 NaN NaN | |
1 NaN NaN | |
2 5.0 6.0} | |
""" | |
# For `hist` plot, before transformation, the values in level 0 are values | |
# in groups and subplot titles, and later used for column subselection and | |
# iteration; For `box` plot, values in level 1 are column names to show, | |
# and are used for iteration and as subplots titles. | |
if kind == "hist": | |
level = 0 | |
else: | |
level = 1 | |
# Select sub-columns based on the value of level of MI, and if `by` is | |
# assigned, data must be a MI DataFrame | |
assert isinstance(data.columns, MultiIndex) | |
return { | |
col: data.loc[:, data.columns.get_level_values(level) == col] | |
for col in data.columns.levels[level] | |
} | |
def reconstruct_data_with_by( | |
data: DataFrame, by: IndexLabel, cols: IndexLabel | |
) -> DataFrame: | |
""" | |
Internal function to group data, and reassign multiindex column names onto the | |
result in order to let grouped data be used in _compute_plot_data method. | |
Parameters | |
---------- | |
data : Original DataFrame to plot | |
by : grouped `by` parameter selected by users | |
cols : columns of data set (excluding columns used in `by`) | |
Returns | |
------- | |
Output is the reconstructed DataFrame with MultiIndex columns. The first level | |
of MI is unique values of groups, and second level of MI is the columns | |
selected by users. | |
Examples | |
-------- | |
>>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]} | |
>>> df = pd.DataFrame(d) | |
>>> reconstruct_data_with_by(df, by='h', cols=['a', 'b']) | |
h1 h2 | |
a b a b | |
0 1.0 3.0 NaN NaN | |
1 3.0 4.0 NaN NaN | |
2 NaN NaN 5.0 6.0 | |
""" | |
by_modified = unpack_single_str_list(by) | |
grouped = data.groupby(by_modified) | |
data_list = [] | |
for key, group in grouped: | |
# error: List item 1 has incompatible type "Union[Hashable, | |
# Sequence[Hashable]]"; expected "Iterable[Hashable]" | |
columns = MultiIndex.from_product([[key], cols]) # type: ignore[list-item] | |
sub_group = group[cols] | |
sub_group.columns = columns | |
data_list.append(sub_group) | |
data = concat(data_list, axis=1) | |
return data | |
def reformat_hist_y_given_by(y: np.ndarray, by: IndexLabel | None) -> np.ndarray: | |
"""Internal function to reformat y given `by` is applied or not for hist plot. | |
If by is None, input y is 1-d with NaN removed; and if by is not None, groupby | |
will take place and input y is multi-dimensional array. | |
""" | |
if by is not None and len(y.shape) > 1: | |
return np.array([remove_na_arraylike(col) for col in y.T]).T | |
return remove_na_arraylike(y) | |