peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/arrays
/test_datetimes.py
""" | |
Tests for DatetimeArray | |
""" | |
from __future__ import annotations | |
from datetime import timedelta | |
import operator | |
try: | |
from zoneinfo import ZoneInfo | |
except ImportError: | |
# Cannot assign to a type | |
ZoneInfo = None # type: ignore[misc, assignment] | |
import numpy as np | |
import pytest | |
from pandas._libs.tslibs import tz_compare | |
from pandas.core.dtypes.dtypes import DatetimeTZDtype | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
DatetimeArray, | |
TimedeltaArray, | |
) | |
class TestNonNano: | |
def unit(self, request): | |
"""Fixture returning parametrized time units""" | |
return request.param | |
def dtype(self, unit, tz_naive_fixture): | |
tz = tz_naive_fixture | |
if tz is None: | |
return np.dtype(f"datetime64[{unit}]") | |
else: | |
return DatetimeTZDtype(unit=unit, tz=tz) | |
def dta_dti(self, unit, dtype): | |
tz = getattr(dtype, "tz", None) | |
dti = pd.date_range("2016-01-01", periods=55, freq="D", tz=tz) | |
if tz is None: | |
arr = np.asarray(dti).astype(f"M8[{unit}]") | |
else: | |
arr = np.asarray(dti.tz_convert("UTC").tz_localize(None)).astype( | |
f"M8[{unit}]" | |
) | |
dta = DatetimeArray._simple_new(arr, dtype=dtype) | |
return dta, dti | |
def dta(self, dta_dti): | |
dta, dti = dta_dti | |
return dta | |
def test_non_nano(self, unit, dtype): | |
arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]") | |
dta = DatetimeArray._simple_new(arr, dtype=dtype) | |
assert dta.dtype == dtype | |
assert dta[0].unit == unit | |
assert tz_compare(dta.tz, dta[0].tz) | |
assert (dta[0] == dta[:1]).all() | |
def test_fields(self, unit, field, dtype, dta_dti): | |
dta, dti = dta_dti | |
assert (dti == dta).all() | |
res = getattr(dta, field) | |
expected = getattr(dti._data, field) | |
tm.assert_numpy_array_equal(res, expected) | |
def test_normalize(self, unit): | |
dti = pd.date_range("2016-01-01 06:00:00", periods=55, freq="D") | |
arr = np.asarray(dti).astype(f"M8[{unit}]") | |
dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) | |
assert not dta.is_normalized | |
# TODO: simplify once we can just .astype to other unit | |
exp = np.asarray(dti.normalize()).astype(f"M8[{unit}]") | |
expected = DatetimeArray._simple_new(exp, dtype=exp.dtype) | |
res = dta.normalize() | |
tm.assert_extension_array_equal(res, expected) | |
def test_simple_new_requires_match(self, unit): | |
arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]") | |
dtype = DatetimeTZDtype(unit, "UTC") | |
dta = DatetimeArray._simple_new(arr, dtype=dtype) | |
assert dta.dtype == dtype | |
wrong = DatetimeTZDtype("ns", "UTC") | |
with pytest.raises(AssertionError, match=""): | |
DatetimeArray._simple_new(arr, dtype=wrong) | |
def test_std_non_nano(self, unit): | |
dti = pd.date_range("2016-01-01", periods=55, freq="D") | |
arr = np.asarray(dti).astype(f"M8[{unit}]") | |
dta = DatetimeArray._simple_new(arr, dtype=arr.dtype) | |
# we should match the nano-reso std, but floored to our reso. | |
res = dta.std() | |
assert res._creso == dta._creso | |
assert res == dti.std().floor(unit) | |
def test_to_period(self, dta_dti): | |
dta, dti = dta_dti | |
result = dta.to_period("D") | |
expected = dti._data.to_period("D") | |
tm.assert_extension_array_equal(result, expected) | |
def test_iter(self, dta): | |
res = next(iter(dta)) | |
expected = dta[0] | |
assert type(res) is pd.Timestamp | |
assert res._value == expected._value | |
assert res._creso == expected._creso | |
assert res == expected | |
def test_astype_object(self, dta): | |
result = dta.astype(object) | |
assert all(x._creso == dta._creso for x in result) | |
assert all(x == y for x, y in zip(result, dta)) | |
def test_to_pydatetime(self, dta_dti): | |
dta, dti = dta_dti | |
result = dta.to_pydatetime() | |
expected = dti.to_pydatetime() | |
tm.assert_numpy_array_equal(result, expected) | |
def test_time_date(self, dta_dti, meth): | |
dta, dti = dta_dti | |
result = getattr(dta, meth) | |
expected = getattr(dti, meth) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_format_native_types(self, unit, dtype, dta_dti): | |
# In this case we should get the same formatted values with our nano | |
# version dti._data as we do with the non-nano dta | |
dta, dti = dta_dti | |
res = dta._format_native_types() | |
exp = dti._data._format_native_types() | |
tm.assert_numpy_array_equal(res, exp) | |
def test_repr(self, dta_dti, unit): | |
dta, dti = dta_dti | |
assert repr(dta) == repr(dti._data).replace("[ns", f"[{unit}") | |
# TODO: tests with td64 | |
def test_compare_mismatched_resolutions(self, comparison_op): | |
# comparison that numpy gets wrong bc of silent overflows | |
op = comparison_op | |
iinfo = np.iinfo(np.int64) | |
vals = np.array([iinfo.min, iinfo.min + 1, iinfo.max], dtype=np.int64) | |
# Construct so that arr2[1] < arr[1] < arr[2] < arr2[2] | |
arr = np.array(vals).view("M8[ns]") | |
arr2 = arr.view("M8[s]") | |
left = DatetimeArray._simple_new(arr, dtype=arr.dtype) | |
right = DatetimeArray._simple_new(arr2, dtype=arr2.dtype) | |
if comparison_op is operator.eq: | |
expected = np.array([False, False, False]) | |
elif comparison_op is operator.ne: | |
expected = np.array([True, True, True]) | |
elif comparison_op in [operator.lt, operator.le]: | |
expected = np.array([False, False, True]) | |
else: | |
expected = np.array([False, True, False]) | |
result = op(left, right) | |
tm.assert_numpy_array_equal(result, expected) | |
result = op(left[1], right) | |
tm.assert_numpy_array_equal(result, expected) | |
if op not in [operator.eq, operator.ne]: | |
# check that numpy still gets this wrong; if it is fixed we may be | |
# able to remove compare_mismatched_resolutions | |
np_res = op(left._ndarray, right._ndarray) | |
tm.assert_numpy_array_equal(np_res[1:], ~expected[1:]) | |
def test_add_mismatched_reso_doesnt_downcast(self): | |
# https://github.com/pandas-dev/pandas/pull/48748#issuecomment-1260181008 | |
td = pd.Timedelta(microseconds=1) | |
dti = pd.date_range("2016-01-01", periods=3) - td | |
dta = dti._data.as_unit("us") | |
res = dta + td.as_unit("us") | |
# even though the result is an even number of days | |
# (so we _could_ downcast to unit="s"), we do not. | |
assert res.unit == "us" | |
def test_add_timedeltalike_scalar_mismatched_reso(self, dta_dti, scalar): | |
dta, dti = dta_dti | |
td = pd.Timedelta(scalar) | |
exp_unit = tm.get_finest_unit(dta.unit, td.unit) | |
expected = (dti + td)._data.as_unit(exp_unit) | |
result = dta + scalar | |
tm.assert_extension_array_equal(result, expected) | |
result = scalar + dta | |
tm.assert_extension_array_equal(result, expected) | |
expected = (dti - td)._data.as_unit(exp_unit) | |
result = dta - scalar | |
tm.assert_extension_array_equal(result, expected) | |
def test_sub_datetimelike_scalar_mismatch(self): | |
dti = pd.date_range("2016-01-01", periods=3) | |
dta = dti._data.as_unit("us") | |
ts = dta[0].as_unit("s") | |
result = dta - ts | |
expected = (dti - dti[0])._data.as_unit("us") | |
assert result.dtype == "m8[us]" | |
tm.assert_extension_array_equal(result, expected) | |
def test_sub_datetime64_reso_mismatch(self): | |
dti = pd.date_range("2016-01-01", periods=3) | |
left = dti._data.as_unit("s") | |
right = left.as_unit("ms") | |
result = left - right | |
exp_values = np.array([0, 0, 0], dtype="m8[ms]") | |
expected = TimedeltaArray._simple_new( | |
exp_values, | |
dtype=exp_values.dtype, | |
) | |
tm.assert_extension_array_equal(result, expected) | |
result2 = right - left | |
tm.assert_extension_array_equal(result2, expected) | |
class TestDatetimeArrayComparisons: | |
# TODO: merge this into tests/arithmetic/test_datetime64 once it is | |
# sufficiently robust | |
def test_cmp_dt64_arraylike_tznaive(self, comparison_op): | |
# arbitrary tz-naive DatetimeIndex | |
op = comparison_op | |
dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None) | |
arr = dti._data | |
assert arr.freq == dti.freq | |
assert arr.tz == dti.tz | |
right = dti | |
expected = np.ones(len(arr), dtype=bool) | |
if comparison_op.__name__ in ["ne", "gt", "lt"]: | |
# for these the comparisons should be all-False | |
expected = ~expected | |
result = op(arr, arr) | |
tm.assert_numpy_array_equal(result, expected) | |
for other in [ | |
right, | |
np.array(right), | |
list(right), | |
tuple(right), | |
right.astype(object), | |
]: | |
result = op(arr, other) | |
tm.assert_numpy_array_equal(result, expected) | |
result = op(other, arr) | |
tm.assert_numpy_array_equal(result, expected) | |
class TestDatetimeArray: | |
def test_astype_ns_to_ms_near_bounds(self): | |
# GH#55979 | |
ts = pd.Timestamp("1677-09-21 00:12:43.145225") | |
target = ts.as_unit("ms") | |
dta = DatetimeArray._from_sequence([ts], dtype="M8[ns]") | |
assert (dta.view("i8") == ts.as_unit("ns").value).all() | |
result = dta.astype("M8[ms]") | |
assert result[0] == target | |
expected = DatetimeArray._from_sequence([ts], dtype="M8[ms]") | |
assert (expected.view("i8") == target._value).all() | |
tm.assert_datetime_array_equal(result, expected) | |
def test_astype_non_nano_tznaive(self): | |
dti = pd.date_range("2016-01-01", periods=3) | |
res = dti.astype("M8[s]") | |
assert res.dtype == "M8[s]" | |
dta = dti._data | |
res = dta.astype("M8[s]") | |
assert res.dtype == "M8[s]" | |
assert isinstance(res, pd.core.arrays.DatetimeArray) # used to be ndarray | |
def test_astype_non_nano_tzaware(self): | |
dti = pd.date_range("2016-01-01", periods=3, tz="UTC") | |
res = dti.astype("M8[s, US/Pacific]") | |
assert res.dtype == "M8[s, US/Pacific]" | |
dta = dti._data | |
res = dta.astype("M8[s, US/Pacific]") | |
assert res.dtype == "M8[s, US/Pacific]" | |
# from non-nano to non-nano, preserving reso | |
res2 = res.astype("M8[s, UTC]") | |
assert res2.dtype == "M8[s, UTC]" | |
assert not tm.shares_memory(res2, res) | |
res3 = res.astype("M8[s, UTC]", copy=False) | |
assert res2.dtype == "M8[s, UTC]" | |
assert tm.shares_memory(res3, res) | |
def test_astype_to_same(self): | |
arr = DatetimeArray._from_sequence( | |
["2000"], dtype=DatetimeTZDtype(tz="US/Central") | |
) | |
result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) | |
assert result is arr | |
def test_astype_copies(self, dtype, other): | |
# https://github.com/pandas-dev/pandas/pull/32490 | |
ser = pd.Series([1, 2], dtype=dtype) | |
orig = ser.copy() | |
err = False | |
if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"): | |
# deprecated in favor of tz_localize | |
err = True | |
if err: | |
if dtype == "datetime64[ns]": | |
msg = "Use obj.tz_localize instead or series.dt.tz_localize instead" | |
else: | |
msg = "from timezone-aware dtype to timezone-naive dtype" | |
with pytest.raises(TypeError, match=msg): | |
ser.astype(other) | |
else: | |
t = ser.astype(other) | |
t[:] = pd.NaT | |
tm.assert_series_equal(ser, orig) | |
def test_astype_int(self, dtype): | |
arr = DatetimeArray._from_sequence( | |
[pd.Timestamp("2000"), pd.Timestamp("2001")], dtype="M8[ns]" | |
) | |
if np.dtype(dtype) != np.int64: | |
with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"): | |
arr.astype(dtype) | |
return | |
result = arr.astype(dtype) | |
expected = arr._ndarray.view("i8") | |
tm.assert_numpy_array_equal(result, expected) | |
def test_astype_to_sparse_dt64(self): | |
# GH#50082 | |
dti = pd.date_range("2016-01-01", periods=4) | |
dta = dti._data | |
result = dta.astype("Sparse[datetime64[ns]]") | |
assert result.dtype == "Sparse[datetime64[ns]]" | |
assert (result == dta).all() | |
def test_tz_setter_raises(self): | |
arr = DatetimeArray._from_sequence( | |
["2000"], dtype=DatetimeTZDtype(tz="US/Central") | |
) | |
with pytest.raises(AttributeError, match="tz_localize"): | |
arr.tz = "UTC" | |
def test_setitem_str_impute_tz(self, tz_naive_fixture): | |
# Like for getitem, if we are passed a naive-like string, we impute | |
# our own timezone. | |
tz = tz_naive_fixture | |
data = np.array([1, 2, 3], dtype="M8[ns]") | |
dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz) | |
arr = DatetimeArray._from_sequence(data, dtype=dtype) | |
expected = arr.copy() | |
ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz) | |
setter = str(ts.tz_localize(None)) | |
# Setting a scalar tznaive string | |
expected[0] = ts | |
arr[0] = setter | |
tm.assert_equal(arr, expected) | |
# Setting a listlike of tznaive strings | |
expected[1] = ts | |
arr[:2] = [setter, setter] | |
tm.assert_equal(arr, expected) | |
def test_setitem_different_tz_raises(self): | |
# pre-2.0 we required exact tz match, in 2.0 we require only | |
# tzawareness-match | |
data = np.array([1, 2, 3], dtype="M8[ns]") | |
arr = DatetimeArray._from_sequence( | |
data, copy=False, dtype=DatetimeTZDtype(tz="US/Central") | |
) | |
with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"): | |
arr[0] = pd.Timestamp("2000") | |
ts = pd.Timestamp("2000", tz="US/Eastern") | |
arr[0] = ts | |
assert arr[0] == ts.tz_convert("US/Central") | |
def test_setitem_clears_freq(self): | |
a = pd.date_range("2000", periods=2, freq="D", tz="US/Central")._data | |
a[0] = pd.Timestamp("2000", tz="US/Central") | |
assert a.freq is None | |
def test_setitem_objects(self, obj): | |
# make sure we accept datetime64 and datetime in addition to Timestamp | |
dti = pd.date_range("2000", periods=2, freq="D") | |
arr = dti._data | |
arr[0] = obj | |
assert arr[0] == obj | |
def test_repeat_preserves_tz(self): | |
dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") | |
arr = dti._data | |
repeated = arr.repeat([1, 1]) | |
# preserves tz and values, but not freq | |
expected = DatetimeArray._from_sequence(arr.asi8, dtype=arr.dtype) | |
tm.assert_equal(repeated, expected) | |
def test_value_counts_preserves_tz(self): | |
dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") | |
arr = dti._data.repeat([4, 3]) | |
result = arr.value_counts() | |
# Note: not tm.assert_index_equal, since `freq`s do not match | |
assert result.index.equals(dti) | |
arr[-2] = pd.NaT | |
result = arr.value_counts(dropna=False) | |
expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT], name="count") | |
tm.assert_series_equal(result, expected) | |
def test_fillna_preserves_tz(self, method): | |
dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central") | |
arr = DatetimeArray._from_sequence(dti, copy=True) | |
arr[2] = pd.NaT | |
fill_val = dti[1] if method == "pad" else dti[3] | |
expected = DatetimeArray._from_sequence( | |
[dti[0], dti[1], fill_val, dti[3], dti[4]], | |
dtype=DatetimeTZDtype(tz="US/Central"), | |
) | |
result = arr._pad_or_backfill(method=method) | |
tm.assert_extension_array_equal(result, expected) | |
# assert that arr and dti were not modified in-place | |
assert arr[2] is pd.NaT | |
assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central") | |
def test_fillna_2d(self): | |
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific") | |
dta = dti._data.reshape(3, 2).copy() | |
dta[0, 1] = pd.NaT | |
dta[1, 0] = pd.NaT | |
res1 = dta._pad_or_backfill(method="pad") | |
expected1 = dta.copy() | |
expected1[1, 0] = dta[0, 0] | |
tm.assert_extension_array_equal(res1, expected1) | |
res2 = dta._pad_or_backfill(method="backfill") | |
expected2 = dta.copy() | |
expected2 = dta.copy() | |
expected2[1, 0] = dta[2, 0] | |
expected2[0, 1] = dta[1, 1] | |
tm.assert_extension_array_equal(res2, expected2) | |
# with different ordering for underlying ndarray; behavior should | |
# be unchanged | |
dta2 = dta._from_backing_data(dta._ndarray.copy(order="F")) | |
assert dta2._ndarray.flags["F_CONTIGUOUS"] | |
assert not dta2._ndarray.flags["C_CONTIGUOUS"] | |
tm.assert_extension_array_equal(dta, dta2) | |
res3 = dta2._pad_or_backfill(method="pad") | |
tm.assert_extension_array_equal(res3, expected1) | |
res4 = dta2._pad_or_backfill(method="backfill") | |
tm.assert_extension_array_equal(res4, expected2) | |
# test the DataFrame method while we're here | |
df = pd.DataFrame(dta) | |
res = df.ffill() | |
expected = pd.DataFrame(expected1) | |
tm.assert_frame_equal(res, expected) | |
res = df.bfill() | |
expected = pd.DataFrame(expected2) | |
tm.assert_frame_equal(res, expected) | |
def test_array_interface_tz(self): | |
tz = "US/Central" | |
data = pd.date_range("2017", periods=2, tz=tz)._data | |
result = np.asarray(data) | |
expected = np.array( | |
[ | |
pd.Timestamp("2017-01-01T00:00:00", tz=tz), | |
pd.Timestamp("2017-01-02T00:00:00", tz=tz), | |
], | |
dtype=object, | |
) | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.asarray(data, dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.asarray(data, dtype="M8[ns]") | |
expected = np.array( | |
["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]" | |
) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_array_interface(self): | |
data = pd.date_range("2017", periods=2)._data | |
expected = np.array( | |
["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]" | |
) | |
result = np.asarray(data) | |
tm.assert_numpy_array_equal(result, expected) | |
result = np.asarray(data, dtype=object) | |
expected = np.array( | |
[pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")], | |
dtype=object, | |
) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_searchsorted_different_tz(self, index): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
arr = pd.DatetimeIndex(data, freq="D")._data.tz_localize("Asia/Tokyo") | |
if index: | |
arr = pd.Index(arr) | |
expected = arr.searchsorted(arr[2]) | |
result = arr.searchsorted(arr[2].tz_convert("UTC")) | |
assert result == expected | |
expected = arr.searchsorted(arr[2:6]) | |
result = arr.searchsorted(arr[2:6].tz_convert("UTC")) | |
tm.assert_equal(result, expected) | |
def test_searchsorted_tzawareness_compat(self, index): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
arr = pd.DatetimeIndex(data, freq="D")._data | |
if index: | |
arr = pd.Index(arr) | |
mismatch = arr.tz_localize("Asia/Tokyo") | |
msg = "Cannot compare tz-naive and tz-aware datetime-like objects" | |
with pytest.raises(TypeError, match=msg): | |
arr.searchsorted(mismatch[0]) | |
with pytest.raises(TypeError, match=msg): | |
arr.searchsorted(mismatch) | |
with pytest.raises(TypeError, match=msg): | |
mismatch.searchsorted(arr[0]) | |
with pytest.raises(TypeError, match=msg): | |
mismatch.searchsorted(arr) | |
def test_searchsorted_invalid_types(self, other, index): | |
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9 | |
arr = pd.DatetimeIndex(data, freq="D")._data | |
if index: | |
arr = pd.Index(arr) | |
msg = "|".join( | |
[ | |
"searchsorted requires compatible dtype or scalar", | |
"value should be a 'Timestamp', 'NaT', or array of those. Got", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
arr.searchsorted(other) | |
def test_shift_fill_value(self): | |
dti = pd.date_range("2016-01-01", periods=3) | |
dta = dti._data | |
expected = DatetimeArray._from_sequence(np.roll(dta._ndarray, 1)) | |
fv = dta[-1] | |
for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]: | |
result = dta.shift(1, fill_value=fill_value) | |
tm.assert_datetime_array_equal(result, expected) | |
dta = dta.tz_localize("UTC") | |
expected = expected.tz_localize("UTC") | |
fv = dta[-1] | |
for fill_value in [fv, fv.to_pydatetime()]: | |
result = dta.shift(1, fill_value=fill_value) | |
tm.assert_datetime_array_equal(result, expected) | |
def test_shift_value_tzawareness_mismatch(self): | |
dti = pd.date_range("2016-01-01", periods=3) | |
dta = dti._data | |
fv = dta[-1].tz_localize("UTC") | |
for invalid in [fv, fv.to_pydatetime()]: | |
with pytest.raises(TypeError, match="Cannot compare"): | |
dta.shift(1, fill_value=invalid) | |
dta = dta.tz_localize("UTC") | |
fv = dta[-1].tz_localize(None) | |
for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]: | |
with pytest.raises(TypeError, match="Cannot compare"): | |
dta.shift(1, fill_value=invalid) | |
def test_shift_requires_tzmatch(self): | |
# pre-2.0 we required exact tz match, in 2.0 we require just | |
# matching tzawareness | |
dti = pd.date_range("2016-01-01", periods=3, tz="UTC") | |
dta = dti._data | |
fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific") | |
result = dta.shift(1, fill_value=fill_value) | |
expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC")) | |
tm.assert_equal(result, expected) | |
def test_tz_localize_t2d(self): | |
dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific") | |
dta = dti._data.reshape(3, 4) | |
result = dta.tz_localize(None) | |
expected = dta.ravel().tz_localize(None).reshape(dta.shape) | |
tm.assert_datetime_array_equal(result, expected) | |
roundtrip = expected.tz_localize("US/Pacific") | |
tm.assert_datetime_array_equal(roundtrip, dta) | |
easts = ["US/Eastern", "dateutil/US/Eastern"] | |
if ZoneInfo is not None: | |
try: | |
tz = ZoneInfo("US/Eastern") | |
except KeyError: | |
# no tzdata | |
pass | |
else: | |
# Argument 1 to "append" of "list" has incompatible type "ZoneInfo"; | |
# expected "str" | |
easts.append(tz) # type: ignore[arg-type] | |
def test_iter_zoneinfo_fold(self, tz): | |
# GH#49684 | |
utc_vals = np.array( | |
[1320552000, 1320555600, 1320559200, 1320562800], dtype=np.int64 | |
) | |
utc_vals *= 1_000_000_000 | |
dta = DatetimeArray._from_sequence(utc_vals).tz_localize("UTC").tz_convert(tz) | |
left = dta[2] | |
right = list(dta)[2] | |
assert str(left) == str(right) | |
# previously there was a bug where with non-pytz right would be | |
# Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern') | |
# while left would be | |
# Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern') | |
# The .value's would match (so they would compare as equal), | |
# but the folds would not | |
assert left.utcoffset() == right.utcoffset() | |
# The same bug in ints_to_pydatetime affected .astype, so we test | |
# that here. | |
right2 = dta.astype(object)[2] | |
assert str(left) == str(right2) | |
assert left.utcoffset() == right2.utcoffset() | |
def test_date_range_frequency_M_Q_Y_A_deprecated(self, freq, freq_depr): | |
# GH#9586, GH#54275 | |
depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed " | |
f"in a future version, please use '{freq[1:]}' instead." | |
expected = pd.date_range("1/1/2000", periods=4, freq=freq) | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
result = pd.date_range("1/1/2000", periods=4, freq=freq_depr) | |
tm.assert_index_equal(result, expected) | |
def test_date_range_uppercase_frequency_deprecated(self, freq_depr): | |
# GH#9586, GH#54939 | |
depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a " | |
f"future version. Please use '{freq_depr.lower()[1:]}' instead." | |
expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.lower()) | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
result = pd.date_range("1/1/2000", periods=4, freq=freq_depr) | |
tm.assert_index_equal(result, expected) | |
def test_date_range_lowercase_frequency_deprecated(self, freq_depr): | |
# GH#9586, GH#54939 | |
depr_msg = f"'{freq_depr[1:]}' is deprecated and will be removed in a " | |
f"future version, please use '{freq_depr.upper()[1:]}' instead." | |
expected = pd.date_range("1/1/2000", periods=4, freq=freq_depr.upper()) | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
result = pd.date_range("1/1/2000", periods=4, freq=freq_depr) | |
tm.assert_index_equal(result, expected) | |
def test_factorize_sort_without_freq(): | |
dta = DatetimeArray._from_sequence([0, 2, 1], dtype="M8[ns]") | |
msg = r"call pd.factorize\(obj, sort=True\) instead" | |
with pytest.raises(NotImplementedError, match=msg): | |
dta.factorize(sort=True) | |
# Do TimedeltaArray while we're here | |
tda = dta - dta[0] | |
with pytest.raises(NotImplementedError, match=msg): | |
tda.factorize(sort=True) | |