peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/arrays
/test_datetimelike.py
from __future__ import annotations | |
import re | |
import warnings | |
import numpy as np | |
import pytest | |
from pandas._libs import ( | |
NaT, | |
OutOfBoundsDatetime, | |
Timestamp, | |
) | |
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr | |
from pandas.compat.numpy import np_version_gt2 | |
import pandas as pd | |
from pandas import ( | |
DatetimeIndex, | |
Period, | |
PeriodIndex, | |
TimedeltaIndex, | |
) | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
DatetimeArray, | |
NumpyExtensionArray, | |
PeriodArray, | |
TimedeltaArray, | |
) | |
# TODO: more freq variants | |
def freqstr(request): | |
"""Fixture returning parametrized frequency in string format.""" | |
return request.param | |
def period_index(freqstr): | |
""" | |
A fixture to provide PeriodIndex objects with different frequencies. | |
Most PeriodArray behavior is already tested in PeriodIndex tests, | |
so here we just test that the PeriodArray behavior matches | |
the PeriodIndex behavior. | |
""" | |
# TODO: non-monotone indexes; NaTs, different start dates | |
with warnings.catch_warnings(): | |
# suppress deprecation of Period[B] | |
warnings.filterwarnings( | |
"ignore", message="Period with BDay freq", category=FutureWarning | |
) | |
freqstr = freq_to_period_freqstr(1, freqstr) | |
pi = pd.period_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr) | |
return pi | |
def datetime_index(freqstr): | |
""" | |
A fixture to provide DatetimeIndex objects with different frequencies. | |
Most DatetimeArray behavior is already tested in DatetimeIndex tests, | |
so here we just test that the DatetimeArray behavior matches | |
the DatetimeIndex behavior. | |
""" | |
# TODO: non-monotone indexes; NaTs, different start dates, timezones | |
dti = pd.date_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr) | |
return dti | |
def timedelta_index(): | |
""" | |
A fixture to provide TimedeltaIndex objects with different frequencies. | |
Most TimedeltaArray behavior is already tested in TimedeltaIndex tests, | |
so here we just test that the TimedeltaArray behavior matches | |
the TimedeltaIndex behavior. | |
""" | |
# TODO: flesh this out | |
return TimedeltaIndex(["1 Day", "3 Hours", "NaT"]) | |
class SharedTests: | |
index_cls: type[DatetimeIndex | PeriodIndex | TimedeltaIndex] | |
def arr1d(self): | |
"""Fixture returning DatetimeArray with daily frequency.""" | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
if self.array_cls is PeriodArray: | |
arr = self.array_cls(data, freq="D") | |
else: | |
arr = self.index_cls(data, freq="D")._data | |
return arr | |
def test_compare_len1_raises(self, arr1d): | |
# make sure we raise when comparing with different lengths, specific | |
# to the case where one has length-1, which numpy would broadcast | |
arr = arr1d | |
idx = self.index_cls(arr) | |
with pytest.raises(ValueError, match="Lengths must match"): | |
arr == arr[:1] | |
# test the index classes while we're at it, GH#23078 | |
with pytest.raises(ValueError, match="Lengths must match"): | |
idx <= idx[[0]] | |
def test_compare_with_Categorical(self, result): | |
expected = pd.Categorical(result) | |
assert all(result == expected) | |
assert not any(result != expected) | |
def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered): | |
other = pd.Categorical(arr1d, ordered=ordered) | |
if as_index: | |
other = pd.CategoricalIndex(other) | |
left, right = arr1d, other | |
if reverse: | |
left, right = right, left | |
ones = np.ones(arr1d.shape, dtype=bool) | |
zeros = ~ones | |
result = left == right | |
tm.assert_numpy_array_equal(result, ones) | |
result = left != right | |
tm.assert_numpy_array_equal(result, zeros) | |
if not reverse and not as_index: | |
# Otherwise Categorical raises TypeError bc it is not ordered | |
# TODO: we should probably get the same behavior regardless? | |
result = left < right | |
tm.assert_numpy_array_equal(result, zeros) | |
result = left <= right | |
tm.assert_numpy_array_equal(result, ones) | |
result = left > right | |
tm.assert_numpy_array_equal(result, zeros) | |
result = left >= right | |
tm.assert_numpy_array_equal(result, ones) | |
def test_take(self): | |
data = np.arange(100, dtype="i8") * 24 * 3600 * 10**9 | |
np.random.default_rng(2).shuffle(data) | |
if self.array_cls is PeriodArray: | |
arr = PeriodArray(data, dtype="period[D]") | |
else: | |
arr = self.index_cls(data)._data | |
idx = self.index_cls._simple_new(arr) | |
takers = [1, 4, 94] | |
result = arr.take(takers) | |
expected = idx.take(takers) | |
tm.assert_index_equal(self.index_cls(result), expected) | |
takers = np.array([1, 4, 94]) | |
result = arr.take(takers) | |
expected = idx.take(takers) | |
tm.assert_index_equal(self.index_cls(result), expected) | |
def test_take_fill_raises(self, fill_value, arr1d): | |
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" | |
with pytest.raises(TypeError, match=msg): | |
arr1d.take([0, 1], allow_fill=True, fill_value=fill_value) | |
def test_take_fill(self, arr1d): | |
arr = arr1d | |
result = arr.take([-1, 1], allow_fill=True, fill_value=None) | |
assert result[0] is NaT | |
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan) | |
assert result[0] is NaT | |
result = arr.take([-1, 1], allow_fill=True, fill_value=NaT) | |
assert result[0] is NaT | |
def test_take_fill_str(self, arr1d): | |
# Cast str fill_value matching other fill_value-taking methods | |
result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1])) | |
expected = arr1d[[-1, 1]] | |
tm.assert_equal(result, expected) | |
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" | |
with pytest.raises(TypeError, match=msg): | |
arr1d.take([-1, 1], allow_fill=True, fill_value="foo") | |
def test_concat_same_type(self, arr1d): | |
arr = arr1d | |
idx = self.index_cls(arr) | |
idx = idx.insert(0, NaT) | |
arr = arr1d | |
result = arr._concat_same_type([arr[:-1], arr[1:], arr]) | |
arr2 = arr.astype(object) | |
expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2])) | |
tm.assert_index_equal(self.index_cls(result), expected) | |
def test_unbox_scalar(self, arr1d): | |
result = arr1d._unbox_scalar(arr1d[0]) | |
expected = arr1d._ndarray.dtype.type | |
assert isinstance(result, expected) | |
result = arr1d._unbox_scalar(NaT) | |
assert isinstance(result, expected) | |
msg = f"'value' should be a {self.scalar_type.__name__}." | |
with pytest.raises(ValueError, match=msg): | |
arr1d._unbox_scalar("foo") | |
def test_check_compatible_with(self, arr1d): | |
arr1d._check_compatible_with(arr1d[0]) | |
arr1d._check_compatible_with(arr1d[:1]) | |
arr1d._check_compatible_with(NaT) | |
def test_scalar_from_string(self, arr1d): | |
result = arr1d._scalar_from_string(str(arr1d[0])) | |
assert result == arr1d[0] | |
def test_reduce_invalid(self, arr1d): | |
msg = "does not support reduction 'not a method'" | |
with pytest.raises(TypeError, match=msg): | |
arr1d._reduce("not a method") | |
def test_fillna_method_doesnt_change_orig(self, method): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
if self.array_cls is PeriodArray: | |
arr = self.array_cls(data, dtype="period[D]") | |
else: | |
arr = self.array_cls._from_sequence(data) | |
arr[4] = NaT | |
fill_value = arr[3] if method == "pad" else arr[5] | |
result = arr._pad_or_backfill(method=method) | |
assert result[4] == fill_value | |
# check that the original was not changed | |
assert arr[4] is NaT | |
def test_searchsorted(self): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
if self.array_cls is PeriodArray: | |
arr = self.array_cls(data, dtype="period[D]") | |
else: | |
arr = self.array_cls._from_sequence(data) | |
# scalar | |
result = arr.searchsorted(arr[1]) | |
assert result == 1 | |
result = arr.searchsorted(arr[2], side="right") | |
assert result == 3 | |
# own-type | |
result = arr.searchsorted(arr[1:3]) | |
expected = np.array([1, 2], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
result = arr.searchsorted(arr[1:3], side="right") | |
expected = np.array([2, 3], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
# GH#29884 match numpy convention on whether NaT goes | |
# at the end or the beginning | |
result = arr.searchsorted(NaT) | |
assert result == 10 | |
def test_searchsorted_castable_strings(self, arr1d, box, string_storage): | |
arr = arr1d | |
if box is None: | |
pass | |
elif box == "index": | |
# Test the equivalent Index.searchsorted method while we're here | |
arr = self.index_cls(arr) | |
else: | |
# Test the equivalent Series.searchsorted method while we're here | |
arr = pd.Series(arr) | |
# scalar | |
result = arr.searchsorted(str(arr[1])) | |
assert result == 1 | |
result = arr.searchsorted(str(arr[2]), side="right") | |
assert result == 3 | |
result = arr.searchsorted([str(x) for x in arr[1:3]]) | |
expected = np.array([1, 2], dtype=np.intp) | |
tm.assert_numpy_array_equal(result, expected) | |
with pytest.raises( | |
TypeError, | |
match=re.escape( | |
f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', " | |
"or array of those. Got 'str' instead." | |
), | |
): | |
arr.searchsorted("foo") | |
with pd.option_context("string_storage", string_storage): | |
with pytest.raises( | |
TypeError, | |
match=re.escape( | |
f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', " | |
"or array of those. Got string array instead." | |
), | |
): | |
arr.searchsorted([str(arr[1]), "baz"]) | |
def test_getitem_near_implementation_bounds(self): | |
# We only check tz-naive for DTA bc the bounds are slightly different | |
# for other tzs | |
i8vals = np.asarray([NaT._value + n for n in range(1, 5)], dtype="i8") | |
if self.array_cls is PeriodArray: | |
arr = self.array_cls(i8vals, dtype="period[ns]") | |
else: | |
arr = self.index_cls(i8vals, freq="ns")._data | |
arr[0] # should not raise OutOfBoundsDatetime | |
index = pd.Index(arr) | |
index[0] # should not raise OutOfBoundsDatetime | |
ser = pd.Series(arr) | |
ser[0] # should not raise OutOfBoundsDatetime | |
def test_getitem_2d(self, arr1d): | |
# 2d slicing on a 1D array | |
expected = type(arr1d)._simple_new( | |
arr1d._ndarray[:, np.newaxis], dtype=arr1d.dtype | |
) | |
result = arr1d[:, np.newaxis] | |
tm.assert_equal(result, expected) | |
# Lookup on a 2D array | |
arr2d = expected | |
expected = type(arr2d)._simple_new(arr2d._ndarray[:3, 0], dtype=arr2d.dtype) | |
result = arr2d[:3, 0] | |
tm.assert_equal(result, expected) | |
# Scalar lookup | |
result = arr2d[-1, 0] | |
expected = arr1d[-1] | |
assert result == expected | |
def test_iter_2d(self, arr1d): | |
data2d = arr1d._ndarray[:3, np.newaxis] | |
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype) | |
result = list(arr2d) | |
assert len(result) == 3 | |
for x in result: | |
assert isinstance(x, type(arr1d)) | |
assert x.ndim == 1 | |
assert x.dtype == arr1d.dtype | |
def test_repr_2d(self, arr1d): | |
data2d = arr1d._ndarray[:3, np.newaxis] | |
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype) | |
result = repr(arr2d) | |
if isinstance(arr2d, TimedeltaArray): | |
expected = ( | |
f"<{type(arr2d).__name__}>\n" | |
"[\n" | |
f"['{arr1d[0]._repr_base()}'],\n" | |
f"['{arr1d[1]._repr_base()}'],\n" | |
f"['{arr1d[2]._repr_base()}']\n" | |
"]\n" | |
f"Shape: (3, 1), dtype: {arr1d.dtype}" | |
) | |
else: | |
expected = ( | |
f"<{type(arr2d).__name__}>\n" | |
"[\n" | |
f"['{arr1d[0]}'],\n" | |
f"['{arr1d[1]}'],\n" | |
f"['{arr1d[2]}']\n" | |
"]\n" | |
f"Shape: (3, 1), dtype: {arr1d.dtype}" | |
) | |
assert result == expected | |
def test_setitem(self): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
if self.array_cls is PeriodArray: | |
arr = self.array_cls(data, dtype="period[D]") | |
else: | |
arr = self.index_cls(data, freq="D")._data | |
arr[0] = arr[1] | |
expected = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
expected[0] = expected[1] | |
tm.assert_numpy_array_equal(arr.asi8, expected) | |
arr[:2] = arr[-2:] | |
expected[:2] = expected[-2:] | |
tm.assert_numpy_array_equal(arr.asi8, expected) | |
def test_setitem_object_dtype(self, box, arr1d): | |
expected = arr1d.copy()[::-1] | |
if expected.dtype.kind in ["m", "M"]: | |
expected = expected._with_freq(None) | |
vals = expected | |
if box is list: | |
vals = list(vals) | |
elif box is np.array: | |
# if we do np.array(x).astype(object) then dt64 and td64 cast to ints | |
vals = np.array(vals.astype(object)) | |
elif box is NumpyExtensionArray: | |
vals = box(np.asarray(vals, dtype=object)) | |
else: | |
vals = box(vals).astype(object) | |
arr1d[:] = vals | |
tm.assert_equal(arr1d, expected) | |
def test_setitem_strs(self, arr1d): | |
# Check that we parse strs in both scalar and listlike | |
# Setting list-like of strs | |
expected = arr1d.copy() | |
expected[[0, 1]] = arr1d[-2:] | |
result = arr1d.copy() | |
result[:2] = [str(x) for x in arr1d[-2:]] | |
tm.assert_equal(result, expected) | |
# Same thing but now for just a scalar str | |
expected = arr1d.copy() | |
expected[0] = arr1d[-1] | |
result = arr1d.copy() | |
result[0] = str(arr1d[-1]) | |
tm.assert_equal(result, expected) | |
def test_setitem_categorical(self, arr1d, as_index): | |
expected = arr1d.copy()[::-1] | |
if not isinstance(expected, PeriodArray): | |
expected = expected._with_freq(None) | |
cat = pd.Categorical(arr1d) | |
if as_index: | |
cat = pd.CategoricalIndex(cat) | |
arr1d[:] = cat[::-1] | |
tm.assert_equal(arr1d, expected) | |
def test_setitem_raises(self, arr1d): | |
arr = arr1d[:10] | |
val = arr[0] | |
with pytest.raises(IndexError, match="index 12 is out of bounds"): | |
arr[12] = val | |
with pytest.raises(TypeError, match="value should be a.* 'object'"): | |
arr[0] = object() | |
msg = "cannot set using a list-like indexer with a different length" | |
with pytest.raises(ValueError, match=msg): | |
# GH#36339 | |
arr[[]] = [arr[1]] | |
msg = "cannot set using a slice indexer with a different length than" | |
with pytest.raises(ValueError, match=msg): | |
# GH#36339 | |
arr[1:1] = arr[:3] | |
def test_setitem_numeric_raises(self, arr1d, box): | |
# We dont case e.g. int64 to our own dtype for setitem | |
msg = ( | |
f"value should be a '{arr1d._scalar_type.__name__}', " | |
"'NaT', or array of those. Got" | |
) | |
with pytest.raises(TypeError, match=msg): | |
arr1d[:2] = box([0, 1]) | |
with pytest.raises(TypeError, match=msg): | |
arr1d[:2] = box([0.0, 1.0]) | |
def test_inplace_arithmetic(self): | |
# GH#24115 check that iadd and isub are actually in-place | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
if self.array_cls is PeriodArray: | |
arr = self.array_cls(data, dtype="period[D]") | |
else: | |
arr = self.index_cls(data, freq="D")._data | |
expected = arr + pd.Timedelta(days=1) | |
arr += pd.Timedelta(days=1) | |
tm.assert_equal(arr, expected) | |
expected = arr - pd.Timedelta(days=1) | |
arr -= pd.Timedelta(days=1) | |
tm.assert_equal(arr, expected) | |
def test_shift_fill_int_deprecated(self, arr1d): | |
# GH#31971, enforced in 2.0 | |
with pytest.raises(TypeError, match="value should be a"): | |
arr1d.shift(1, fill_value=1) | |
def test_median(self, arr1d): | |
arr = arr1d | |
if len(arr) % 2 == 0: | |
# make it easier to define `expected` | |
arr = arr[:-1] | |
expected = arr[len(arr) // 2] | |
result = arr.median() | |
assert type(result) is type(expected) | |
assert result == expected | |
arr[len(arr) // 2] = NaT | |
if not isinstance(expected, Period): | |
expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean() | |
assert arr.median(skipna=False) is NaT | |
result = arr.median() | |
assert type(result) is type(expected) | |
assert result == expected | |
assert arr[:0].median() is NaT | |
assert arr[:0].median(skipna=False) is NaT | |
# 2d Case | |
arr2 = arr.reshape(-1, 1) | |
result = arr2.median(axis=None) | |
assert type(result) is type(expected) | |
assert result == expected | |
assert arr2.median(axis=None, skipna=False) is NaT | |
result = arr2.median(axis=0) | |
expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype) | |
tm.assert_equal(result, expected2) | |
result = arr2.median(axis=0, skipna=False) | |
expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype) | |
tm.assert_equal(result, expected2) | |
result = arr2.median(axis=1) | |
tm.assert_equal(result, arr) | |
result = arr2.median(axis=1, skipna=False) | |
tm.assert_equal(result, arr) | |
def test_from_integer_array(self): | |
arr = np.array([1, 2, 3], dtype=np.int64) | |
data = pd.array(arr, dtype="Int64") | |
if self.array_cls is PeriodArray: | |
expected = self.array_cls(arr, dtype=self.example_dtype) | |
result = self.array_cls(data, dtype=self.example_dtype) | |
else: | |
expected = self.array_cls._from_sequence(arr, dtype=self.example_dtype) | |
result = self.array_cls._from_sequence(data, dtype=self.example_dtype) | |
tm.assert_extension_array_equal(result, expected) | |
class TestDatetimeArray(SharedTests): | |
index_cls = DatetimeIndex | |
array_cls = DatetimeArray | |
scalar_type = Timestamp | |
example_dtype = "M8[ns]" | |
def arr1d(self, tz_naive_fixture, freqstr): | |
""" | |
Fixture returning DatetimeArray with parametrized frequency and | |
timezones | |
""" | |
tz = tz_naive_fixture | |
dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz) | |
dta = dti._data | |
return dta | |
def test_round(self, arr1d): | |
# GH#24064 | |
dti = self.index_cls(arr1d) | |
result = dti.round(freq="2min") | |
expected = dti - pd.Timedelta(minutes=1) | |
expected = expected._with_freq(None) | |
tm.assert_index_equal(result, expected) | |
dta = dti._data | |
result = dta.round(freq="2min") | |
expected = expected._data._with_freq(None) | |
tm.assert_datetime_array_equal(result, expected) | |
def test_array_interface(self, datetime_index): | |
arr = datetime_index._data | |
copy_false = None if np_version_gt2 else False | |
# default asarray gives the same underlying data (for tz naive) | |
result = np.asarray(arr) | |
expected = arr._ndarray | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, copy=copy_false) | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
# specifying M8[ns] gives the same result as default | |
result = np.asarray(arr, dtype="datetime64[ns]") | |
expected = arr._ndarray | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, dtype="datetime64[ns]", copy=copy_false) | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, dtype="datetime64[ns]") | |
assert result is not expected | |
tm.assert_numpy_array_equal(result, expected) | |
# to object dtype | |
result = np.asarray(arr, dtype=object) | |
expected = np.array(list(arr), dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
# to other dtype always copies | |
result = np.asarray(arr, dtype="int64") | |
assert result is not arr.asi8 | |
assert not np.may_share_memory(arr, result) | |
expected = arr.asi8.copy() | |
tm.assert_numpy_array_equal(result, expected) | |
# other dtypes handled by numpy | |
for dtype in ["float64", str]: | |
result = np.asarray(arr, dtype=dtype) | |
expected = np.asarray(arr).astype(dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_array_object_dtype(self, arr1d): | |
# GH#23524 | |
arr = arr1d | |
dti = self.index_cls(arr1d) | |
expected = np.array(list(dti)) | |
result = np.array(arr, dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
# also test the DatetimeIndex method while we're at it | |
result = np.array(dti, dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_array_tz(self, arr1d): | |
# GH#23524 | |
arr = arr1d | |
dti = self.index_cls(arr1d) | |
copy_false = None if np_version_gt2 else False | |
expected = dti.asi8.view("M8[ns]") | |
result = np.array(arr, dtype="M8[ns]") | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, dtype="datetime64[ns]") | |
tm.assert_numpy_array_equal(result, expected) | |
# check that we are not making copies when setting copy=copy_false | |
result = np.array(arr, dtype="M8[ns]", copy=copy_false) | |
assert result.base is expected.base | |
assert result.base is not None | |
result = np.array(arr, dtype="datetime64[ns]", copy=copy_false) | |
assert result.base is expected.base | |
assert result.base is not None | |
def test_array_i8_dtype(self, arr1d): | |
arr = arr1d | |
dti = self.index_cls(arr1d) | |
copy_false = None if np_version_gt2 else False | |
expected = dti.asi8 | |
result = np.array(arr, dtype="i8") | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, dtype=np.int64) | |
tm.assert_numpy_array_equal(result, expected) | |
# check that we are still making copies when setting copy=copy_false | |
result = np.array(arr, dtype="i8", copy=copy_false) | |
assert result.base is not expected.base | |
assert result.base is None | |
def test_from_array_keeps_base(self): | |
# Ensure that DatetimeArray._ndarray.base isn't lost. | |
arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]") | |
dta = DatetimeArray._from_sequence(arr) | |
assert dta._ndarray is arr | |
dta = DatetimeArray._from_sequence(arr[:0]) | |
assert dta._ndarray.base is arr | |
def test_from_dti(self, arr1d): | |
arr = arr1d | |
dti = self.index_cls(arr1d) | |
assert list(dti) == list(arr) | |
# Check that Index.__new__ knows what to do with DatetimeArray | |
dti2 = pd.Index(arr) | |
assert isinstance(dti2, DatetimeIndex) | |
assert list(dti2) == list(arr) | |
def test_astype_object(self, arr1d): | |
arr = arr1d | |
dti = self.index_cls(arr1d) | |
asobj = arr.astype("O") | |
assert isinstance(asobj, np.ndarray) | |
assert asobj.dtype == "O" | |
assert list(asobj) == list(dti) | |
def test_to_period(self, datetime_index, freqstr): | |
dti = datetime_index | |
arr = dti._data | |
freqstr = freq_to_period_freqstr(1, freqstr) | |
expected = dti.to_period(freq=freqstr) | |
result = arr.to_period(freq=freqstr) | |
assert isinstance(result, PeriodArray) | |
tm.assert_equal(result, expected._data) | |
def test_to_period_2d(self, arr1d): | |
arr2d = arr1d.reshape(1, -1) | |
warn = None if arr1d.tz is None else UserWarning | |
with tm.assert_produces_warning(warn): | |
result = arr2d.to_period("D") | |
expected = arr1d.to_period("D").reshape(1, -1) | |
tm.assert_period_array_equal(result, expected) | |
def test_bool_properties(self, arr1d, propname): | |
# in this case _bool_ops is just `is_leap_year` | |
dti = self.index_cls(arr1d) | |
arr = arr1d | |
assert dti.freq == arr.freq | |
result = getattr(arr, propname) | |
expected = np.array(getattr(dti, propname), dtype=result.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_int_properties(self, arr1d, propname): | |
dti = self.index_cls(arr1d) | |
arr = arr1d | |
result = getattr(arr, propname) | |
expected = np.array(getattr(dti, propname), dtype=result.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_take_fill_valid(self, arr1d, fixed_now_ts): | |
arr = arr1d | |
dti = self.index_cls(arr1d) | |
now = fixed_now_ts.tz_localize(dti.tz) | |
result = arr.take([-1, 1], allow_fill=True, fill_value=now) | |
assert result[0] == now | |
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" | |
with pytest.raises(TypeError, match=msg): | |
# fill_value Timedelta invalid | |
arr.take([-1, 1], allow_fill=True, fill_value=now - now) | |
with pytest.raises(TypeError, match=msg): | |
# fill_value Period invalid | |
arr.take([-1, 1], allow_fill=True, fill_value=Period("2014Q1")) | |
tz = None if dti.tz is not None else "US/Eastern" | |
now = fixed_now_ts.tz_localize(tz) | |
msg = "Cannot compare tz-naive and tz-aware datetime-like objects" | |
with pytest.raises(TypeError, match=msg): | |
# Timestamp with mismatched tz-awareness | |
arr.take([-1, 1], allow_fill=True, fill_value=now) | |
value = NaT._value | |
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" | |
with pytest.raises(TypeError, match=msg): | |
# require NaT, not iNaT, as it could be confused with an integer | |
arr.take([-1, 1], allow_fill=True, fill_value=value) | |
value = np.timedelta64("NaT", "ns") | |
with pytest.raises(TypeError, match=msg): | |
# require appropriate-dtype if we have a NA value | |
arr.take([-1, 1], allow_fill=True, fill_value=value) | |
if arr.tz is not None: | |
# GH#37356 | |
# Assuming here that arr1d fixture does not include Australia/Melbourne | |
value = fixed_now_ts.tz_localize("Australia/Melbourne") | |
result = arr.take([-1, 1], allow_fill=True, fill_value=value) | |
expected = arr.take( | |
[-1, 1], | |
allow_fill=True, | |
fill_value=value.tz_convert(arr.dtype.tz), | |
) | |
tm.assert_equal(result, expected) | |
def test_concat_same_type_invalid(self, arr1d): | |
# different timezones | |
arr = arr1d | |
if arr.tz is None: | |
other = arr.tz_localize("UTC") | |
else: | |
other = arr.tz_localize(None) | |
with pytest.raises(ValueError, match="to_concat must have the same"): | |
arr._concat_same_type([arr, other]) | |
def test_concat_same_type_different_freq(self, unit): | |
# we *can* concatenate DTI with different freqs. | |
a = pd.date_range("2000", periods=2, freq="D", tz="US/Central", unit=unit)._data | |
b = pd.date_range("2000", periods=2, freq="h", tz="US/Central", unit=unit)._data | |
result = DatetimeArray._concat_same_type([a, b]) | |
expected = ( | |
pd.to_datetime( | |
[ | |
"2000-01-01 00:00:00", | |
"2000-01-02 00:00:00", | |
"2000-01-01 00:00:00", | |
"2000-01-01 01:00:00", | |
] | |
) | |
.tz_localize("US/Central") | |
.as_unit(unit) | |
._data | |
) | |
tm.assert_datetime_array_equal(result, expected) | |
def test_strftime(self, arr1d): | |
arr = arr1d | |
result = arr.strftime("%Y %b") | |
expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_strftime_nat(self): | |
# GH 29578 | |
arr = DatetimeIndex(["2019-01-01", NaT])._data | |
result = arr.strftime("%Y-%m-%d") | |
expected = np.array(["2019-01-01", np.nan], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestTimedeltaArray(SharedTests): | |
index_cls = TimedeltaIndex | |
array_cls = TimedeltaArray | |
scalar_type = pd.Timedelta | |
example_dtype = "m8[ns]" | |
def test_from_tdi(self): | |
tdi = TimedeltaIndex(["1 Day", "3 Hours"]) | |
arr = tdi._data | |
assert list(arr) == list(tdi) | |
# Check that Index.__new__ knows what to do with TimedeltaArray | |
tdi2 = pd.Index(arr) | |
assert isinstance(tdi2, TimedeltaIndex) | |
assert list(tdi2) == list(arr) | |
def test_astype_object(self): | |
tdi = TimedeltaIndex(["1 Day", "3 Hours"]) | |
arr = tdi._data | |
asobj = arr.astype("O") | |
assert isinstance(asobj, np.ndarray) | |
assert asobj.dtype == "O" | |
assert list(asobj) == list(tdi) | |
def test_to_pytimedelta(self, timedelta_index): | |
tdi = timedelta_index | |
arr = tdi._data | |
expected = tdi.to_pytimedelta() | |
result = arr.to_pytimedelta() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_total_seconds(self, timedelta_index): | |
tdi = timedelta_index | |
arr = tdi._data | |
expected = tdi.total_seconds() | |
result = arr.total_seconds() | |
tm.assert_numpy_array_equal(result, expected.values) | |
def test_int_properties(self, timedelta_index, propname): | |
tdi = timedelta_index | |
arr = tdi._data | |
result = getattr(arr, propname) | |
expected = np.array(getattr(tdi, propname), dtype=result.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_array_interface(self, timedelta_index): | |
arr = timedelta_index._data | |
copy_false = None if np_version_gt2 else False | |
# default asarray gives the same underlying data | |
result = np.asarray(arr) | |
expected = arr._ndarray | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, copy=copy_false) | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
# specifying m8[ns] gives the same result as default | |
result = np.asarray(arr, dtype="timedelta64[ns]") | |
expected = arr._ndarray | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, dtype="timedelta64[ns]", copy=copy_false) | |
assert result is expected | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.array(arr, dtype="timedelta64[ns]") | |
assert result is not expected | |
tm.assert_numpy_array_equal(result, expected) | |
# to object dtype | |
result = np.asarray(arr, dtype=object) | |
expected = np.array(list(arr), dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
# to other dtype always copies | |
result = np.asarray(arr, dtype="int64") | |
assert result is not arr.asi8 | |
assert not np.may_share_memory(arr, result) | |
expected = arr.asi8.copy() | |
tm.assert_numpy_array_equal(result, expected) | |
# other dtypes handled by numpy | |
for dtype in ["float64", str]: | |
result = np.asarray(arr, dtype=dtype) | |
expected = np.asarray(arr).astype(dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_take_fill_valid(self, timedelta_index, fixed_now_ts): | |
tdi = timedelta_index | |
arr = tdi._data | |
td1 = pd.Timedelta(days=1) | |
result = arr.take([-1, 1], allow_fill=True, fill_value=td1) | |
assert result[0] == td1 | |
value = fixed_now_ts | |
msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got" | |
with pytest.raises(TypeError, match=msg): | |
# fill_value Timestamp invalid | |
arr.take([0, 1], allow_fill=True, fill_value=value) | |
value = fixed_now_ts.to_period("D") | |
with pytest.raises(TypeError, match=msg): | |
# fill_value Period invalid | |
arr.take([0, 1], allow_fill=True, fill_value=value) | |
value = np.datetime64("NaT", "ns") | |
with pytest.raises(TypeError, match=msg): | |
# require appropriate-dtype if we have a NA value | |
arr.take([-1, 1], allow_fill=True, fill_value=value) | |
class TestPeriodArray(SharedTests): | |
index_cls = PeriodIndex | |
array_cls = PeriodArray | |
scalar_type = Period | |
example_dtype = PeriodIndex([], freq="W").dtype | |
def arr1d(self, period_index): | |
""" | |
Fixture returning DatetimeArray from parametrized PeriodIndex objects | |
""" | |
return period_index._data | |
def test_from_pi(self, arr1d): | |
pi = self.index_cls(arr1d) | |
arr = arr1d | |
assert list(arr) == list(pi) | |
# Check that Index.__new__ knows what to do with PeriodArray | |
pi2 = pd.Index(arr) | |
assert isinstance(pi2, PeriodIndex) | |
assert list(pi2) == list(arr) | |
def test_astype_object(self, arr1d): | |
pi = self.index_cls(arr1d) | |
arr = arr1d | |
asobj = arr.astype("O") | |
assert isinstance(asobj, np.ndarray) | |
assert asobj.dtype == "O" | |
assert list(asobj) == list(pi) | |
def test_take_fill_valid(self, arr1d): | |
arr = arr1d | |
value = NaT._value | |
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got" | |
with pytest.raises(TypeError, match=msg): | |
# require NaT, not iNaT, as it could be confused with an integer | |
arr.take([-1, 1], allow_fill=True, fill_value=value) | |
value = np.timedelta64("NaT", "ns") | |
with pytest.raises(TypeError, match=msg): | |
# require appropriate-dtype if we have a NA value | |
arr.take([-1, 1], allow_fill=True, fill_value=value) | |
def test_to_timestamp(self, how, arr1d): | |
pi = self.index_cls(arr1d) | |
arr = arr1d | |
expected = DatetimeIndex(pi.to_timestamp(how=how))._data | |
result = arr.to_timestamp(how=how) | |
assert isinstance(result, DatetimeArray) | |
tm.assert_equal(result, expected) | |
def test_to_timestamp_roundtrip_bday(self): | |
# Case where infer_freq inside would choose "D" instead of "B" | |
dta = pd.date_range("2021-10-18", periods=3, freq="B")._data | |
parr = dta.to_period() | |
result = parr.to_timestamp() | |
assert result.freq == "B" | |
tm.assert_extension_array_equal(result, dta) | |
dta2 = dta[::2] | |
parr2 = dta2.to_period() | |
result2 = parr2.to_timestamp() | |
assert result2.freq == "2B" | |
tm.assert_extension_array_equal(result2, dta2) | |
parr3 = dta.to_period("2B") | |
result3 = parr3.to_timestamp() | |
assert result3.freq == "B" | |
tm.assert_extension_array_equal(result3, dta) | |
def test_to_timestamp_out_of_bounds(self): | |
# GH#19643 previously overflowed silently | |
pi = pd.period_range("1500", freq="Y", periods=3) | |
msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00" | |
with pytest.raises(OutOfBoundsDatetime, match=msg): | |
pi.to_timestamp() | |
with pytest.raises(OutOfBoundsDatetime, match=msg): | |
pi._data.to_timestamp() | |
def test_bool_properties(self, arr1d, propname): | |
# in this case _bool_ops is just `is_leap_year` | |
pi = self.index_cls(arr1d) | |
arr = arr1d | |
result = getattr(arr, propname) | |
expected = np.array(getattr(pi, propname)) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_int_properties(self, arr1d, propname): | |
pi = self.index_cls(arr1d) | |
arr = arr1d | |
result = getattr(arr, propname) | |
expected = np.array(getattr(pi, propname)) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_array_interface(self, arr1d): | |
arr = arr1d | |
# default asarray gives objects | |
result = np.asarray(arr) | |
expected = np.array(list(arr), dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
# to object dtype (same as default) | |
result = np.asarray(arr, dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.asarray(arr, dtype="int64") | |
tm.assert_numpy_array_equal(result, arr.asi8) | |
# to other dtypes | |
msg = r"float\(\) argument must be a string or a( real)? number, not 'Period'" | |
with pytest.raises(TypeError, match=msg): | |
np.asarray(arr, dtype="float64") | |
result = np.asarray(arr, dtype="S20") | |
expected = np.asarray(arr).astype("S20") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_strftime(self, arr1d): | |
arr = arr1d | |
result = arr.strftime("%Y") | |
expected = np.array([per.strftime("%Y") for per in arr], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_strftime_nat(self): | |
# GH 29578 | |
arr = PeriodArray(PeriodIndex(["2019-01-01", NaT], dtype="period[D]")) | |
result = arr.strftime("%Y-%m-%d") | |
expected = np.array(["2019-01-01", np.nan], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_casting_nat_setitem_array(arr, casting_nats): | |
expected = type(arr)._from_sequence([NaT, arr[1], arr[2]], dtype=arr.dtype) | |
for nat in casting_nats: | |
arr = arr.copy() | |
arr[0] = nat | |
tm.assert_equal(arr, expected) | |
def test_invalid_nat_setitem_array(arr, non_casting_nats): | |
msg = ( | |
"value should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. " | |
"Got '(timedelta64|datetime64|int)' instead." | |
) | |
for nat in non_casting_nats: | |
with pytest.raises(TypeError, match=msg): | |
arr[0] = nat | |
def test_to_numpy_extra(arr): | |
arr[0] = NaT | |
original = arr.copy() | |
result = arr.to_numpy() | |
assert np.isnan(result[0]) | |
result = arr.to_numpy(dtype="int64") | |
assert result[0] == -9223372036854775808 | |
result = arr.to_numpy(dtype="int64", na_value=0) | |
assert result[0] == 0 | |
result = arr.to_numpy(na_value=arr[1].to_numpy()) | |
assert result[0] == result[1] | |
result = arr.to_numpy(na_value=arr[1].to_numpy(copy=False)) | |
assert result[0] == result[1] | |
tm.assert_equal(arr, original) | |
def test_searchsorted_datetimelike_with_listlike(values, klass, as_index): | |
# https://github.com/pandas-dev/pandas/issues/32762 | |
if not as_index: | |
values = values._data | |
result = values.searchsorted(klass(values)) | |
expected = np.array([0, 1], dtype=result.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg): | |
# https://github.com/pandas-dev/pandas/issues/32762 | |
msg = "[Unexpected type|Cannot compare]" | |
with pytest.raises(TypeError, match=msg): | |
values.searchsorted(arg) | |
def test_period_index_construction_from_strings(klass): | |
# https://github.com/pandas-dev/pandas/issues/26109 | |
strings = ["2020Q1", "2020Q2"] * 2 | |
data = klass(strings) | |
result = PeriodIndex(data, freq="Q") | |
expected = PeriodIndex([Period(s) for s in strings]) | |
tm.assert_index_equal(result, expected) | |
def test_from_pandas_array(dtype): | |
# GH#24615 | |
data = np.array([1, 2, 3], dtype=dtype) | |
arr = NumpyExtensionArray(data) | |
cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype] | |
depr_msg = f"{cls.__name__}.__init__ is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
result = cls(arr) | |
expected = cls(data) | |
tm.assert_extension_array_equal(result, expected) | |
result = cls._from_sequence(arr, dtype=dtype) | |
expected = cls._from_sequence(data, dtype=dtype) | |
tm.assert_extension_array_equal(result, expected) | |
func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype] | |
result = func(arr).array | |
expected = func(data).array | |
tm.assert_equal(result, expected) | |
# Let's check the Indexes while we're here | |
idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype] | |
result = idx_cls(arr) | |
expected = idx_cls(data) | |
tm.assert_index_equal(result, expected) | |