peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/base
/test_unique.py
import numpy as np | |
import pytest | |
from pandas._config import using_pyarrow_string_dtype | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.tests.base.common import allow_na_ops | |
def test_unique(index_or_series_obj): | |
obj = index_or_series_obj | |
obj = np.repeat(obj, range(1, len(obj) + 1)) | |
result = obj.unique() | |
# dict.fromkeys preserves the order | |
unique_values = list(dict.fromkeys(obj.values)) | |
if isinstance(obj, pd.MultiIndex): | |
expected = pd.MultiIndex.from_tuples(unique_values) | |
expected.names = obj.names | |
tm.assert_index_equal(result, expected, exact=True) | |
elif isinstance(obj, pd.Index): | |
expected = pd.Index(unique_values, dtype=obj.dtype) | |
if isinstance(obj.dtype, pd.DatetimeTZDtype): | |
expected = expected.normalize() | |
tm.assert_index_equal(result, expected, exact=True) | |
else: | |
expected = np.array(unique_values) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_unique_null(null_obj, index_or_series_obj): | |
obj = index_or_series_obj | |
if not allow_na_ops(obj): | |
pytest.skip("type doesn't allow for NA operations") | |
elif len(obj) < 1: | |
pytest.skip("Test doesn't make sense on empty data") | |
elif isinstance(obj, pd.MultiIndex): | |
pytest.skip(f"MultiIndex can't hold '{null_obj}'") | |
values = obj._values | |
values[0:2] = null_obj | |
klass = type(obj) | |
repeated_values = np.repeat(values, range(1, len(values) + 1)) | |
obj = klass(repeated_values, dtype=obj.dtype) | |
result = obj.unique() | |
unique_values_raw = dict.fromkeys(obj.values) | |
# because np.nan == np.nan is False, but None == None is True | |
# np.nan would be duplicated, whereas None wouldn't | |
unique_values_not_null = [val for val in unique_values_raw if not pd.isnull(val)] | |
unique_values = [null_obj] + unique_values_not_null | |
if isinstance(obj, pd.Index): | |
expected = pd.Index(unique_values, dtype=obj.dtype) | |
if isinstance(obj.dtype, pd.DatetimeTZDtype): | |
result = result.normalize() | |
expected = expected.normalize() | |
tm.assert_index_equal(result, expected, exact=True) | |
else: | |
expected = np.array(unique_values, dtype=obj.dtype) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_nunique(index_or_series_obj): | |
obj = index_or_series_obj | |
obj = np.repeat(obj, range(1, len(obj) + 1)) | |
expected = len(obj.unique()) | |
assert obj.nunique(dropna=False) == expected | |
def test_nunique_null(null_obj, index_or_series_obj): | |
obj = index_or_series_obj | |
if not allow_na_ops(obj): | |
pytest.skip("type doesn't allow for NA operations") | |
elif isinstance(obj, pd.MultiIndex): | |
pytest.skip(f"MultiIndex can't hold '{null_obj}'") | |
values = obj._values | |
values[0:2] = null_obj | |
klass = type(obj) | |
repeated_values = np.repeat(values, range(1, len(values) + 1)) | |
obj = klass(repeated_values, dtype=obj.dtype) | |
if isinstance(obj, pd.CategoricalIndex): | |
assert obj.nunique() == len(obj.categories) | |
assert obj.nunique(dropna=False) == len(obj.categories) + 1 | |
else: | |
num_unique_values = len(obj.unique()) | |
assert obj.nunique() == max(0, num_unique_values - 1) | |
assert obj.nunique(dropna=False) == max(0, num_unique_values) | |
def test_unique_bad_unicode(index_or_series): | |
# regression test for #34550 | |
uval = "\ud83d" # smiley emoji | |
obj = index_or_series([uval] * 2) | |
result = obj.unique() | |
if isinstance(obj, pd.Index): | |
expected = pd.Index(["\ud83d"], dtype=object) | |
tm.assert_index_equal(result, expected, exact=True) | |
else: | |
expected = np.array(["\ud83d"], dtype=object) | |
tm.assert_numpy_array_equal(result, expected) | |
def test_nunique_dropna(dropna): | |
# GH37566 | |
ser = pd.Series(["yes", "yes", pd.NA, np.nan, None, pd.NaT]) | |
res = ser.nunique(dropna) | |
assert res == 1 if dropna else 5 | |