peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/conftest.py
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
date_range, | |
) | |
from pandas.core.groupby.base import ( | |
reduction_kernels, | |
transformation_kernels, | |
) | |
def sort(request): | |
return request.param | |
def as_index(request): | |
return request.param | |
def dropna(request): | |
return request.param | |
def observed(request): | |
return request.param | |
def df(): | |
return DataFrame( | |
{ | |
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], | |
"B": ["one", "one", "two", "three", "two", "two", "one", "three"], | |
"C": np.random.default_rng(2).standard_normal(8), | |
"D": np.random.default_rng(2).standard_normal(8), | |
} | |
) | |
def ts(): | |
return Series( | |
np.random.default_rng(2).standard_normal(30), | |
index=date_range("2000-01-01", periods=30, freq="B"), | |
) | |
def tsframe(): | |
return DataFrame( | |
np.random.default_rng(2).standard_normal((30, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=30, freq="B"), | |
) | |
def three_group(): | |
return DataFrame( | |
{ | |
"A": [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
"foo", | |
"foo", | |
"foo", | |
], | |
"B": [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"two", | |
"one", | |
], | |
"C": [ | |
"dull", | |
"dull", | |
"shiny", | |
"dull", | |
"dull", | |
"shiny", | |
"shiny", | |
"dull", | |
"shiny", | |
"shiny", | |
"shiny", | |
], | |
"D": np.random.default_rng(2).standard_normal(11), | |
"E": np.random.default_rng(2).standard_normal(11), | |
"F": np.random.default_rng(2).standard_normal(11), | |
} | |
) | |
def slice_test_df(): | |
data = [ | |
[0, "a", "a0_at_0"], | |
[1, "b", "b0_at_1"], | |
[2, "a", "a1_at_2"], | |
[3, "b", "b1_at_3"], | |
[4, "c", "c0_at_4"], | |
[5, "a", "a2_at_5"], | |
[6, "a", "a3_at_6"], | |
[7, "a", "a4_at_7"], | |
] | |
df = DataFrame(data, columns=["Index", "Group", "Value"]) | |
return df.set_index("Index") | |
def slice_test_grouped(slice_test_df): | |
return slice_test_df.groupby("Group", as_index=False) | |
def reduction_func(request): | |
""" | |
yields the string names of all groupby reduction functions, one at a time. | |
""" | |
return request.param | |
def transformation_func(request): | |
"""yields the string names of all groupby transformation functions.""" | |
return request.param | |
def groupby_func(request): | |
"""yields both aggregation and transformation functions.""" | |
return request.param | |
def parallel(request): | |
"""parallel keyword argument for numba.jit""" | |
return request.param | |
# Can parameterize nogil & nopython over True | False, but limiting per | |
# https://github.com/pandas-dev/pandas/pull/41971#issuecomment-860607472 | |
def nogil(request): | |
"""nogil keyword argument for numba.jit""" | |
return request.param | |
def nopython(request): | |
"""nopython keyword argument for numba.jit""" | |
return request.param | |
def numba_supported_reductions(request): | |
"""reductions supported with engine='numba'""" | |
return request.param | |