Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_180_mp_rank_00_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_46_mp_rank_00_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_90_mp_rank_03_optim_states.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/__init__.py +25 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_aggregate.py +1672 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_cython.py +435 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_numba.py +392 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_other.py +675 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/conftest.py +208 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_all_methods.py +83 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_api.py +265 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_apply.py +1606 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_apply_mutate.py +163 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_bin_groupby.py +65 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_categorical.py +2169 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_counting.py +394 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_cumulative.py +319 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_filters.py +636 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby_dropna.py +696 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby_subclass.py +135 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_grouping.py +1236 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_index_as_string.py +85 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_indexing.py +333 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_libgroupby.py +331 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_missing.py +163 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_numba.py +80 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_numeric_only.py +521 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_pipe.py +80 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_raises.py +716 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_reductions.py +1176 -0
- venv/lib/python3.10/site-packages/pandas/tests/groupby/test_timegrouper.py +963 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/conftest.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_c_parser_only.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_comment.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_compression.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_concatenate_chunks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_converters.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_encoding.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_header.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_mangle_dupes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_multi_thread.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_na_values.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_network.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_parse_dates.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_python_parser_only.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_quoting.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_read_fwf.cpython-310.pyc +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_180_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8473e8705345f07b09663c4bde90d4cb68b759804dd8fc1d59efa6833debf41
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_46_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60044f4ceb01efeb14c6d5362fb835c27a4a366de279a19d862a37e50a8b2d8
|
3 |
+
size 41830138
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_90_mp_rank_03_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0734336ccb5cc29b5d47ee8b114c84cea1a7803948296b50b0411052ef6abf74
|
3 |
+
size 41830330
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def get_groupby_method_args(name, obj):
|
2 |
+
"""
|
3 |
+
Get required arguments for a groupby method.
|
4 |
+
|
5 |
+
When parametrizing a test over groupby methods (e.g. "sum", "mean", "fillna"),
|
6 |
+
it is often the case that arguments are required for certain methods.
|
7 |
+
|
8 |
+
Parameters
|
9 |
+
----------
|
10 |
+
name: str
|
11 |
+
Name of the method.
|
12 |
+
obj: Series or DataFrame
|
13 |
+
pandas object that is being grouped.
|
14 |
+
|
15 |
+
Returns
|
16 |
+
-------
|
17 |
+
A tuple of required arguments for the method.
|
18 |
+
"""
|
19 |
+
if name in ("nth", "fillna", "take"):
|
20 |
+
return (0,)
|
21 |
+
if name == "quantile":
|
22 |
+
return (0.5,)
|
23 |
+
if name == "corrwith":
|
24 |
+
return (obj,)
|
25 |
+
return ()
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_aggregate.py
ADDED
@@ -0,0 +1,1672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
test .agg behavior / note that .apply is tested generally in test_groupby.py
|
3 |
+
"""
|
4 |
+
import datetime
|
5 |
+
import functools
|
6 |
+
from functools import partial
|
7 |
+
import re
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
from pandas.errors import SpecificationError
|
13 |
+
|
14 |
+
from pandas.core.dtypes.common import is_integer_dtype
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
from pandas import (
|
18 |
+
DataFrame,
|
19 |
+
Index,
|
20 |
+
MultiIndex,
|
21 |
+
Series,
|
22 |
+
concat,
|
23 |
+
to_datetime,
|
24 |
+
)
|
25 |
+
import pandas._testing as tm
|
26 |
+
from pandas.core.groupby.grouper import Grouping
|
27 |
+
|
28 |
+
|
29 |
+
def test_groupby_agg_no_extra_calls():
|
30 |
+
# GH#31760
|
31 |
+
df = DataFrame({"key": ["a", "b", "c", "c"], "value": [1, 2, 3, 4]})
|
32 |
+
gb = df.groupby("key")["value"]
|
33 |
+
|
34 |
+
def dummy_func(x):
|
35 |
+
assert len(x) != 0
|
36 |
+
return x.sum()
|
37 |
+
|
38 |
+
gb.agg(dummy_func)
|
39 |
+
|
40 |
+
|
41 |
+
def test_agg_regression1(tsframe):
|
42 |
+
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
|
43 |
+
result = grouped.agg("mean")
|
44 |
+
expected = grouped.mean()
|
45 |
+
tm.assert_frame_equal(result, expected)
|
46 |
+
|
47 |
+
|
48 |
+
def test_agg_must_agg(df):
|
49 |
+
grouped = df.groupby("A")["C"]
|
50 |
+
|
51 |
+
msg = "Must produce aggregated value"
|
52 |
+
with pytest.raises(Exception, match=msg):
|
53 |
+
grouped.agg(lambda x: x.describe())
|
54 |
+
with pytest.raises(Exception, match=msg):
|
55 |
+
grouped.agg(lambda x: x.index[:2])
|
56 |
+
|
57 |
+
|
58 |
+
def test_agg_ser_multi_key(df):
|
59 |
+
f = lambda x: x.sum()
|
60 |
+
results = df.C.groupby([df.A, df.B]).aggregate(f)
|
61 |
+
expected = df.groupby(["A", "B"]).sum()["C"]
|
62 |
+
tm.assert_series_equal(results, expected)
|
63 |
+
|
64 |
+
|
65 |
+
def test_groupby_aggregation_mixed_dtype():
|
66 |
+
# GH 6212
|
67 |
+
expected = DataFrame(
|
68 |
+
{
|
69 |
+
"v1": [5, 5, 7, np.nan, 3, 3, 4, 1],
|
70 |
+
"v2": [55, 55, 77, np.nan, 33, 33, 44, 11],
|
71 |
+
},
|
72 |
+
index=MultiIndex.from_tuples(
|
73 |
+
[
|
74 |
+
(1, 95),
|
75 |
+
(1, 99),
|
76 |
+
(2, 95),
|
77 |
+
(2, 99),
|
78 |
+
("big", "damp"),
|
79 |
+
("blue", "dry"),
|
80 |
+
("red", "red"),
|
81 |
+
("red", "wet"),
|
82 |
+
],
|
83 |
+
names=["by1", "by2"],
|
84 |
+
),
|
85 |
+
)
|
86 |
+
|
87 |
+
df = DataFrame(
|
88 |
+
{
|
89 |
+
"v1": [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
|
90 |
+
"v2": [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
|
91 |
+
"by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
|
92 |
+
"by2": [
|
93 |
+
"wet",
|
94 |
+
"dry",
|
95 |
+
99,
|
96 |
+
95,
|
97 |
+
np.nan,
|
98 |
+
"damp",
|
99 |
+
95,
|
100 |
+
99,
|
101 |
+
"red",
|
102 |
+
99,
|
103 |
+
np.nan,
|
104 |
+
np.nan,
|
105 |
+
],
|
106 |
+
}
|
107 |
+
)
|
108 |
+
|
109 |
+
g = df.groupby(["by1", "by2"])
|
110 |
+
result = g[["v1", "v2"]].mean()
|
111 |
+
tm.assert_frame_equal(result, expected)
|
112 |
+
|
113 |
+
|
114 |
+
def test_groupby_aggregation_multi_level_column():
|
115 |
+
# GH 29772
|
116 |
+
lst = [
|
117 |
+
[True, True, True, False],
|
118 |
+
[True, False, np.nan, False],
|
119 |
+
[True, True, np.nan, False],
|
120 |
+
[True, True, np.nan, False],
|
121 |
+
]
|
122 |
+
df = DataFrame(
|
123 |
+
data=lst,
|
124 |
+
columns=MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 0), ("B", 1)]),
|
125 |
+
)
|
126 |
+
|
127 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
128 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
129 |
+
gb = df.groupby(level=1, axis=1)
|
130 |
+
result = gb.sum(numeric_only=False)
|
131 |
+
expected = DataFrame({0: [2.0, True, True, True], 1: [1, 0, 1, 1]})
|
132 |
+
|
133 |
+
tm.assert_frame_equal(result, expected)
|
134 |
+
|
135 |
+
|
136 |
+
def test_agg_apply_corner(ts, tsframe):
|
137 |
+
# nothing to group, all NA
|
138 |
+
grouped = ts.groupby(ts * np.nan, group_keys=False)
|
139 |
+
assert ts.dtype == np.float64
|
140 |
+
|
141 |
+
# groupby float64 values results in a float64 Index
|
142 |
+
exp = Series([], dtype=np.float64, index=Index([], dtype=np.float64))
|
143 |
+
tm.assert_series_equal(grouped.sum(), exp)
|
144 |
+
tm.assert_series_equal(grouped.agg("sum"), exp)
|
145 |
+
tm.assert_series_equal(grouped.apply("sum"), exp, check_index_type=False)
|
146 |
+
|
147 |
+
# DataFrame
|
148 |
+
grouped = tsframe.groupby(tsframe["A"] * np.nan, group_keys=False)
|
149 |
+
exp_df = DataFrame(
|
150 |
+
columns=tsframe.columns,
|
151 |
+
dtype=float,
|
152 |
+
index=Index([], name="A", dtype=np.float64),
|
153 |
+
)
|
154 |
+
tm.assert_frame_equal(grouped.sum(), exp_df)
|
155 |
+
tm.assert_frame_equal(grouped.agg("sum"), exp_df)
|
156 |
+
|
157 |
+
msg = "The behavior of DataFrame.sum with axis=None is deprecated"
|
158 |
+
with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False):
|
159 |
+
res = grouped.apply(np.sum)
|
160 |
+
tm.assert_frame_equal(res, exp_df)
|
161 |
+
|
162 |
+
|
163 |
+
def test_agg_grouping_is_list_tuple(ts):
|
164 |
+
df = DataFrame(
|
165 |
+
np.random.default_rng(2).standard_normal((30, 4)),
|
166 |
+
columns=Index(list("ABCD"), dtype=object),
|
167 |
+
index=pd.date_range("2000-01-01", periods=30, freq="B"),
|
168 |
+
)
|
169 |
+
|
170 |
+
grouped = df.groupby(lambda x: x.year)
|
171 |
+
grouper = grouped._grouper.groupings[0].grouping_vector
|
172 |
+
grouped._grouper.groupings[0] = Grouping(ts.index, list(grouper))
|
173 |
+
|
174 |
+
result = grouped.agg("mean")
|
175 |
+
expected = grouped.mean()
|
176 |
+
tm.assert_frame_equal(result, expected)
|
177 |
+
|
178 |
+
grouped._grouper.groupings[0] = Grouping(ts.index, tuple(grouper))
|
179 |
+
|
180 |
+
result = grouped.agg("mean")
|
181 |
+
expected = grouped.mean()
|
182 |
+
tm.assert_frame_equal(result, expected)
|
183 |
+
|
184 |
+
|
185 |
+
def test_agg_python_multiindex(multiindex_dataframe_random_data):
|
186 |
+
grouped = multiindex_dataframe_random_data.groupby(["A", "B"])
|
187 |
+
|
188 |
+
result = grouped.agg("mean")
|
189 |
+
expected = grouped.mean()
|
190 |
+
tm.assert_frame_equal(result, expected)
|
191 |
+
|
192 |
+
|
193 |
+
@pytest.mark.parametrize(
|
194 |
+
"groupbyfunc", [lambda x: x.weekday(), [lambda x: x.month, lambda x: x.weekday()]]
|
195 |
+
)
|
196 |
+
def test_aggregate_str_func(tsframe, groupbyfunc):
|
197 |
+
grouped = tsframe.groupby(groupbyfunc)
|
198 |
+
|
199 |
+
# single series
|
200 |
+
result = grouped["A"].agg("std")
|
201 |
+
expected = grouped["A"].std()
|
202 |
+
tm.assert_series_equal(result, expected)
|
203 |
+
|
204 |
+
# group frame by function name
|
205 |
+
result = grouped.aggregate("var")
|
206 |
+
expected = grouped.var()
|
207 |
+
tm.assert_frame_equal(result, expected)
|
208 |
+
|
209 |
+
# group frame by function dict
|
210 |
+
result = grouped.agg({"A": "var", "B": "std", "C": "mean", "D": "sem"})
|
211 |
+
expected = DataFrame(
|
212 |
+
{
|
213 |
+
"A": grouped["A"].var(),
|
214 |
+
"B": grouped["B"].std(),
|
215 |
+
"C": grouped["C"].mean(),
|
216 |
+
"D": grouped["D"].sem(),
|
217 |
+
}
|
218 |
+
)
|
219 |
+
tm.assert_frame_equal(result, expected)
|
220 |
+
|
221 |
+
|
222 |
+
def test_std_masked_dtype(any_numeric_ea_dtype):
|
223 |
+
# GH#35516
|
224 |
+
df = DataFrame(
|
225 |
+
{
|
226 |
+
"a": [2, 1, 1, 1, 2, 2, 1],
|
227 |
+
"b": Series([pd.NA, 1, 2, 1, 1, 1, 2], dtype="Float64"),
|
228 |
+
}
|
229 |
+
)
|
230 |
+
result = df.groupby("a").std()
|
231 |
+
expected = DataFrame(
|
232 |
+
{"b": [0.57735, 0]}, index=Index([1, 2], name="a"), dtype="Float64"
|
233 |
+
)
|
234 |
+
tm.assert_frame_equal(result, expected)
|
235 |
+
|
236 |
+
|
237 |
+
def test_agg_str_with_kwarg_axis_1_raises(df, reduction_func):
|
238 |
+
gb = df.groupby(level=0)
|
239 |
+
warn_msg = f"DataFrameGroupBy.{reduction_func} with axis=1 is deprecated"
|
240 |
+
if reduction_func in ("idxmax", "idxmin"):
|
241 |
+
error = TypeError
|
242 |
+
msg = "'[<>]' not supported between instances of 'float' and 'str'"
|
243 |
+
warn = FutureWarning
|
244 |
+
else:
|
245 |
+
error = ValueError
|
246 |
+
msg = f"Operation {reduction_func} does not support axis=1"
|
247 |
+
warn = None
|
248 |
+
with pytest.raises(error, match=msg):
|
249 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
250 |
+
gb.agg(reduction_func, axis=1)
|
251 |
+
|
252 |
+
|
253 |
+
@pytest.mark.parametrize(
|
254 |
+
"func, expected, dtype, result_dtype_dict",
|
255 |
+
[
|
256 |
+
("sum", [5, 7, 9], "int64", {}),
|
257 |
+
("std", [4.5**0.5] * 3, int, {"i": float, "j": float, "k": float}),
|
258 |
+
("var", [4.5] * 3, int, {"i": float, "j": float, "k": float}),
|
259 |
+
("sum", [5, 7, 9], "Int64", {"j": "int64"}),
|
260 |
+
("std", [4.5**0.5] * 3, "Int64", {"i": float, "j": float, "k": float}),
|
261 |
+
("var", [4.5] * 3, "Int64", {"i": "float64", "j": "float64", "k": "float64"}),
|
262 |
+
],
|
263 |
+
)
|
264 |
+
def test_multiindex_groupby_mixed_cols_axis1(func, expected, dtype, result_dtype_dict):
|
265 |
+
# GH#43209
|
266 |
+
df = DataFrame(
|
267 |
+
[[1, 2, 3, 4, 5, 6]] * 3,
|
268 |
+
columns=MultiIndex.from_product([["a", "b"], ["i", "j", "k"]]),
|
269 |
+
).astype({("a", "j"): dtype, ("b", "j"): dtype})
|
270 |
+
|
271 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
272 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
273 |
+
gb = df.groupby(level=1, axis=1)
|
274 |
+
result = gb.agg(func)
|
275 |
+
expected = DataFrame([expected] * 3, columns=["i", "j", "k"]).astype(
|
276 |
+
result_dtype_dict
|
277 |
+
)
|
278 |
+
|
279 |
+
tm.assert_frame_equal(result, expected)
|
280 |
+
|
281 |
+
|
282 |
+
@pytest.mark.parametrize(
|
283 |
+
"func, expected_data, result_dtype_dict",
|
284 |
+
[
|
285 |
+
("sum", [[2, 4], [10, 12], [18, 20]], {10: "int64", 20: "int64"}),
|
286 |
+
# std should ideally return Int64 / Float64 #43330
|
287 |
+
("std", [[2**0.5] * 2] * 3, "float64"),
|
288 |
+
("var", [[2] * 2] * 3, {10: "float64", 20: "float64"}),
|
289 |
+
],
|
290 |
+
)
|
291 |
+
def test_groupby_mixed_cols_axis1(func, expected_data, result_dtype_dict):
|
292 |
+
# GH#43209
|
293 |
+
df = DataFrame(
|
294 |
+
np.arange(12).reshape(3, 4),
|
295 |
+
index=Index([0, 1, 0], name="y"),
|
296 |
+
columns=Index([10, 20, 10, 20], name="x"),
|
297 |
+
dtype="int64",
|
298 |
+
).astype({10: "Int64"})
|
299 |
+
|
300 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
301 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
302 |
+
gb = df.groupby("x", axis=1)
|
303 |
+
result = gb.agg(func)
|
304 |
+
expected = DataFrame(
|
305 |
+
data=expected_data,
|
306 |
+
index=Index([0, 1, 0], name="y"),
|
307 |
+
columns=Index([10, 20], name="x"),
|
308 |
+
).astype(result_dtype_dict)
|
309 |
+
tm.assert_frame_equal(result, expected)
|
310 |
+
|
311 |
+
|
312 |
+
def test_aggregate_item_by_item(df):
|
313 |
+
grouped = df.groupby("A")
|
314 |
+
|
315 |
+
aggfun_0 = lambda ser: ser.size
|
316 |
+
result = grouped.agg(aggfun_0)
|
317 |
+
foosum = (df.A == "foo").sum()
|
318 |
+
barsum = (df.A == "bar").sum()
|
319 |
+
K = len(result.columns)
|
320 |
+
|
321 |
+
# GH5782
|
322 |
+
exp = Series(np.array([foosum] * K), index=list("BCD"), name="foo")
|
323 |
+
tm.assert_series_equal(result.xs("foo"), exp)
|
324 |
+
|
325 |
+
exp = Series(np.array([barsum] * K), index=list("BCD"), name="bar")
|
326 |
+
tm.assert_almost_equal(result.xs("bar"), exp)
|
327 |
+
|
328 |
+
def aggfun_1(ser):
|
329 |
+
return ser.size
|
330 |
+
|
331 |
+
result = DataFrame().groupby(df.A).agg(aggfun_1)
|
332 |
+
assert isinstance(result, DataFrame)
|
333 |
+
assert len(result) == 0
|
334 |
+
|
335 |
+
|
336 |
+
def test_wrap_agg_out(three_group):
|
337 |
+
grouped = three_group.groupby(["A", "B"])
|
338 |
+
|
339 |
+
def func(ser):
|
340 |
+
if ser.dtype == object:
|
341 |
+
raise TypeError("Test error message")
|
342 |
+
return ser.sum()
|
343 |
+
|
344 |
+
with pytest.raises(TypeError, match="Test error message"):
|
345 |
+
grouped.aggregate(func)
|
346 |
+
result = grouped[["D", "E", "F"]].aggregate(func)
|
347 |
+
exp_grouped = three_group.loc[:, ["A", "B", "D", "E", "F"]]
|
348 |
+
expected = exp_grouped.groupby(["A", "B"]).aggregate(func)
|
349 |
+
tm.assert_frame_equal(result, expected)
|
350 |
+
|
351 |
+
|
352 |
+
def test_agg_multiple_functions_maintain_order(df):
|
353 |
+
# GH #610
|
354 |
+
funcs = [("mean", np.mean), ("max", np.max), ("min", np.min)]
|
355 |
+
msg = "is currently using SeriesGroupBy.mean"
|
356 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
357 |
+
result = df.groupby("A")["C"].agg(funcs)
|
358 |
+
exp_cols = Index(["mean", "max", "min"])
|
359 |
+
|
360 |
+
tm.assert_index_equal(result.columns, exp_cols)
|
361 |
+
|
362 |
+
|
363 |
+
def test_series_index_name(df):
|
364 |
+
grouped = df.loc[:, ["C"]].groupby(df["A"])
|
365 |
+
result = grouped.agg(lambda x: x.mean())
|
366 |
+
assert result.index.name == "A"
|
367 |
+
|
368 |
+
|
369 |
+
def test_agg_multiple_functions_same_name():
|
370 |
+
# GH 30880
|
371 |
+
df = DataFrame(
|
372 |
+
np.random.default_rng(2).standard_normal((1000, 3)),
|
373 |
+
index=pd.date_range("1/1/2012", freq="s", periods=1000),
|
374 |
+
columns=["A", "B", "C"],
|
375 |
+
)
|
376 |
+
result = df.resample("3min").agg(
|
377 |
+
{"A": [partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
|
378 |
+
)
|
379 |
+
expected_index = pd.date_range("1/1/2012", freq="3min", periods=6)
|
380 |
+
expected_columns = MultiIndex.from_tuples([("A", "quantile"), ("A", "quantile")])
|
381 |
+
expected_values = np.array(
|
382 |
+
[df.resample("3min").A.quantile(q=q).values for q in [0.9999, 0.1111]]
|
383 |
+
).T
|
384 |
+
expected = DataFrame(
|
385 |
+
expected_values, columns=expected_columns, index=expected_index
|
386 |
+
)
|
387 |
+
tm.assert_frame_equal(result, expected)
|
388 |
+
|
389 |
+
|
390 |
+
def test_agg_multiple_functions_same_name_with_ohlc_present():
|
391 |
+
# GH 30880
|
392 |
+
# ohlc expands dimensions, so different test to the above is required.
|
393 |
+
df = DataFrame(
|
394 |
+
np.random.default_rng(2).standard_normal((1000, 3)),
|
395 |
+
index=pd.date_range("1/1/2012", freq="s", periods=1000, name="dti"),
|
396 |
+
columns=Index(["A", "B", "C"], name="alpha"),
|
397 |
+
)
|
398 |
+
result = df.resample("3min").agg(
|
399 |
+
{"A": ["ohlc", partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
|
400 |
+
)
|
401 |
+
expected_index = pd.date_range("1/1/2012", freq="3min", periods=6, name="dti")
|
402 |
+
expected_columns = MultiIndex.from_tuples(
|
403 |
+
[
|
404 |
+
("A", "ohlc", "open"),
|
405 |
+
("A", "ohlc", "high"),
|
406 |
+
("A", "ohlc", "low"),
|
407 |
+
("A", "ohlc", "close"),
|
408 |
+
("A", "quantile", "A"),
|
409 |
+
("A", "quantile", "A"),
|
410 |
+
],
|
411 |
+
names=["alpha", None, None],
|
412 |
+
)
|
413 |
+
non_ohlc_expected_values = np.array(
|
414 |
+
[df.resample("3min").A.quantile(q=q).values for q in [0.9999, 0.1111]]
|
415 |
+
).T
|
416 |
+
expected_values = np.hstack(
|
417 |
+
[df.resample("3min").A.ohlc(), non_ohlc_expected_values]
|
418 |
+
)
|
419 |
+
expected = DataFrame(
|
420 |
+
expected_values, columns=expected_columns, index=expected_index
|
421 |
+
)
|
422 |
+
tm.assert_frame_equal(result, expected)
|
423 |
+
|
424 |
+
|
425 |
+
def test_multiple_functions_tuples_and_non_tuples(df):
|
426 |
+
# #1359
|
427 |
+
# Columns B and C would cause partial failure
|
428 |
+
df = df.drop(columns=["B", "C"])
|
429 |
+
|
430 |
+
funcs = [("foo", "mean"), "std"]
|
431 |
+
ex_funcs = [("foo", "mean"), ("std", "std")]
|
432 |
+
|
433 |
+
result = df.groupby("A")["D"].agg(funcs)
|
434 |
+
expected = df.groupby("A")["D"].agg(ex_funcs)
|
435 |
+
tm.assert_frame_equal(result, expected)
|
436 |
+
|
437 |
+
result = df.groupby("A").agg(funcs)
|
438 |
+
expected = df.groupby("A").agg(ex_funcs)
|
439 |
+
tm.assert_frame_equal(result, expected)
|
440 |
+
|
441 |
+
|
442 |
+
def test_more_flexible_frame_multi_function(df):
|
443 |
+
grouped = df.groupby("A")
|
444 |
+
|
445 |
+
exmean = grouped.agg({"C": "mean", "D": "mean"})
|
446 |
+
exstd = grouped.agg({"C": "std", "D": "std"})
|
447 |
+
|
448 |
+
expected = concat([exmean, exstd], keys=["mean", "std"], axis=1)
|
449 |
+
expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
|
450 |
+
|
451 |
+
d = {"C": ["mean", "std"], "D": ["mean", "std"]}
|
452 |
+
result = grouped.aggregate(d)
|
453 |
+
|
454 |
+
tm.assert_frame_equal(result, expected)
|
455 |
+
|
456 |
+
# be careful
|
457 |
+
result = grouped.aggregate({"C": "mean", "D": ["mean", "std"]})
|
458 |
+
expected = grouped.aggregate({"C": "mean", "D": ["mean", "std"]})
|
459 |
+
tm.assert_frame_equal(result, expected)
|
460 |
+
|
461 |
+
def numpymean(x):
|
462 |
+
return np.mean(x)
|
463 |
+
|
464 |
+
def numpystd(x):
|
465 |
+
return np.std(x, ddof=1)
|
466 |
+
|
467 |
+
# this uses column selection & renaming
|
468 |
+
msg = r"nested renamer is not supported"
|
469 |
+
with pytest.raises(SpecificationError, match=msg):
|
470 |
+
d = {"C": "mean", "D": {"foo": "mean", "bar": "std"}}
|
471 |
+
grouped.aggregate(d)
|
472 |
+
|
473 |
+
# But without renaming, these functions are OK
|
474 |
+
d = {"C": ["mean"], "D": [numpymean, numpystd]}
|
475 |
+
grouped.aggregate(d)
|
476 |
+
|
477 |
+
|
478 |
+
def test_multi_function_flexible_mix(df):
|
479 |
+
# GH #1268
|
480 |
+
grouped = df.groupby("A")
|
481 |
+
|
482 |
+
# Expected
|
483 |
+
d = {"C": {"foo": "mean", "bar": "std"}, "D": {"sum": "sum"}}
|
484 |
+
# this uses column selection & renaming
|
485 |
+
msg = r"nested renamer is not supported"
|
486 |
+
with pytest.raises(SpecificationError, match=msg):
|
487 |
+
grouped.aggregate(d)
|
488 |
+
|
489 |
+
# Test 1
|
490 |
+
d = {"C": {"foo": "mean", "bar": "std"}, "D": "sum"}
|
491 |
+
# this uses column selection & renaming
|
492 |
+
with pytest.raises(SpecificationError, match=msg):
|
493 |
+
grouped.aggregate(d)
|
494 |
+
|
495 |
+
# Test 2
|
496 |
+
d = {"C": {"foo": "mean", "bar": "std"}, "D": "sum"}
|
497 |
+
# this uses column selection & renaming
|
498 |
+
with pytest.raises(SpecificationError, match=msg):
|
499 |
+
grouped.aggregate(d)
|
500 |
+
|
501 |
+
|
502 |
+
def test_groupby_agg_coercing_bools():
|
503 |
+
# issue 14873
|
504 |
+
dat = DataFrame({"a": [1, 1, 2, 2], "b": [0, 1, 2, 3], "c": [None, None, 1, 1]})
|
505 |
+
gp = dat.groupby("a")
|
506 |
+
|
507 |
+
index = Index([1, 2], name="a")
|
508 |
+
|
509 |
+
result = gp["b"].aggregate(lambda x: (x != 0).all())
|
510 |
+
expected = Series([False, True], index=index, name="b")
|
511 |
+
tm.assert_series_equal(result, expected)
|
512 |
+
|
513 |
+
result = gp["c"].aggregate(lambda x: x.isnull().all())
|
514 |
+
expected = Series([True, False], index=index, name="c")
|
515 |
+
tm.assert_series_equal(result, expected)
|
516 |
+
|
517 |
+
|
518 |
+
def test_groupby_agg_dict_with_getitem():
|
519 |
+
# issue 25471
|
520 |
+
dat = DataFrame({"A": ["A", "A", "B", "B", "B"], "B": [1, 2, 1, 1, 2]})
|
521 |
+
result = dat.groupby("A")[["B"]].agg({"B": "sum"})
|
522 |
+
|
523 |
+
expected = DataFrame({"B": [3, 4]}, index=["A", "B"]).rename_axis("A", axis=0)
|
524 |
+
|
525 |
+
tm.assert_frame_equal(result, expected)
|
526 |
+
|
527 |
+
|
528 |
+
def test_groupby_agg_dict_dup_columns():
|
529 |
+
# GH#55006
|
530 |
+
df = DataFrame(
|
531 |
+
[[1, 2, 3, 4], [1, 3, 4, 5], [2, 4, 5, 6]],
|
532 |
+
columns=["a", "b", "c", "c"],
|
533 |
+
)
|
534 |
+
gb = df.groupby("a")
|
535 |
+
result = gb.agg({"b": "sum"})
|
536 |
+
expected = DataFrame({"b": [5, 4]}, index=Index([1, 2], name="a"))
|
537 |
+
tm.assert_frame_equal(result, expected)
|
538 |
+
|
539 |
+
|
540 |
+
@pytest.mark.parametrize(
|
541 |
+
"op",
|
542 |
+
[
|
543 |
+
lambda x: x.sum(),
|
544 |
+
lambda x: x.cumsum(),
|
545 |
+
lambda x: x.transform("sum"),
|
546 |
+
lambda x: x.transform("cumsum"),
|
547 |
+
lambda x: x.agg("sum"),
|
548 |
+
lambda x: x.agg("cumsum"),
|
549 |
+
],
|
550 |
+
)
|
551 |
+
def test_bool_agg_dtype(op):
|
552 |
+
# GH 7001
|
553 |
+
# Bool sum aggregations result in int
|
554 |
+
df = DataFrame({"a": [1, 1], "b": [False, True]})
|
555 |
+
s = df.set_index("a")["b"]
|
556 |
+
|
557 |
+
result = op(df.groupby("a"))["b"].dtype
|
558 |
+
assert is_integer_dtype(result)
|
559 |
+
|
560 |
+
result = op(s.groupby("a")).dtype
|
561 |
+
assert is_integer_dtype(result)
|
562 |
+
|
563 |
+
|
564 |
+
@pytest.mark.parametrize(
|
565 |
+
"keys, agg_index",
|
566 |
+
[
|
567 |
+
(["a"], Index([1], name="a")),
|
568 |
+
(["a", "b"], MultiIndex([[1], [2]], [[0], [0]], names=["a", "b"])),
|
569 |
+
],
|
570 |
+
)
|
571 |
+
@pytest.mark.parametrize(
|
572 |
+
"input_dtype", ["bool", "int32", "int64", "float32", "float64"]
|
573 |
+
)
|
574 |
+
@pytest.mark.parametrize(
|
575 |
+
"result_dtype", ["bool", "int32", "int64", "float32", "float64"]
|
576 |
+
)
|
577 |
+
@pytest.mark.parametrize("method", ["apply", "aggregate", "transform"])
|
578 |
+
def test_callable_result_dtype_frame(
|
579 |
+
keys, agg_index, input_dtype, result_dtype, method
|
580 |
+
):
|
581 |
+
# GH 21240
|
582 |
+
df = DataFrame({"a": [1], "b": [2], "c": [True]})
|
583 |
+
df["c"] = df["c"].astype(input_dtype)
|
584 |
+
op = getattr(df.groupby(keys)[["c"]], method)
|
585 |
+
result = op(lambda x: x.astype(result_dtype).iloc[0])
|
586 |
+
expected_index = pd.RangeIndex(0, 1) if method == "transform" else agg_index
|
587 |
+
expected = DataFrame({"c": [df["c"].iloc[0]]}, index=expected_index).astype(
|
588 |
+
result_dtype
|
589 |
+
)
|
590 |
+
if method == "apply":
|
591 |
+
expected.columns.names = [0]
|
592 |
+
tm.assert_frame_equal(result, expected)
|
593 |
+
|
594 |
+
|
595 |
+
@pytest.mark.parametrize(
|
596 |
+
"keys, agg_index",
|
597 |
+
[
|
598 |
+
(["a"], Index([1], name="a")),
|
599 |
+
(["a", "b"], MultiIndex([[1], [2]], [[0], [0]], names=["a", "b"])),
|
600 |
+
],
|
601 |
+
)
|
602 |
+
@pytest.mark.parametrize("input", [True, 1, 1.0])
|
603 |
+
@pytest.mark.parametrize("dtype", [bool, int, float])
|
604 |
+
@pytest.mark.parametrize("method", ["apply", "aggregate", "transform"])
|
605 |
+
def test_callable_result_dtype_series(keys, agg_index, input, dtype, method):
|
606 |
+
# GH 21240
|
607 |
+
df = DataFrame({"a": [1], "b": [2], "c": [input]})
|
608 |
+
op = getattr(df.groupby(keys)["c"], method)
|
609 |
+
result = op(lambda x: x.astype(dtype).iloc[0])
|
610 |
+
expected_index = pd.RangeIndex(0, 1) if method == "transform" else agg_index
|
611 |
+
expected = Series([df["c"].iloc[0]], index=expected_index, name="c").astype(dtype)
|
612 |
+
tm.assert_series_equal(result, expected)
|
613 |
+
|
614 |
+
|
615 |
+
def test_order_aggregate_multiple_funcs():
|
616 |
+
# GH 25692
|
617 |
+
df = DataFrame({"A": [1, 1, 2, 2], "B": [1, 2, 3, 4]})
|
618 |
+
|
619 |
+
res = df.groupby("A").agg(["sum", "max", "mean", "ohlc", "min"])
|
620 |
+
result = res.columns.levels[1]
|
621 |
+
|
622 |
+
expected = Index(["sum", "max", "mean", "ohlc", "min"])
|
623 |
+
|
624 |
+
tm.assert_index_equal(result, expected)
|
625 |
+
|
626 |
+
|
627 |
+
def test_ohlc_ea_dtypes(any_numeric_ea_dtype):
|
628 |
+
# GH#37493
|
629 |
+
df = DataFrame(
|
630 |
+
{"a": [1, 1, 2, 3, 4, 4], "b": [22, 11, pd.NA, 10, 20, pd.NA]},
|
631 |
+
dtype=any_numeric_ea_dtype,
|
632 |
+
)
|
633 |
+
gb = df.groupby("a")
|
634 |
+
result = gb.ohlc()
|
635 |
+
expected = DataFrame(
|
636 |
+
[[22, 22, 11, 11], [pd.NA] * 4, [10] * 4, [20] * 4],
|
637 |
+
columns=MultiIndex.from_product([["b"], ["open", "high", "low", "close"]]),
|
638 |
+
index=Index([1, 2, 3, 4], dtype=any_numeric_ea_dtype, name="a"),
|
639 |
+
dtype=any_numeric_ea_dtype,
|
640 |
+
)
|
641 |
+
tm.assert_frame_equal(result, expected)
|
642 |
+
|
643 |
+
gb2 = df.groupby("a", as_index=False)
|
644 |
+
result2 = gb2.ohlc()
|
645 |
+
expected2 = expected.reset_index()
|
646 |
+
tm.assert_frame_equal(result2, expected2)
|
647 |
+
|
648 |
+
|
649 |
+
@pytest.mark.parametrize("dtype", [np.int64, np.uint64])
|
650 |
+
@pytest.mark.parametrize("how", ["first", "last", "min", "max", "mean", "median"])
|
651 |
+
def test_uint64_type_handling(dtype, how):
|
652 |
+
# GH 26310
|
653 |
+
df = DataFrame({"x": 6903052872240755750, "y": [1, 2]})
|
654 |
+
expected = df.groupby("y").agg({"x": how})
|
655 |
+
df.x = df.x.astype(dtype)
|
656 |
+
result = df.groupby("y").agg({"x": how})
|
657 |
+
if how not in ("mean", "median"):
|
658 |
+
# mean and median always result in floats
|
659 |
+
result.x = result.x.astype(np.int64)
|
660 |
+
tm.assert_frame_equal(result, expected, check_exact=True)
|
661 |
+
|
662 |
+
|
663 |
+
def test_func_duplicates_raises():
|
664 |
+
# GH28426
|
665 |
+
msg = "Function names"
|
666 |
+
df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
|
667 |
+
with pytest.raises(SpecificationError, match=msg):
|
668 |
+
df.groupby("A").agg(["min", "min"])
|
669 |
+
|
670 |
+
|
671 |
+
@pytest.mark.parametrize(
|
672 |
+
"index",
|
673 |
+
[
|
674 |
+
pd.CategoricalIndex(list("abc")),
|
675 |
+
pd.interval_range(0, 3),
|
676 |
+
pd.period_range("2020", periods=3, freq="D"),
|
677 |
+
MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
|
678 |
+
],
|
679 |
+
)
|
680 |
+
def test_agg_index_has_complex_internals(index):
|
681 |
+
# GH 31223
|
682 |
+
df = DataFrame({"group": [1, 1, 2], "value": [0, 1, 0]}, index=index)
|
683 |
+
result = df.groupby("group").agg({"value": Series.nunique})
|
684 |
+
expected = DataFrame({"group": [1, 2], "value": [2, 1]}).set_index("group")
|
685 |
+
tm.assert_frame_equal(result, expected)
|
686 |
+
|
687 |
+
|
688 |
+
def test_agg_split_block():
|
689 |
+
# https://github.com/pandas-dev/pandas/issues/31522
|
690 |
+
df = DataFrame(
|
691 |
+
{
|
692 |
+
"key1": ["a", "a", "b", "b", "a"],
|
693 |
+
"key2": ["one", "two", "one", "two", "one"],
|
694 |
+
"key3": ["three", "three", "three", "six", "six"],
|
695 |
+
}
|
696 |
+
)
|
697 |
+
result = df.groupby("key1").min()
|
698 |
+
expected = DataFrame(
|
699 |
+
{"key2": ["one", "one"], "key3": ["six", "six"]},
|
700 |
+
index=Index(["a", "b"], name="key1"),
|
701 |
+
)
|
702 |
+
tm.assert_frame_equal(result, expected)
|
703 |
+
|
704 |
+
|
705 |
+
def test_agg_split_object_part_datetime():
|
706 |
+
# https://github.com/pandas-dev/pandas/pull/31616
|
707 |
+
df = DataFrame(
|
708 |
+
{
|
709 |
+
"A": pd.date_range("2000", periods=4),
|
710 |
+
"B": ["a", "b", "c", "d"],
|
711 |
+
"C": [1, 2, 3, 4],
|
712 |
+
"D": ["b", "c", "d", "e"],
|
713 |
+
"E": pd.date_range("2000", periods=4),
|
714 |
+
"F": [1, 2, 3, 4],
|
715 |
+
}
|
716 |
+
).astype(object)
|
717 |
+
result = df.groupby([0, 0, 0, 0]).min()
|
718 |
+
expected = DataFrame(
|
719 |
+
{
|
720 |
+
"A": [pd.Timestamp("2000")],
|
721 |
+
"B": ["a"],
|
722 |
+
"C": [1],
|
723 |
+
"D": ["b"],
|
724 |
+
"E": [pd.Timestamp("2000")],
|
725 |
+
"F": [1],
|
726 |
+
},
|
727 |
+
index=np.array([0]),
|
728 |
+
dtype=object,
|
729 |
+
)
|
730 |
+
tm.assert_frame_equal(result, expected)
|
731 |
+
|
732 |
+
|
733 |
+
class TestNamedAggregationSeries:
|
734 |
+
def test_series_named_agg(self):
|
735 |
+
df = Series([1, 2, 3, 4])
|
736 |
+
gr = df.groupby([0, 0, 1, 1])
|
737 |
+
result = gr.agg(a="sum", b="min")
|
738 |
+
expected = DataFrame(
|
739 |
+
{"a": [3, 7], "b": [1, 3]}, columns=["a", "b"], index=np.array([0, 1])
|
740 |
+
)
|
741 |
+
tm.assert_frame_equal(result, expected)
|
742 |
+
|
743 |
+
result = gr.agg(b="min", a="sum")
|
744 |
+
expected = expected[["b", "a"]]
|
745 |
+
tm.assert_frame_equal(result, expected)
|
746 |
+
|
747 |
+
def test_no_args_raises(self):
|
748 |
+
gr = Series([1, 2]).groupby([0, 1])
|
749 |
+
with pytest.raises(TypeError, match="Must provide"):
|
750 |
+
gr.agg()
|
751 |
+
|
752 |
+
# but we do allow this
|
753 |
+
result = gr.agg([])
|
754 |
+
expected = DataFrame(columns=[])
|
755 |
+
tm.assert_frame_equal(result, expected)
|
756 |
+
|
757 |
+
def test_series_named_agg_duplicates_no_raises(self):
|
758 |
+
# GH28426
|
759 |
+
gr = Series([1, 2, 3]).groupby([0, 0, 1])
|
760 |
+
grouped = gr.agg(a="sum", b="sum")
|
761 |
+
expected = DataFrame({"a": [3, 3], "b": [3, 3]}, index=np.array([0, 1]))
|
762 |
+
tm.assert_frame_equal(expected, grouped)
|
763 |
+
|
764 |
+
def test_mangled(self):
|
765 |
+
gr = Series([1, 2, 3]).groupby([0, 0, 1])
|
766 |
+
result = gr.agg(a=lambda x: 0, b=lambda x: 1)
|
767 |
+
expected = DataFrame({"a": [0, 0], "b": [1, 1]}, index=np.array([0, 1]))
|
768 |
+
tm.assert_frame_equal(result, expected)
|
769 |
+
|
770 |
+
@pytest.mark.parametrize(
|
771 |
+
"inp",
|
772 |
+
[
|
773 |
+
pd.NamedAgg(column="anything", aggfunc="min"),
|
774 |
+
("anything", "min"),
|
775 |
+
["anything", "min"],
|
776 |
+
],
|
777 |
+
)
|
778 |
+
def test_named_agg_nametuple(self, inp):
|
779 |
+
# GH34422
|
780 |
+
s = Series([1, 1, 2, 2, 3, 3, 4, 5])
|
781 |
+
msg = f"func is expected but received {type(inp).__name__}"
|
782 |
+
with pytest.raises(TypeError, match=msg):
|
783 |
+
s.groupby(s.values).agg(a=inp)
|
784 |
+
|
785 |
+
|
786 |
+
class TestNamedAggregationDataFrame:
|
787 |
+
def test_agg_relabel(self):
|
788 |
+
df = DataFrame(
|
789 |
+
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
|
790 |
+
)
|
791 |
+
result = df.groupby("group").agg(a_max=("A", "max"), b_max=("B", "max"))
|
792 |
+
expected = DataFrame(
|
793 |
+
{"a_max": [1, 3], "b_max": [6, 8]},
|
794 |
+
index=Index(["a", "b"], name="group"),
|
795 |
+
columns=["a_max", "b_max"],
|
796 |
+
)
|
797 |
+
tm.assert_frame_equal(result, expected)
|
798 |
+
|
799 |
+
# order invariance
|
800 |
+
p98 = functools.partial(np.percentile, q=98)
|
801 |
+
result = df.groupby("group").agg(
|
802 |
+
b_min=("B", "min"),
|
803 |
+
a_min=("A", "min"),
|
804 |
+
a_mean=("A", "mean"),
|
805 |
+
a_max=("A", "max"),
|
806 |
+
b_max=("B", "max"),
|
807 |
+
a_98=("A", p98),
|
808 |
+
)
|
809 |
+
expected = DataFrame(
|
810 |
+
{
|
811 |
+
"b_min": [5, 7],
|
812 |
+
"a_min": [0, 2],
|
813 |
+
"a_mean": [0.5, 2.5],
|
814 |
+
"a_max": [1, 3],
|
815 |
+
"b_max": [6, 8],
|
816 |
+
"a_98": [0.98, 2.98],
|
817 |
+
},
|
818 |
+
index=Index(["a", "b"], name="group"),
|
819 |
+
columns=["b_min", "a_min", "a_mean", "a_max", "b_max", "a_98"],
|
820 |
+
)
|
821 |
+
tm.assert_frame_equal(result, expected)
|
822 |
+
|
823 |
+
def test_agg_relabel_non_identifier(self):
|
824 |
+
df = DataFrame(
|
825 |
+
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
|
826 |
+
)
|
827 |
+
|
828 |
+
result = df.groupby("group").agg(**{"my col": ("A", "max")})
|
829 |
+
expected = DataFrame({"my col": [1, 3]}, index=Index(["a", "b"], name="group"))
|
830 |
+
tm.assert_frame_equal(result, expected)
|
831 |
+
|
832 |
+
def test_duplicate_no_raises(self):
|
833 |
+
# GH 28426, if use same input function on same column,
|
834 |
+
# no error should raise
|
835 |
+
df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
|
836 |
+
|
837 |
+
grouped = df.groupby("A").agg(a=("B", "min"), b=("B", "min"))
|
838 |
+
expected = DataFrame({"a": [1, 3], "b": [1, 3]}, index=Index([0, 1], name="A"))
|
839 |
+
tm.assert_frame_equal(grouped, expected)
|
840 |
+
|
841 |
+
quant50 = functools.partial(np.percentile, q=50)
|
842 |
+
quant70 = functools.partial(np.percentile, q=70)
|
843 |
+
quant50.__name__ = "quant50"
|
844 |
+
quant70.__name__ = "quant70"
|
845 |
+
|
846 |
+
test = DataFrame({"col1": ["a", "a", "b", "b", "b"], "col2": [1, 2, 3, 4, 5]})
|
847 |
+
|
848 |
+
grouped = test.groupby("col1").agg(
|
849 |
+
quantile_50=("col2", quant50), quantile_70=("col2", quant70)
|
850 |
+
)
|
851 |
+
expected = DataFrame(
|
852 |
+
{"quantile_50": [1.5, 4.0], "quantile_70": [1.7, 4.4]},
|
853 |
+
index=Index(["a", "b"], name="col1"),
|
854 |
+
)
|
855 |
+
tm.assert_frame_equal(grouped, expected)
|
856 |
+
|
857 |
+
def test_agg_relabel_with_level(self):
|
858 |
+
df = DataFrame(
|
859 |
+
{"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]},
|
860 |
+
index=MultiIndex.from_product([["A", "B"], ["a", "b"]]),
|
861 |
+
)
|
862 |
+
result = df.groupby(level=0).agg(
|
863 |
+
aa=("A", "max"), bb=("A", "min"), cc=("B", "mean")
|
864 |
+
)
|
865 |
+
expected = DataFrame(
|
866 |
+
{"aa": [0, 1], "bb": [0, 1], "cc": [1.5, 3.5]}, index=["A", "B"]
|
867 |
+
)
|
868 |
+
tm.assert_frame_equal(result, expected)
|
869 |
+
|
870 |
+
def test_agg_relabel_other_raises(self):
|
871 |
+
df = DataFrame({"A": [0, 0, 1], "B": [1, 2, 3]})
|
872 |
+
grouped = df.groupby("A")
|
873 |
+
match = "Must provide"
|
874 |
+
with pytest.raises(TypeError, match=match):
|
875 |
+
grouped.agg(foo=1)
|
876 |
+
|
877 |
+
with pytest.raises(TypeError, match=match):
|
878 |
+
grouped.agg()
|
879 |
+
|
880 |
+
with pytest.raises(TypeError, match=match):
|
881 |
+
grouped.agg(a=("B", "max"), b=(1, 2, 3))
|
882 |
+
|
883 |
+
def test_missing_raises(self):
|
884 |
+
df = DataFrame({"A": [0, 1], "B": [1, 2]})
|
885 |
+
match = re.escape("Column(s) ['C'] do not exist")
|
886 |
+
with pytest.raises(KeyError, match=match):
|
887 |
+
df.groupby("A").agg(c=("C", "sum"))
|
888 |
+
|
889 |
+
def test_agg_namedtuple(self):
|
890 |
+
df = DataFrame({"A": [0, 1], "B": [1, 2]})
|
891 |
+
result = df.groupby("A").agg(
|
892 |
+
b=pd.NamedAgg("B", "sum"), c=pd.NamedAgg(column="B", aggfunc="count")
|
893 |
+
)
|
894 |
+
expected = df.groupby("A").agg(b=("B", "sum"), c=("B", "count"))
|
895 |
+
tm.assert_frame_equal(result, expected)
|
896 |
+
|
897 |
+
def test_mangled(self):
|
898 |
+
df = DataFrame({"A": [0, 1], "B": [1, 2], "C": [3, 4]})
|
899 |
+
result = df.groupby("A").agg(b=("B", lambda x: 0), c=("C", lambda x: 1))
|
900 |
+
expected = DataFrame({"b": [0, 0], "c": [1, 1]}, index=Index([0, 1], name="A"))
|
901 |
+
tm.assert_frame_equal(result, expected)
|
902 |
+
|
903 |
+
|
904 |
+
@pytest.mark.parametrize(
|
905 |
+
"agg_col1, agg_col2, agg_col3, agg_result1, agg_result2, agg_result3",
|
906 |
+
[
|
907 |
+
(
|
908 |
+
(("y", "A"), "max"),
|
909 |
+
(("y", "A"), np.mean),
|
910 |
+
(("y", "B"), "mean"),
|
911 |
+
[1, 3],
|
912 |
+
[0.5, 2.5],
|
913 |
+
[5.5, 7.5],
|
914 |
+
),
|
915 |
+
(
|
916 |
+
(("y", "A"), lambda x: max(x)),
|
917 |
+
(("y", "A"), lambda x: 1),
|
918 |
+
(("y", "B"), np.mean),
|
919 |
+
[1, 3],
|
920 |
+
[1, 1],
|
921 |
+
[5.5, 7.5],
|
922 |
+
),
|
923 |
+
(
|
924 |
+
pd.NamedAgg(("y", "A"), "max"),
|
925 |
+
pd.NamedAgg(("y", "B"), np.mean),
|
926 |
+
pd.NamedAgg(("y", "A"), lambda x: 1),
|
927 |
+
[1, 3],
|
928 |
+
[5.5, 7.5],
|
929 |
+
[1, 1],
|
930 |
+
),
|
931 |
+
],
|
932 |
+
)
|
933 |
+
def test_agg_relabel_multiindex_column(
|
934 |
+
agg_col1, agg_col2, agg_col3, agg_result1, agg_result2, agg_result3
|
935 |
+
):
|
936 |
+
# GH 29422, add tests for multiindex column cases
|
937 |
+
df = DataFrame(
|
938 |
+
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
|
939 |
+
)
|
940 |
+
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
|
941 |
+
idx = Index(["a", "b"], name=("x", "group"))
|
942 |
+
|
943 |
+
result = df.groupby(("x", "group")).agg(a_max=(("y", "A"), "max"))
|
944 |
+
expected = DataFrame({"a_max": [1, 3]}, index=idx)
|
945 |
+
tm.assert_frame_equal(result, expected)
|
946 |
+
|
947 |
+
msg = "is currently using SeriesGroupBy.mean"
|
948 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
949 |
+
result = df.groupby(("x", "group")).agg(
|
950 |
+
col_1=agg_col1, col_2=agg_col2, col_3=agg_col3
|
951 |
+
)
|
952 |
+
expected = DataFrame(
|
953 |
+
{"col_1": agg_result1, "col_2": agg_result2, "col_3": agg_result3}, index=idx
|
954 |
+
)
|
955 |
+
tm.assert_frame_equal(result, expected)
|
956 |
+
|
957 |
+
|
958 |
+
def test_agg_relabel_multiindex_raises_not_exist():
|
959 |
+
# GH 29422, add test for raises scenario when aggregate column does not exist
|
960 |
+
df = DataFrame(
|
961 |
+
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
|
962 |
+
)
|
963 |
+
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
|
964 |
+
|
965 |
+
with pytest.raises(KeyError, match="do not exist"):
|
966 |
+
df.groupby(("x", "group")).agg(a=(("Y", "a"), "max"))
|
967 |
+
|
968 |
+
|
969 |
+
def test_agg_relabel_multiindex_duplicates():
|
970 |
+
# GH29422, add test for raises scenario when getting duplicates
|
971 |
+
# GH28426, after this change, duplicates should also work if the relabelling is
|
972 |
+
# different
|
973 |
+
df = DataFrame(
|
974 |
+
{"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
|
975 |
+
)
|
976 |
+
df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
|
977 |
+
|
978 |
+
result = df.groupby(("x", "group")).agg(
|
979 |
+
a=(("y", "A"), "min"), b=(("y", "A"), "min")
|
980 |
+
)
|
981 |
+
idx = Index(["a", "b"], name=("x", "group"))
|
982 |
+
expected = DataFrame({"a": [0, 2], "b": [0, 2]}, index=idx)
|
983 |
+
tm.assert_frame_equal(result, expected)
|
984 |
+
|
985 |
+
|
986 |
+
@pytest.mark.parametrize("kwargs", [{"c": ["min"]}, {"b": [], "c": ["min"]}])
|
987 |
+
def test_groupby_aggregate_empty_key(kwargs):
|
988 |
+
# GH: 32580
|
989 |
+
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
|
990 |
+
result = df.groupby("a").agg(kwargs)
|
991 |
+
expected = DataFrame(
|
992 |
+
[1, 4],
|
993 |
+
index=Index([1, 2], dtype="int64", name="a"),
|
994 |
+
columns=MultiIndex.from_tuples([["c", "min"]]),
|
995 |
+
)
|
996 |
+
tm.assert_frame_equal(result, expected)
|
997 |
+
|
998 |
+
|
999 |
+
def test_groupby_aggregate_empty_key_empty_return():
|
1000 |
+
# GH: 32580 Check if everything works, when return is empty
|
1001 |
+
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
|
1002 |
+
result = df.groupby("a").agg({"b": []})
|
1003 |
+
expected = DataFrame(columns=MultiIndex(levels=[["b"], []], codes=[[], []]))
|
1004 |
+
tm.assert_frame_equal(result, expected)
|
1005 |
+
|
1006 |
+
|
1007 |
+
def test_groupby_aggregate_empty_with_multiindex_frame():
|
1008 |
+
# GH 39178
|
1009 |
+
df = DataFrame(columns=["a", "b", "c"])
|
1010 |
+
result = df.groupby(["a", "b"], group_keys=False).agg(d=("c", list))
|
1011 |
+
expected = DataFrame(
|
1012 |
+
columns=["d"], index=MultiIndex([[], []], [[], []], names=["a", "b"])
|
1013 |
+
)
|
1014 |
+
tm.assert_frame_equal(result, expected)
|
1015 |
+
|
1016 |
+
|
1017 |
+
def test_grouby_agg_loses_results_with_as_index_false_relabel():
|
1018 |
+
# GH 32240: When the aggregate function relabels column names and
|
1019 |
+
# as_index=False is specified, the results are dropped.
|
1020 |
+
|
1021 |
+
df = DataFrame(
|
1022 |
+
{"key": ["x", "y", "z", "x", "y", "z"], "val": [1.0, 0.8, 2.0, 3.0, 3.6, 0.75]}
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
grouped = df.groupby("key", as_index=False)
|
1026 |
+
result = grouped.agg(min_val=pd.NamedAgg(column="val", aggfunc="min"))
|
1027 |
+
expected = DataFrame({"key": ["x", "y", "z"], "min_val": [1.0, 0.8, 0.75]})
|
1028 |
+
tm.assert_frame_equal(result, expected)
|
1029 |
+
|
1030 |
+
|
1031 |
+
def test_grouby_agg_loses_results_with_as_index_false_relabel_multiindex():
|
1032 |
+
# GH 32240: When the aggregate function relabels column names and
|
1033 |
+
# as_index=False is specified, the results are dropped. Check if
|
1034 |
+
# multiindex is returned in the right order
|
1035 |
+
|
1036 |
+
df = DataFrame(
|
1037 |
+
{
|
1038 |
+
"key": ["x", "y", "x", "y", "x", "x"],
|
1039 |
+
"key1": ["a", "b", "c", "b", "a", "c"],
|
1040 |
+
"val": [1.0, 0.8, 2.0, 3.0, 3.6, 0.75],
|
1041 |
+
}
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
grouped = df.groupby(["key", "key1"], as_index=False)
|
1045 |
+
result = grouped.agg(min_val=pd.NamedAgg(column="val", aggfunc="min"))
|
1046 |
+
expected = DataFrame(
|
1047 |
+
{"key": ["x", "x", "y"], "key1": ["a", "c", "b"], "min_val": [1.0, 0.75, 0.8]}
|
1048 |
+
)
|
1049 |
+
tm.assert_frame_equal(result, expected)
|
1050 |
+
|
1051 |
+
|
1052 |
+
@pytest.mark.parametrize(
|
1053 |
+
"func", [lambda s: s.mean(), lambda s: np.mean(s), lambda s: np.nanmean(s)]
|
1054 |
+
)
|
1055 |
+
def test_multiindex_custom_func(func):
|
1056 |
+
# GH 31777
|
1057 |
+
data = [[1, 4, 2], [5, 7, 1]]
|
1058 |
+
df = DataFrame(
|
1059 |
+
data,
|
1060 |
+
columns=MultiIndex.from_arrays(
|
1061 |
+
[[1, 1, 2], [3, 4, 3]], names=["Sisko", "Janeway"]
|
1062 |
+
),
|
1063 |
+
)
|
1064 |
+
result = df.groupby(np.array([0, 1])).agg(func)
|
1065 |
+
expected_dict = {
|
1066 |
+
(1, 3): {0: 1.0, 1: 5.0},
|
1067 |
+
(1, 4): {0: 4.0, 1: 7.0},
|
1068 |
+
(2, 3): {0: 2.0, 1: 1.0},
|
1069 |
+
}
|
1070 |
+
expected = DataFrame(expected_dict, index=np.array([0, 1]), columns=df.columns)
|
1071 |
+
tm.assert_frame_equal(result, expected)
|
1072 |
+
|
1073 |
+
|
1074 |
+
def myfunc(s):
|
1075 |
+
return np.percentile(s, q=0.90)
|
1076 |
+
|
1077 |
+
|
1078 |
+
@pytest.mark.parametrize("func", [lambda s: np.percentile(s, q=0.90), myfunc])
|
1079 |
+
def test_lambda_named_agg(func):
|
1080 |
+
# see gh-28467
|
1081 |
+
animals = DataFrame(
|
1082 |
+
{
|
1083 |
+
"kind": ["cat", "dog", "cat", "dog"],
|
1084 |
+
"height": [9.1, 6.0, 9.5, 34.0],
|
1085 |
+
"weight": [7.9, 7.5, 9.9, 198.0],
|
1086 |
+
}
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
result = animals.groupby("kind").agg(
|
1090 |
+
mean_height=("height", "mean"), perc90=("height", func)
|
1091 |
+
)
|
1092 |
+
expected = DataFrame(
|
1093 |
+
[[9.3, 9.1036], [20.0, 6.252]],
|
1094 |
+
columns=["mean_height", "perc90"],
|
1095 |
+
index=Index(["cat", "dog"], name="kind"),
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
tm.assert_frame_equal(result, expected)
|
1099 |
+
|
1100 |
+
|
1101 |
+
def test_aggregate_mixed_types():
|
1102 |
+
# GH 16916
|
1103 |
+
df = DataFrame(
|
1104 |
+
data=np.array([0] * 9).reshape(3, 3), columns=list("XYZ"), index=list("abc")
|
1105 |
+
)
|
1106 |
+
df["grouping"] = ["group 1", "group 1", 2]
|
1107 |
+
result = df.groupby("grouping").aggregate(lambda x: x.tolist())
|
1108 |
+
expected_data = [[[0], [0], [0]], [[0, 0], [0, 0], [0, 0]]]
|
1109 |
+
expected = DataFrame(
|
1110 |
+
expected_data,
|
1111 |
+
index=Index([2, "group 1"], dtype="object", name="grouping"),
|
1112 |
+
columns=Index(["X", "Y", "Z"], dtype="object"),
|
1113 |
+
)
|
1114 |
+
tm.assert_frame_equal(result, expected)
|
1115 |
+
|
1116 |
+
|
1117 |
+
@pytest.mark.xfail(reason="Not implemented;see GH 31256")
|
1118 |
+
def test_aggregate_udf_na_extension_type():
|
1119 |
+
# https://github.com/pandas-dev/pandas/pull/31359
|
1120 |
+
# This is currently failing to cast back to Int64Dtype.
|
1121 |
+
# The presence of the NA causes two problems
|
1122 |
+
# 1. NA is not an instance of Int64Dtype.type (numpy.int64)
|
1123 |
+
# 2. The presence of an NA forces object type, so the non-NA values is
|
1124 |
+
# a Python int rather than a NumPy int64. Python ints aren't
|
1125 |
+
# instances of numpy.int64.
|
1126 |
+
def aggfunc(x):
|
1127 |
+
if all(x > 2):
|
1128 |
+
return 1
|
1129 |
+
else:
|
1130 |
+
return pd.NA
|
1131 |
+
|
1132 |
+
df = DataFrame({"A": pd.array([1, 2, 3])})
|
1133 |
+
result = df.groupby([1, 1, 2]).agg(aggfunc)
|
1134 |
+
expected = DataFrame({"A": pd.array([1, pd.NA], dtype="Int64")}, index=[1, 2])
|
1135 |
+
tm.assert_frame_equal(result, expected)
|
1136 |
+
|
1137 |
+
|
1138 |
+
class TestLambdaMangling:
|
1139 |
+
def test_basic(self):
|
1140 |
+
df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
|
1141 |
+
result = df.groupby("A").agg({"B": [lambda x: 0, lambda x: 1]})
|
1142 |
+
|
1143 |
+
expected = DataFrame(
|
1144 |
+
{("B", "<lambda_0>"): [0, 0], ("B", "<lambda_1>"): [1, 1]},
|
1145 |
+
index=Index([0, 1], name="A"),
|
1146 |
+
)
|
1147 |
+
tm.assert_frame_equal(result, expected)
|
1148 |
+
|
1149 |
+
def test_mangle_series_groupby(self):
|
1150 |
+
gr = Series([1, 2, 3, 4]).groupby([0, 0, 1, 1])
|
1151 |
+
result = gr.agg([lambda x: 0, lambda x: 1])
|
1152 |
+
exp_data = {"<lambda_0>": [0, 0], "<lambda_1>": [1, 1]}
|
1153 |
+
expected = DataFrame(exp_data, index=np.array([0, 1]))
|
1154 |
+
tm.assert_frame_equal(result, expected)
|
1155 |
+
|
1156 |
+
@pytest.mark.xfail(reason="GH-26611. kwargs for multi-agg.")
|
1157 |
+
def test_with_kwargs(self):
|
1158 |
+
f1 = lambda x, y, b=1: x.sum() + y + b
|
1159 |
+
f2 = lambda x, y, b=2: x.sum() + y * b
|
1160 |
+
result = Series([1, 2]).groupby([0, 0]).agg([f1, f2], 0)
|
1161 |
+
expected = DataFrame({"<lambda_0>": [4], "<lambda_1>": [6]})
|
1162 |
+
tm.assert_frame_equal(result, expected)
|
1163 |
+
|
1164 |
+
result = Series([1, 2]).groupby([0, 0]).agg([f1, f2], 0, b=10)
|
1165 |
+
expected = DataFrame({"<lambda_0>": [13], "<lambda_1>": [30]})
|
1166 |
+
tm.assert_frame_equal(result, expected)
|
1167 |
+
|
1168 |
+
def test_agg_with_one_lambda(self):
|
1169 |
+
# GH 25719, write tests for DataFrameGroupby.agg with only one lambda
|
1170 |
+
df = DataFrame(
|
1171 |
+
{
|
1172 |
+
"kind": ["cat", "dog", "cat", "dog"],
|
1173 |
+
"height": [9.1, 6.0, 9.5, 34.0],
|
1174 |
+
"weight": [7.9, 7.5, 9.9, 198.0],
|
1175 |
+
}
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
columns = ["height_sqr_min", "height_max", "weight_max"]
|
1179 |
+
expected = DataFrame(
|
1180 |
+
{
|
1181 |
+
"height_sqr_min": [82.81, 36.00],
|
1182 |
+
"height_max": [9.5, 34.0],
|
1183 |
+
"weight_max": [9.9, 198.0],
|
1184 |
+
},
|
1185 |
+
index=Index(["cat", "dog"], name="kind"),
|
1186 |
+
columns=columns,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
# check pd.NameAgg case
|
1190 |
+
result1 = df.groupby(by="kind").agg(
|
1191 |
+
height_sqr_min=pd.NamedAgg(
|
1192 |
+
column="height", aggfunc=lambda x: np.min(x**2)
|
1193 |
+
),
|
1194 |
+
height_max=pd.NamedAgg(column="height", aggfunc="max"),
|
1195 |
+
weight_max=pd.NamedAgg(column="weight", aggfunc="max"),
|
1196 |
+
)
|
1197 |
+
tm.assert_frame_equal(result1, expected)
|
1198 |
+
|
1199 |
+
# check agg(key=(col, aggfunc)) case
|
1200 |
+
result2 = df.groupby(by="kind").agg(
|
1201 |
+
height_sqr_min=("height", lambda x: np.min(x**2)),
|
1202 |
+
height_max=("height", "max"),
|
1203 |
+
weight_max=("weight", "max"),
|
1204 |
+
)
|
1205 |
+
tm.assert_frame_equal(result2, expected)
|
1206 |
+
|
1207 |
+
def test_agg_multiple_lambda(self):
|
1208 |
+
# GH25719, test for DataFrameGroupby.agg with multiple lambdas
|
1209 |
+
# with mixed aggfunc
|
1210 |
+
df = DataFrame(
|
1211 |
+
{
|
1212 |
+
"kind": ["cat", "dog", "cat", "dog"],
|
1213 |
+
"height": [9.1, 6.0, 9.5, 34.0],
|
1214 |
+
"weight": [7.9, 7.5, 9.9, 198.0],
|
1215 |
+
}
|
1216 |
+
)
|
1217 |
+
columns = [
|
1218 |
+
"height_sqr_min",
|
1219 |
+
"height_max",
|
1220 |
+
"weight_max",
|
1221 |
+
"height_max_2",
|
1222 |
+
"weight_min",
|
1223 |
+
]
|
1224 |
+
expected = DataFrame(
|
1225 |
+
{
|
1226 |
+
"height_sqr_min": [82.81, 36.00],
|
1227 |
+
"height_max": [9.5, 34.0],
|
1228 |
+
"weight_max": [9.9, 198.0],
|
1229 |
+
"height_max_2": [9.5, 34.0],
|
1230 |
+
"weight_min": [7.9, 7.5],
|
1231 |
+
},
|
1232 |
+
index=Index(["cat", "dog"], name="kind"),
|
1233 |
+
columns=columns,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
# check agg(key=(col, aggfunc)) case
|
1237 |
+
result1 = df.groupby(by="kind").agg(
|
1238 |
+
height_sqr_min=("height", lambda x: np.min(x**2)),
|
1239 |
+
height_max=("height", "max"),
|
1240 |
+
weight_max=("weight", "max"),
|
1241 |
+
height_max_2=("height", lambda x: np.max(x)),
|
1242 |
+
weight_min=("weight", lambda x: np.min(x)),
|
1243 |
+
)
|
1244 |
+
tm.assert_frame_equal(result1, expected)
|
1245 |
+
|
1246 |
+
# check pd.NamedAgg case
|
1247 |
+
result2 = df.groupby(by="kind").agg(
|
1248 |
+
height_sqr_min=pd.NamedAgg(
|
1249 |
+
column="height", aggfunc=lambda x: np.min(x**2)
|
1250 |
+
),
|
1251 |
+
height_max=pd.NamedAgg(column="height", aggfunc="max"),
|
1252 |
+
weight_max=pd.NamedAgg(column="weight", aggfunc="max"),
|
1253 |
+
height_max_2=pd.NamedAgg(column="height", aggfunc=lambda x: np.max(x)),
|
1254 |
+
weight_min=pd.NamedAgg(column="weight", aggfunc=lambda x: np.min(x)),
|
1255 |
+
)
|
1256 |
+
tm.assert_frame_equal(result2, expected)
|
1257 |
+
|
1258 |
+
|
1259 |
+
def test_groupby_get_by_index():
|
1260 |
+
# GH 33439
|
1261 |
+
df = DataFrame({"A": ["S", "W", "W"], "B": [1.0, 1.0, 2.0]})
|
1262 |
+
res = df.groupby("A").agg({"B": lambda x: x.get(x.index[-1])})
|
1263 |
+
expected = DataFrame({"A": ["S", "W"], "B": [1.0, 2.0]}).set_index("A")
|
1264 |
+
tm.assert_frame_equal(res, expected)
|
1265 |
+
|
1266 |
+
|
1267 |
+
@pytest.mark.parametrize(
|
1268 |
+
"grp_col_dict, exp_data",
|
1269 |
+
[
|
1270 |
+
({"nr": "min", "cat_ord": "min"}, {"nr": [1, 5], "cat_ord": ["a", "c"]}),
|
1271 |
+
({"cat_ord": "min"}, {"cat_ord": ["a", "c"]}),
|
1272 |
+
({"nr": "min"}, {"nr": [1, 5]}),
|
1273 |
+
],
|
1274 |
+
)
|
1275 |
+
def test_groupby_single_agg_cat_cols(grp_col_dict, exp_data):
|
1276 |
+
# test single aggregations on ordered categorical cols GHGH27800
|
1277 |
+
|
1278 |
+
# create the result dataframe
|
1279 |
+
input_df = DataFrame(
|
1280 |
+
{
|
1281 |
+
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
|
1282 |
+
"cat_ord": list("aabbccdd"),
|
1283 |
+
"cat": list("aaaabbbb"),
|
1284 |
+
}
|
1285 |
+
)
|
1286 |
+
|
1287 |
+
input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
|
1288 |
+
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
|
1289 |
+
result_df = input_df.groupby("cat", observed=False).agg(grp_col_dict)
|
1290 |
+
|
1291 |
+
# create expected dataframe
|
1292 |
+
cat_index = pd.CategoricalIndex(
|
1293 |
+
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
|
1294 |
+
)
|
1295 |
+
|
1296 |
+
expected_df = DataFrame(data=exp_data, index=cat_index)
|
1297 |
+
|
1298 |
+
if "cat_ord" in expected_df:
|
1299 |
+
# ordered categorical columns should be preserved
|
1300 |
+
dtype = input_df["cat_ord"].dtype
|
1301 |
+
expected_df["cat_ord"] = expected_df["cat_ord"].astype(dtype)
|
1302 |
+
|
1303 |
+
tm.assert_frame_equal(result_df, expected_df)
|
1304 |
+
|
1305 |
+
|
1306 |
+
@pytest.mark.parametrize(
|
1307 |
+
"grp_col_dict, exp_data",
|
1308 |
+
[
|
1309 |
+
({"nr": ["min", "max"], "cat_ord": "min"}, [(1, 4, "a"), (5, 8, "c")]),
|
1310 |
+
({"nr": "min", "cat_ord": ["min", "max"]}, [(1, "a", "b"), (5, "c", "d")]),
|
1311 |
+
({"cat_ord": ["min", "max"]}, [("a", "b"), ("c", "d")]),
|
1312 |
+
],
|
1313 |
+
)
|
1314 |
+
def test_groupby_combined_aggs_cat_cols(grp_col_dict, exp_data):
|
1315 |
+
# test combined aggregations on ordered categorical cols GH27800
|
1316 |
+
|
1317 |
+
# create the result dataframe
|
1318 |
+
input_df = DataFrame(
|
1319 |
+
{
|
1320 |
+
"nr": [1, 2, 3, 4, 5, 6, 7, 8],
|
1321 |
+
"cat_ord": list("aabbccdd"),
|
1322 |
+
"cat": list("aaaabbbb"),
|
1323 |
+
}
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
|
1327 |
+
input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
|
1328 |
+
result_df = input_df.groupby("cat", observed=False).agg(grp_col_dict)
|
1329 |
+
|
1330 |
+
# create expected dataframe
|
1331 |
+
cat_index = pd.CategoricalIndex(
|
1332 |
+
["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
# unpack the grp_col_dict to create the multi-index tuple
|
1336 |
+
# this tuple will be used to create the expected dataframe index
|
1337 |
+
multi_index_list = []
|
1338 |
+
for k, v in grp_col_dict.items():
|
1339 |
+
if isinstance(v, list):
|
1340 |
+
multi_index_list.extend([k, value] for value in v)
|
1341 |
+
else:
|
1342 |
+
multi_index_list.append([k, v])
|
1343 |
+
multi_index = MultiIndex.from_tuples(tuple(multi_index_list))
|
1344 |
+
|
1345 |
+
expected_df = DataFrame(data=exp_data, columns=multi_index, index=cat_index)
|
1346 |
+
for col in expected_df.columns:
|
1347 |
+
if isinstance(col, tuple) and "cat_ord" in col:
|
1348 |
+
# ordered categorical should be preserved
|
1349 |
+
expected_df[col] = expected_df[col].astype(input_df["cat_ord"].dtype)
|
1350 |
+
|
1351 |
+
tm.assert_frame_equal(result_df, expected_df)
|
1352 |
+
|
1353 |
+
|
1354 |
+
def test_nonagg_agg():
|
1355 |
+
# GH 35490 - Single/Multiple agg of non-agg function give same results
|
1356 |
+
# TODO: agg should raise for functions that don't aggregate
|
1357 |
+
df = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 2, 1]})
|
1358 |
+
g = df.groupby("a")
|
1359 |
+
|
1360 |
+
result = g.agg(["cumsum"])
|
1361 |
+
result.columns = result.columns.droplevel(-1)
|
1362 |
+
expected = g.agg("cumsum")
|
1363 |
+
|
1364 |
+
tm.assert_frame_equal(result, expected)
|
1365 |
+
|
1366 |
+
|
1367 |
+
def test_aggregate_datetime_objects():
|
1368 |
+
# https://github.com/pandas-dev/pandas/issues/36003
|
1369 |
+
# ensure we don't raise an error but keep object dtype for out-of-bounds
|
1370 |
+
# datetimes
|
1371 |
+
df = DataFrame(
|
1372 |
+
{
|
1373 |
+
"A": ["X", "Y"],
|
1374 |
+
"B": [
|
1375 |
+
datetime.datetime(2005, 1, 1, 10, 30, 23, 540000),
|
1376 |
+
datetime.datetime(3005, 1, 1, 10, 30, 23, 540000),
|
1377 |
+
],
|
1378 |
+
}
|
1379 |
+
)
|
1380 |
+
result = df.groupby("A").B.max()
|
1381 |
+
expected = df.set_index("A")["B"]
|
1382 |
+
tm.assert_series_equal(result, expected)
|
1383 |
+
|
1384 |
+
|
1385 |
+
def test_groupby_index_object_dtype():
|
1386 |
+
# GH 40014
|
1387 |
+
df = DataFrame({"c0": ["x", "x", "x"], "c1": ["x", "x", "y"], "p": [0, 1, 2]})
|
1388 |
+
df.index = df.index.astype("O")
|
1389 |
+
grouped = df.groupby(["c0", "c1"])
|
1390 |
+
res = grouped.p.agg(lambda x: all(x > 0))
|
1391 |
+
# Check that providing a user-defined function in agg()
|
1392 |
+
# produces the correct index shape when using an object-typed index.
|
1393 |
+
expected_index = MultiIndex.from_tuples(
|
1394 |
+
[("x", "x"), ("x", "y")], names=("c0", "c1")
|
1395 |
+
)
|
1396 |
+
expected = Series([False, True], index=expected_index, name="p")
|
1397 |
+
tm.assert_series_equal(res, expected)
|
1398 |
+
|
1399 |
+
|
1400 |
+
def test_timeseries_groupby_agg():
|
1401 |
+
# GH#43290
|
1402 |
+
|
1403 |
+
def func(ser):
|
1404 |
+
if ser.isna().all():
|
1405 |
+
return None
|
1406 |
+
return np.sum(ser)
|
1407 |
+
|
1408 |
+
df = DataFrame([1.0], index=[pd.Timestamp("2018-01-16 00:00:00+00:00")])
|
1409 |
+
res = df.groupby(lambda x: 1).agg(func)
|
1410 |
+
|
1411 |
+
expected = DataFrame([[1.0]], index=[1])
|
1412 |
+
tm.assert_frame_equal(res, expected)
|
1413 |
+
|
1414 |
+
|
1415 |
+
def test_groupby_agg_precision(any_real_numeric_dtype):
|
1416 |
+
if any_real_numeric_dtype in tm.ALL_INT_NUMPY_DTYPES:
|
1417 |
+
max_value = np.iinfo(any_real_numeric_dtype).max
|
1418 |
+
if any_real_numeric_dtype in tm.FLOAT_NUMPY_DTYPES:
|
1419 |
+
max_value = np.finfo(any_real_numeric_dtype).max
|
1420 |
+
if any_real_numeric_dtype in tm.FLOAT_EA_DTYPES:
|
1421 |
+
max_value = np.finfo(any_real_numeric_dtype.lower()).max
|
1422 |
+
if any_real_numeric_dtype in tm.ALL_INT_EA_DTYPES:
|
1423 |
+
max_value = np.iinfo(any_real_numeric_dtype.lower()).max
|
1424 |
+
|
1425 |
+
df = DataFrame(
|
1426 |
+
{
|
1427 |
+
"key1": ["a"],
|
1428 |
+
"key2": ["b"],
|
1429 |
+
"key3": pd.array([max_value], dtype=any_real_numeric_dtype),
|
1430 |
+
}
|
1431 |
+
)
|
1432 |
+
arrays = [["a"], ["b"]]
|
1433 |
+
index = MultiIndex.from_arrays(arrays, names=("key1", "key2"))
|
1434 |
+
|
1435 |
+
expected = DataFrame(
|
1436 |
+
{"key3": pd.array([max_value], dtype=any_real_numeric_dtype)}, index=index
|
1437 |
+
)
|
1438 |
+
result = df.groupby(["key1", "key2"]).agg(lambda x: x)
|
1439 |
+
tm.assert_frame_equal(result, expected)
|
1440 |
+
|
1441 |
+
|
1442 |
+
def test_groupby_aggregate_directory(reduction_func):
|
1443 |
+
# GH#32793
|
1444 |
+
if reduction_func in ["corrwith", "nth"]:
|
1445 |
+
return None
|
1446 |
+
|
1447 |
+
obj = DataFrame([[0, 1], [0, np.nan]])
|
1448 |
+
|
1449 |
+
result_reduced_series = obj.groupby(0).agg(reduction_func)
|
1450 |
+
result_reduced_frame = obj.groupby(0).agg({1: reduction_func})
|
1451 |
+
|
1452 |
+
if reduction_func in ["size", "ngroup"]:
|
1453 |
+
# names are different: None / 1
|
1454 |
+
tm.assert_series_equal(
|
1455 |
+
result_reduced_series, result_reduced_frame[1], check_names=False
|
1456 |
+
)
|
1457 |
+
else:
|
1458 |
+
tm.assert_frame_equal(result_reduced_series, result_reduced_frame)
|
1459 |
+
tm.assert_series_equal(
|
1460 |
+
result_reduced_series.dtypes, result_reduced_frame.dtypes
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
|
1464 |
+
def test_group_mean_timedelta_nat():
|
1465 |
+
# GH43132
|
1466 |
+
data = Series(["1 day", "3 days", "NaT"], dtype="timedelta64[ns]")
|
1467 |
+
expected = Series(["2 days"], dtype="timedelta64[ns]", index=np.array([0]))
|
1468 |
+
|
1469 |
+
result = data.groupby([0, 0, 0]).mean()
|
1470 |
+
|
1471 |
+
tm.assert_series_equal(result, expected)
|
1472 |
+
|
1473 |
+
|
1474 |
+
@pytest.mark.parametrize(
|
1475 |
+
"input_data, expected_output",
|
1476 |
+
[
|
1477 |
+
( # no timezone
|
1478 |
+
["2021-01-01T00:00", "NaT", "2021-01-01T02:00"],
|
1479 |
+
["2021-01-01T01:00"],
|
1480 |
+
),
|
1481 |
+
( # timezone
|
1482 |
+
["2021-01-01T00:00-0100", "NaT", "2021-01-01T02:00-0100"],
|
1483 |
+
["2021-01-01T01:00-0100"],
|
1484 |
+
),
|
1485 |
+
],
|
1486 |
+
)
|
1487 |
+
def test_group_mean_datetime64_nat(input_data, expected_output):
|
1488 |
+
# GH43132
|
1489 |
+
data = to_datetime(Series(input_data))
|
1490 |
+
expected = to_datetime(Series(expected_output, index=np.array([0])))
|
1491 |
+
|
1492 |
+
result = data.groupby([0, 0, 0]).mean()
|
1493 |
+
tm.assert_series_equal(result, expected)
|
1494 |
+
|
1495 |
+
|
1496 |
+
@pytest.mark.parametrize(
|
1497 |
+
"func, output", [("mean", [8 + 18j, 10 + 22j]), ("sum", [40 + 90j, 50 + 110j])]
|
1498 |
+
)
|
1499 |
+
def test_groupby_complex(func, output):
|
1500 |
+
# GH#43701
|
1501 |
+
data = Series(np.arange(20).reshape(10, 2).dot([1, 2j]))
|
1502 |
+
result = data.groupby(data.index % 2).agg(func)
|
1503 |
+
expected = Series(output)
|
1504 |
+
tm.assert_series_equal(result, expected)
|
1505 |
+
|
1506 |
+
|
1507 |
+
@pytest.mark.parametrize("func", ["min", "max", "var"])
|
1508 |
+
def test_groupby_complex_raises(func):
|
1509 |
+
# GH#43701
|
1510 |
+
data = Series(np.arange(20).reshape(10, 2).dot([1, 2j]))
|
1511 |
+
msg = "No matching signature found"
|
1512 |
+
with pytest.raises(TypeError, match=msg):
|
1513 |
+
data.groupby(data.index % 2).agg(func)
|
1514 |
+
|
1515 |
+
|
1516 |
+
@pytest.mark.parametrize(
|
1517 |
+
"func", [["min"], ["mean", "max"], {"b": "sum"}, {"b": "prod", "c": "median"}]
|
1518 |
+
)
|
1519 |
+
def test_multi_axis_1_raises(func):
|
1520 |
+
# GH#46995
|
1521 |
+
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5], "c": [6, 7, 8]})
|
1522 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
1523 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1524 |
+
gb = df.groupby("a", axis=1)
|
1525 |
+
with pytest.raises(NotImplementedError, match="axis other than 0 is not supported"):
|
1526 |
+
gb.agg(func)
|
1527 |
+
|
1528 |
+
|
1529 |
+
@pytest.mark.parametrize(
|
1530 |
+
"test, constant",
|
1531 |
+
[
|
1532 |
+
([[20, "A"], [20, "B"], [10, "C"]], {0: [10, 20], 1: ["C", ["A", "B"]]}),
|
1533 |
+
([[20, "A"], [20, "B"], [30, "C"]], {0: [20, 30], 1: [["A", "B"], "C"]}),
|
1534 |
+
([["a", 1], ["a", 1], ["b", 2], ["b", 3]], {0: ["a", "b"], 1: [1, [2, 3]]}),
|
1535 |
+
pytest.param(
|
1536 |
+
[["a", 1], ["a", 2], ["b", 3], ["b", 3]],
|
1537 |
+
{0: ["a", "b"], 1: [[1, 2], 3]},
|
1538 |
+
marks=pytest.mark.xfail,
|
1539 |
+
),
|
1540 |
+
],
|
1541 |
+
)
|
1542 |
+
def test_agg_of_mode_list(test, constant):
|
1543 |
+
# GH#25581
|
1544 |
+
df1 = DataFrame(test)
|
1545 |
+
result = df1.groupby(0).agg(Series.mode)
|
1546 |
+
# Mode usually only returns 1 value, but can return a list in the case of a tie.
|
1547 |
+
|
1548 |
+
expected = DataFrame(constant)
|
1549 |
+
expected = expected.set_index(0)
|
1550 |
+
|
1551 |
+
tm.assert_frame_equal(result, expected)
|
1552 |
+
|
1553 |
+
|
1554 |
+
def test_dataframe_groupy_agg_list_like_func_with_args():
|
1555 |
+
# GH#50624
|
1556 |
+
df = DataFrame({"x": [1, 2, 3], "y": ["a", "b", "c"]})
|
1557 |
+
gb = df.groupby("y")
|
1558 |
+
|
1559 |
+
def foo1(x, a=1, c=0):
|
1560 |
+
return x.sum() + a + c
|
1561 |
+
|
1562 |
+
def foo2(x, b=2, c=0):
|
1563 |
+
return x.sum() + b + c
|
1564 |
+
|
1565 |
+
msg = r"foo1\(\) got an unexpected keyword argument 'b'"
|
1566 |
+
with pytest.raises(TypeError, match=msg):
|
1567 |
+
gb.agg([foo1, foo2], 3, b=3, c=4)
|
1568 |
+
|
1569 |
+
result = gb.agg([foo1, foo2], 3, c=4)
|
1570 |
+
expected = DataFrame(
|
1571 |
+
[[8, 8], [9, 9], [10, 10]],
|
1572 |
+
index=Index(["a", "b", "c"], name="y"),
|
1573 |
+
columns=MultiIndex.from_tuples([("x", "foo1"), ("x", "foo2")]),
|
1574 |
+
)
|
1575 |
+
tm.assert_frame_equal(result, expected)
|
1576 |
+
|
1577 |
+
|
1578 |
+
def test_series_groupy_agg_list_like_func_with_args():
|
1579 |
+
# GH#50624
|
1580 |
+
s = Series([1, 2, 3])
|
1581 |
+
sgb = s.groupby(s)
|
1582 |
+
|
1583 |
+
def foo1(x, a=1, c=0):
|
1584 |
+
return x.sum() + a + c
|
1585 |
+
|
1586 |
+
def foo2(x, b=2, c=0):
|
1587 |
+
return x.sum() + b + c
|
1588 |
+
|
1589 |
+
msg = r"foo1\(\) got an unexpected keyword argument 'b'"
|
1590 |
+
with pytest.raises(TypeError, match=msg):
|
1591 |
+
sgb.agg([foo1, foo2], 3, b=3, c=4)
|
1592 |
+
|
1593 |
+
result = sgb.agg([foo1, foo2], 3, c=4)
|
1594 |
+
expected = DataFrame(
|
1595 |
+
[[8, 8], [9, 9], [10, 10]], index=Index([1, 2, 3]), columns=["foo1", "foo2"]
|
1596 |
+
)
|
1597 |
+
tm.assert_frame_equal(result, expected)
|
1598 |
+
|
1599 |
+
|
1600 |
+
def test_agg_groupings_selection():
|
1601 |
+
# GH#51186 - a selected grouping should be in the output of agg
|
1602 |
+
df = DataFrame({"a": [1, 1, 2], "b": [3, 3, 4], "c": [5, 6, 7]})
|
1603 |
+
gb = df.groupby(["a", "b"])
|
1604 |
+
selected_gb = gb[["b", "c"]]
|
1605 |
+
result = selected_gb.agg(lambda x: x.sum())
|
1606 |
+
index = MultiIndex(
|
1607 |
+
levels=[[1, 2], [3, 4]], codes=[[0, 1], [0, 1]], names=["a", "b"]
|
1608 |
+
)
|
1609 |
+
expected = DataFrame({"b": [6, 4], "c": [11, 7]}, index=index)
|
1610 |
+
tm.assert_frame_equal(result, expected)
|
1611 |
+
|
1612 |
+
|
1613 |
+
def test_agg_multiple_with_as_index_false_subset_to_a_single_column():
|
1614 |
+
# GH#50724
|
1615 |
+
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]})
|
1616 |
+
gb = df.groupby("a", as_index=False)["b"]
|
1617 |
+
result = gb.agg(["sum", "mean"])
|
1618 |
+
expected = DataFrame({"a": [1, 2], "sum": [7, 5], "mean": [3.5, 5.0]})
|
1619 |
+
tm.assert_frame_equal(result, expected)
|
1620 |
+
|
1621 |
+
|
1622 |
+
def test_agg_with_as_index_false_with_list():
|
1623 |
+
# GH#52849
|
1624 |
+
df = DataFrame({"a1": [0, 0, 1], "a2": [2, 3, 3], "b": [4, 5, 6]})
|
1625 |
+
gb = df.groupby(by=["a1", "a2"], as_index=False)
|
1626 |
+
result = gb.agg(["sum"])
|
1627 |
+
|
1628 |
+
expected = DataFrame(
|
1629 |
+
data=[[0, 2, 4], [0, 3, 5], [1, 3, 6]],
|
1630 |
+
columns=MultiIndex.from_tuples([("a1", ""), ("a2", ""), ("b", "sum")]),
|
1631 |
+
)
|
1632 |
+
tm.assert_frame_equal(result, expected)
|
1633 |
+
|
1634 |
+
|
1635 |
+
def test_groupby_agg_extension_timedelta_cumsum_with_named_aggregation():
|
1636 |
+
# GH#41720
|
1637 |
+
expected = DataFrame(
|
1638 |
+
{
|
1639 |
+
"td": {
|
1640 |
+
0: pd.Timedelta("0 days 01:00:00"),
|
1641 |
+
1: pd.Timedelta("0 days 01:15:00"),
|
1642 |
+
2: pd.Timedelta("0 days 01:15:00"),
|
1643 |
+
}
|
1644 |
+
}
|
1645 |
+
)
|
1646 |
+
df = DataFrame(
|
1647 |
+
{
|
1648 |
+
"td": Series(
|
1649 |
+
["0 days 01:00:00", "0 days 00:15:00", "0 days 01:15:00"],
|
1650 |
+
dtype="timedelta64[ns]",
|
1651 |
+
),
|
1652 |
+
"grps": ["a", "a", "b"],
|
1653 |
+
}
|
1654 |
+
)
|
1655 |
+
gb = df.groupby("grps")
|
1656 |
+
result = gb.agg(td=("td", "cumsum"))
|
1657 |
+
tm.assert_frame_equal(result, expected)
|
1658 |
+
|
1659 |
+
|
1660 |
+
def test_groupby_aggregation_empty_group():
|
1661 |
+
# https://github.com/pandas-dev/pandas/issues/18869
|
1662 |
+
def func(x):
|
1663 |
+
if len(x) == 0:
|
1664 |
+
raise ValueError("length must not be 0")
|
1665 |
+
return len(x)
|
1666 |
+
|
1667 |
+
df = DataFrame(
|
1668 |
+
{"A": pd.Categorical(["a", "a"], categories=["a", "b", "c"]), "B": [1, 1]}
|
1669 |
+
)
|
1670 |
+
msg = "length must not be 0"
|
1671 |
+
with pytest.raises(ValueError, match=msg):
|
1672 |
+
df.groupby("A", observed=False).agg(func)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_cython.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
test cython .agg behavior
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from pandas.core.dtypes.common import (
|
9 |
+
is_float_dtype,
|
10 |
+
is_integer_dtype,
|
11 |
+
)
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from pandas import (
|
15 |
+
DataFrame,
|
16 |
+
Index,
|
17 |
+
NaT,
|
18 |
+
Series,
|
19 |
+
Timedelta,
|
20 |
+
Timestamp,
|
21 |
+
bdate_range,
|
22 |
+
)
|
23 |
+
import pandas._testing as tm
|
24 |
+
import pandas.core.common as com
|
25 |
+
|
26 |
+
|
27 |
+
@pytest.mark.parametrize(
|
28 |
+
"op_name",
|
29 |
+
[
|
30 |
+
"count",
|
31 |
+
"sum",
|
32 |
+
"std",
|
33 |
+
"var",
|
34 |
+
"sem",
|
35 |
+
"mean",
|
36 |
+
pytest.param(
|
37 |
+
"median",
|
38 |
+
# ignore mean of empty slice
|
39 |
+
# and all-NaN
|
40 |
+
marks=[pytest.mark.filterwarnings("ignore::RuntimeWarning")],
|
41 |
+
),
|
42 |
+
"prod",
|
43 |
+
"min",
|
44 |
+
"max",
|
45 |
+
],
|
46 |
+
)
|
47 |
+
def test_cythonized_aggers(op_name):
|
48 |
+
data = {
|
49 |
+
"A": [0, 0, 0, 0, 1, 1, 1, 1, 1, 1.0, np.nan, np.nan],
|
50 |
+
"B": ["A", "B"] * 6,
|
51 |
+
"C": np.random.default_rng(2).standard_normal(12),
|
52 |
+
}
|
53 |
+
df = DataFrame(data)
|
54 |
+
df.loc[2:10:2, "C"] = np.nan
|
55 |
+
|
56 |
+
op = lambda x: getattr(x, op_name)()
|
57 |
+
|
58 |
+
# single column
|
59 |
+
grouped = df.drop(["B"], axis=1).groupby("A")
|
60 |
+
exp = {cat: op(group["C"]) for cat, group in grouped}
|
61 |
+
exp = DataFrame({"C": exp})
|
62 |
+
exp.index.name = "A"
|
63 |
+
result = op(grouped)
|
64 |
+
tm.assert_frame_equal(result, exp)
|
65 |
+
|
66 |
+
# multiple columns
|
67 |
+
grouped = df.groupby(["A", "B"])
|
68 |
+
expd = {}
|
69 |
+
for (cat1, cat2), group in grouped:
|
70 |
+
expd.setdefault(cat1, {})[cat2] = op(group["C"])
|
71 |
+
exp = DataFrame(expd).T.stack(future_stack=True)
|
72 |
+
exp.index.names = ["A", "B"]
|
73 |
+
exp.name = "C"
|
74 |
+
|
75 |
+
result = op(grouped)["C"]
|
76 |
+
if op_name in ["sum", "prod"]:
|
77 |
+
tm.assert_series_equal(result, exp)
|
78 |
+
|
79 |
+
|
80 |
+
def test_cython_agg_boolean():
|
81 |
+
frame = DataFrame(
|
82 |
+
{
|
83 |
+
"a": np.random.default_rng(2).integers(0, 5, 50),
|
84 |
+
"b": np.random.default_rng(2).integers(0, 2, 50).astype("bool"),
|
85 |
+
}
|
86 |
+
)
|
87 |
+
result = frame.groupby("a")["b"].mean()
|
88 |
+
msg = "using SeriesGroupBy.mean"
|
89 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
90 |
+
# GH#53425
|
91 |
+
expected = frame.groupby("a")["b"].agg(np.mean)
|
92 |
+
|
93 |
+
tm.assert_series_equal(result, expected)
|
94 |
+
|
95 |
+
|
96 |
+
def test_cython_agg_nothing_to_agg():
|
97 |
+
frame = DataFrame(
|
98 |
+
{"a": np.random.default_rng(2).integers(0, 5, 50), "b": ["foo", "bar"] * 25}
|
99 |
+
)
|
100 |
+
|
101 |
+
msg = "Cannot use numeric_only=True with SeriesGroupBy.mean and non-numeric dtypes"
|
102 |
+
with pytest.raises(TypeError, match=msg):
|
103 |
+
frame.groupby("a")["b"].mean(numeric_only=True)
|
104 |
+
|
105 |
+
frame = DataFrame(
|
106 |
+
{"a": np.random.default_rng(2).integers(0, 5, 50), "b": ["foo", "bar"] * 25}
|
107 |
+
)
|
108 |
+
|
109 |
+
result = frame[["b"]].groupby(frame["a"]).mean(numeric_only=True)
|
110 |
+
expected = DataFrame(
|
111 |
+
[], index=frame["a"].sort_values().drop_duplicates(), columns=[]
|
112 |
+
)
|
113 |
+
tm.assert_frame_equal(result, expected)
|
114 |
+
|
115 |
+
|
116 |
+
def test_cython_agg_nothing_to_agg_with_dates():
|
117 |
+
frame = DataFrame(
|
118 |
+
{
|
119 |
+
"a": np.random.default_rng(2).integers(0, 5, 50),
|
120 |
+
"b": ["foo", "bar"] * 25,
|
121 |
+
"dates": pd.date_range("now", periods=50, freq="min"),
|
122 |
+
}
|
123 |
+
)
|
124 |
+
msg = "Cannot use numeric_only=True with SeriesGroupBy.mean and non-numeric dtypes"
|
125 |
+
with pytest.raises(TypeError, match=msg):
|
126 |
+
frame.groupby("b").dates.mean(numeric_only=True)
|
127 |
+
|
128 |
+
|
129 |
+
def test_cython_agg_frame_columns():
|
130 |
+
# #2113
|
131 |
+
df = DataFrame({"x": [1, 2, 3], "y": [3, 4, 5]})
|
132 |
+
|
133 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
134 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
135 |
+
df.groupby(level=0, axis="columns").mean()
|
136 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
137 |
+
df.groupby(level=0, axis="columns").mean()
|
138 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
139 |
+
df.groupby(level=0, axis="columns").mean()
|
140 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
141 |
+
df.groupby(level=0, axis="columns").mean()
|
142 |
+
|
143 |
+
|
144 |
+
def test_cython_agg_return_dict():
|
145 |
+
# GH 16741
|
146 |
+
df = DataFrame(
|
147 |
+
{
|
148 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
149 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
150 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
151 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
152 |
+
}
|
153 |
+
)
|
154 |
+
|
155 |
+
ts = df.groupby("A")["B"].agg(lambda x: x.value_counts().to_dict())
|
156 |
+
expected = Series(
|
157 |
+
[{"two": 1, "one": 1, "three": 1}, {"two": 2, "one": 2, "three": 1}],
|
158 |
+
index=Index(["bar", "foo"], name="A"),
|
159 |
+
name="B",
|
160 |
+
)
|
161 |
+
tm.assert_series_equal(ts, expected)
|
162 |
+
|
163 |
+
|
164 |
+
def test_cython_fail_agg():
|
165 |
+
dr = bdate_range("1/1/2000", periods=50)
|
166 |
+
ts = Series(["A", "B", "C", "D", "E"] * 10, index=dr)
|
167 |
+
|
168 |
+
grouped = ts.groupby(lambda x: x.month)
|
169 |
+
summed = grouped.sum()
|
170 |
+
msg = "using SeriesGroupBy.sum"
|
171 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
172 |
+
# GH#53425
|
173 |
+
expected = grouped.agg(np.sum)
|
174 |
+
tm.assert_series_equal(summed, expected)
|
175 |
+
|
176 |
+
|
177 |
+
@pytest.mark.parametrize(
|
178 |
+
"op, targop",
|
179 |
+
[
|
180 |
+
("mean", np.mean),
|
181 |
+
("median", np.median),
|
182 |
+
("var", np.var),
|
183 |
+
("sum", np.sum),
|
184 |
+
("prod", np.prod),
|
185 |
+
("min", np.min),
|
186 |
+
("max", np.max),
|
187 |
+
("first", lambda x: x.iloc[0]),
|
188 |
+
("last", lambda x: x.iloc[-1]),
|
189 |
+
],
|
190 |
+
)
|
191 |
+
def test__cython_agg_general(op, targop):
|
192 |
+
df = DataFrame(np.random.default_rng(2).standard_normal(1000))
|
193 |
+
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
|
194 |
+
|
195 |
+
result = df.groupby(labels)._cython_agg_general(op, alt=None, numeric_only=True)
|
196 |
+
warn = FutureWarning if targop in com._cython_table else None
|
197 |
+
msg = f"using DataFrameGroupBy.{op}"
|
198 |
+
with tm.assert_produces_warning(warn, match=msg):
|
199 |
+
# GH#53425
|
200 |
+
expected = df.groupby(labels).agg(targop)
|
201 |
+
tm.assert_frame_equal(result, expected)
|
202 |
+
|
203 |
+
|
204 |
+
@pytest.mark.parametrize(
|
205 |
+
"op, targop",
|
206 |
+
[
|
207 |
+
("mean", np.mean),
|
208 |
+
("median", lambda x: np.median(x) if len(x) > 0 else np.nan),
|
209 |
+
("var", lambda x: np.var(x, ddof=1)),
|
210 |
+
("min", np.min),
|
211 |
+
("max", np.max),
|
212 |
+
],
|
213 |
+
)
|
214 |
+
def test_cython_agg_empty_buckets(op, targop, observed):
|
215 |
+
df = DataFrame([11, 12, 13])
|
216 |
+
grps = range(0, 55, 5)
|
217 |
+
|
218 |
+
# calling _cython_agg_general directly, instead of via the user API
|
219 |
+
# which sets different values for min_count, so do that here.
|
220 |
+
g = df.groupby(pd.cut(df[0], grps), observed=observed)
|
221 |
+
result = g._cython_agg_general(op, alt=None, numeric_only=True)
|
222 |
+
|
223 |
+
g = df.groupby(pd.cut(df[0], grps), observed=observed)
|
224 |
+
expected = g.agg(lambda x: targop(x))
|
225 |
+
tm.assert_frame_equal(result, expected)
|
226 |
+
|
227 |
+
|
228 |
+
def test_cython_agg_empty_buckets_nanops(observed):
|
229 |
+
# GH-18869 can't call nanops on empty groups, so hardcode expected
|
230 |
+
# for these
|
231 |
+
df = DataFrame([11, 12, 13], columns=["a"])
|
232 |
+
grps = np.arange(0, 25, 5, dtype=int)
|
233 |
+
# add / sum
|
234 |
+
result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general(
|
235 |
+
"sum", alt=None, numeric_only=True
|
236 |
+
)
|
237 |
+
intervals = pd.interval_range(0, 20, freq=5)
|
238 |
+
expected = DataFrame(
|
239 |
+
{"a": [0, 0, 36, 0]},
|
240 |
+
index=pd.CategoricalIndex(intervals, name="a", ordered=True),
|
241 |
+
)
|
242 |
+
if observed:
|
243 |
+
expected = expected[expected.a != 0]
|
244 |
+
|
245 |
+
tm.assert_frame_equal(result, expected)
|
246 |
+
|
247 |
+
# prod
|
248 |
+
result = df.groupby(pd.cut(df["a"], grps), observed=observed)._cython_agg_general(
|
249 |
+
"prod", alt=None, numeric_only=True
|
250 |
+
)
|
251 |
+
expected = DataFrame(
|
252 |
+
{"a": [1, 1, 1716, 1]},
|
253 |
+
index=pd.CategoricalIndex(intervals, name="a", ordered=True),
|
254 |
+
)
|
255 |
+
if observed:
|
256 |
+
expected = expected[expected.a != 1]
|
257 |
+
|
258 |
+
tm.assert_frame_equal(result, expected)
|
259 |
+
|
260 |
+
|
261 |
+
@pytest.mark.parametrize("op", ["first", "last", "max", "min"])
|
262 |
+
@pytest.mark.parametrize(
|
263 |
+
"data", [Timestamp("2016-10-14 21:00:44.557"), Timedelta("17088 days 21:00:44.557")]
|
264 |
+
)
|
265 |
+
def test_cython_with_timestamp_and_nat(op, data):
|
266 |
+
# https://github.com/pandas-dev/pandas/issues/19526
|
267 |
+
df = DataFrame({"a": [0, 1], "b": [data, NaT]})
|
268 |
+
index = Index([0, 1], name="a")
|
269 |
+
|
270 |
+
# We will group by a and test the cython aggregations
|
271 |
+
expected = DataFrame({"b": [data, NaT]}, index=index)
|
272 |
+
|
273 |
+
result = df.groupby("a").aggregate(op)
|
274 |
+
tm.assert_frame_equal(expected, result)
|
275 |
+
|
276 |
+
|
277 |
+
@pytest.mark.parametrize(
|
278 |
+
"agg",
|
279 |
+
[
|
280 |
+
"min",
|
281 |
+
"max",
|
282 |
+
"count",
|
283 |
+
"sum",
|
284 |
+
"prod",
|
285 |
+
"var",
|
286 |
+
"mean",
|
287 |
+
"median",
|
288 |
+
"ohlc",
|
289 |
+
"cumprod",
|
290 |
+
"cumsum",
|
291 |
+
"shift",
|
292 |
+
"any",
|
293 |
+
"all",
|
294 |
+
"quantile",
|
295 |
+
"first",
|
296 |
+
"last",
|
297 |
+
"rank",
|
298 |
+
"cummin",
|
299 |
+
"cummax",
|
300 |
+
],
|
301 |
+
)
|
302 |
+
def test_read_only_buffer_source_agg(agg):
|
303 |
+
# https://github.com/pandas-dev/pandas/issues/36014
|
304 |
+
df = DataFrame(
|
305 |
+
{
|
306 |
+
"sepal_length": [5.1, 4.9, 4.7, 4.6, 5.0],
|
307 |
+
"species": ["setosa", "setosa", "setosa", "setosa", "setosa"],
|
308 |
+
}
|
309 |
+
)
|
310 |
+
df._mgr.arrays[0].flags.writeable = False
|
311 |
+
|
312 |
+
result = df.groupby(["species"]).agg({"sepal_length": agg})
|
313 |
+
expected = df.copy().groupby(["species"]).agg({"sepal_length": agg})
|
314 |
+
|
315 |
+
tm.assert_equal(result, expected)
|
316 |
+
|
317 |
+
|
318 |
+
@pytest.mark.parametrize(
|
319 |
+
"op_name",
|
320 |
+
[
|
321 |
+
"count",
|
322 |
+
"sum",
|
323 |
+
"std",
|
324 |
+
"var",
|
325 |
+
"sem",
|
326 |
+
"mean",
|
327 |
+
"median",
|
328 |
+
"prod",
|
329 |
+
"min",
|
330 |
+
"max",
|
331 |
+
],
|
332 |
+
)
|
333 |
+
def test_cython_agg_nullable_int(op_name):
|
334 |
+
# ensure that the cython-based aggregations don't fail for nullable dtype
|
335 |
+
# (eg https://github.com/pandas-dev/pandas/issues/37415)
|
336 |
+
df = DataFrame(
|
337 |
+
{
|
338 |
+
"A": ["A", "B"] * 5,
|
339 |
+
"B": pd.array([1, 2, 3, 4, 5, 6, 7, 8, 9, pd.NA], dtype="Int64"),
|
340 |
+
}
|
341 |
+
)
|
342 |
+
result = getattr(df.groupby("A")["B"], op_name)()
|
343 |
+
df2 = df.assign(B=df["B"].astype("float64"))
|
344 |
+
expected = getattr(df2.groupby("A")["B"], op_name)()
|
345 |
+
if op_name in ("mean", "median"):
|
346 |
+
convert_integer = False
|
347 |
+
else:
|
348 |
+
convert_integer = True
|
349 |
+
expected = expected.convert_dtypes(convert_integer=convert_integer)
|
350 |
+
tm.assert_series_equal(result, expected)
|
351 |
+
|
352 |
+
|
353 |
+
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
|
354 |
+
def test_count_masked_returns_masked_dtype(dtype):
|
355 |
+
df = DataFrame(
|
356 |
+
{
|
357 |
+
"A": [1, 1],
|
358 |
+
"B": pd.array([1, pd.NA], dtype=dtype),
|
359 |
+
"C": pd.array([1, 1], dtype=dtype),
|
360 |
+
}
|
361 |
+
)
|
362 |
+
result = df.groupby("A").count()
|
363 |
+
expected = DataFrame(
|
364 |
+
[[1, 2]], index=Index([1], name="A"), columns=["B", "C"], dtype="Int64"
|
365 |
+
)
|
366 |
+
tm.assert_frame_equal(result, expected)
|
367 |
+
|
368 |
+
|
369 |
+
@pytest.mark.parametrize("with_na", [True, False])
|
370 |
+
@pytest.mark.parametrize(
|
371 |
+
"op_name, action",
|
372 |
+
[
|
373 |
+
# ("count", "always_int"),
|
374 |
+
("sum", "large_int"),
|
375 |
+
# ("std", "always_float"),
|
376 |
+
("var", "always_float"),
|
377 |
+
# ("sem", "always_float"),
|
378 |
+
("mean", "always_float"),
|
379 |
+
("median", "always_float"),
|
380 |
+
("prod", "large_int"),
|
381 |
+
("min", "preserve"),
|
382 |
+
("max", "preserve"),
|
383 |
+
("first", "preserve"),
|
384 |
+
("last", "preserve"),
|
385 |
+
],
|
386 |
+
)
|
387 |
+
@pytest.mark.parametrize(
|
388 |
+
"data",
|
389 |
+
[
|
390 |
+
pd.array([1, 2, 3, 4], dtype="Int64"),
|
391 |
+
pd.array([1, 2, 3, 4], dtype="Int8"),
|
392 |
+
pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float32"),
|
393 |
+
pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64"),
|
394 |
+
pd.array([True, True, False, False], dtype="boolean"),
|
395 |
+
],
|
396 |
+
)
|
397 |
+
def test_cython_agg_EA_known_dtypes(data, op_name, action, with_na):
|
398 |
+
if with_na:
|
399 |
+
data[3] = pd.NA
|
400 |
+
|
401 |
+
df = DataFrame({"key": ["a", "a", "b", "b"], "col": data})
|
402 |
+
grouped = df.groupby("key")
|
403 |
+
|
404 |
+
if action == "always_int":
|
405 |
+
# always Int64
|
406 |
+
expected_dtype = pd.Int64Dtype()
|
407 |
+
elif action == "large_int":
|
408 |
+
# for any int/bool use Int64, for float preserve dtype
|
409 |
+
if is_float_dtype(data.dtype):
|
410 |
+
expected_dtype = data.dtype
|
411 |
+
elif is_integer_dtype(data.dtype):
|
412 |
+
# match the numpy dtype we'd get with the non-nullable analogue
|
413 |
+
expected_dtype = data.dtype
|
414 |
+
else:
|
415 |
+
expected_dtype = pd.Int64Dtype()
|
416 |
+
elif action == "always_float":
|
417 |
+
# for any int/bool use Float64, for float preserve dtype
|
418 |
+
if is_float_dtype(data.dtype):
|
419 |
+
expected_dtype = data.dtype
|
420 |
+
else:
|
421 |
+
expected_dtype = pd.Float64Dtype()
|
422 |
+
elif action == "preserve":
|
423 |
+
expected_dtype = data.dtype
|
424 |
+
|
425 |
+
result = getattr(grouped, op_name)()
|
426 |
+
assert result["col"].dtype == expected_dtype
|
427 |
+
|
428 |
+
result = grouped.aggregate(op_name)
|
429 |
+
assert result["col"].dtype == expected_dtype
|
430 |
+
|
431 |
+
result = getattr(grouped["col"], op_name)()
|
432 |
+
assert result.dtype == expected_dtype
|
433 |
+
|
434 |
+
result = grouped["col"].aggregate(op_name)
|
435 |
+
assert result.dtype == expected_dtype
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_numba.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.errors import NumbaUtilError
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
Index,
|
9 |
+
NamedAgg,
|
10 |
+
Series,
|
11 |
+
option_context,
|
12 |
+
)
|
13 |
+
import pandas._testing as tm
|
14 |
+
|
15 |
+
pytestmark = pytest.mark.single_cpu
|
16 |
+
|
17 |
+
|
18 |
+
def test_correct_function_signature():
|
19 |
+
pytest.importorskip("numba")
|
20 |
+
|
21 |
+
def incorrect_function(x):
|
22 |
+
return sum(x) * 2.7
|
23 |
+
|
24 |
+
data = DataFrame(
|
25 |
+
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
26 |
+
columns=["key", "data"],
|
27 |
+
)
|
28 |
+
with pytest.raises(NumbaUtilError, match="The first 2"):
|
29 |
+
data.groupby("key").agg(incorrect_function, engine="numba")
|
30 |
+
|
31 |
+
with pytest.raises(NumbaUtilError, match="The first 2"):
|
32 |
+
data.groupby("key")["data"].agg(incorrect_function, engine="numba")
|
33 |
+
|
34 |
+
|
35 |
+
def test_check_nopython_kwargs():
|
36 |
+
pytest.importorskip("numba")
|
37 |
+
|
38 |
+
def incorrect_function(values, index):
|
39 |
+
return sum(values) * 2.7
|
40 |
+
|
41 |
+
data = DataFrame(
|
42 |
+
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
43 |
+
columns=["key", "data"],
|
44 |
+
)
|
45 |
+
with pytest.raises(NumbaUtilError, match="numba does not support"):
|
46 |
+
data.groupby("key").agg(incorrect_function, engine="numba", a=1)
|
47 |
+
|
48 |
+
with pytest.raises(NumbaUtilError, match="numba does not support"):
|
49 |
+
data.groupby("key")["data"].agg(incorrect_function, engine="numba", a=1)
|
50 |
+
|
51 |
+
|
52 |
+
@pytest.mark.filterwarnings("ignore")
|
53 |
+
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
54 |
+
@pytest.mark.parametrize("jit", [True, False])
|
55 |
+
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
|
56 |
+
@pytest.mark.parametrize("as_index", [True, False])
|
57 |
+
def test_numba_vs_cython(jit, pandas_obj, nogil, parallel, nopython, as_index):
|
58 |
+
pytest.importorskip("numba")
|
59 |
+
|
60 |
+
def func_numba(values, index):
|
61 |
+
return np.mean(values) * 2.7
|
62 |
+
|
63 |
+
if jit:
|
64 |
+
# Test accepted jitted functions
|
65 |
+
import numba
|
66 |
+
|
67 |
+
func_numba = numba.jit(func_numba)
|
68 |
+
|
69 |
+
data = DataFrame(
|
70 |
+
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
71 |
+
)
|
72 |
+
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
73 |
+
grouped = data.groupby(0, as_index=as_index)
|
74 |
+
if pandas_obj == "Series":
|
75 |
+
grouped = grouped[1]
|
76 |
+
|
77 |
+
result = grouped.agg(func_numba, engine="numba", engine_kwargs=engine_kwargs)
|
78 |
+
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
|
79 |
+
|
80 |
+
tm.assert_equal(result, expected)
|
81 |
+
|
82 |
+
|
83 |
+
@pytest.mark.filterwarnings("ignore")
|
84 |
+
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
85 |
+
@pytest.mark.parametrize("jit", [True, False])
|
86 |
+
@pytest.mark.parametrize("pandas_obj", ["Series", "DataFrame"])
|
87 |
+
def test_cache(jit, pandas_obj, nogil, parallel, nopython):
|
88 |
+
# Test that the functions are cached correctly if we switch functions
|
89 |
+
pytest.importorskip("numba")
|
90 |
+
|
91 |
+
def func_1(values, index):
|
92 |
+
return np.mean(values) - 3.4
|
93 |
+
|
94 |
+
def func_2(values, index):
|
95 |
+
return np.mean(values) * 2.7
|
96 |
+
|
97 |
+
if jit:
|
98 |
+
import numba
|
99 |
+
|
100 |
+
func_1 = numba.jit(func_1)
|
101 |
+
func_2 = numba.jit(func_2)
|
102 |
+
|
103 |
+
data = DataFrame(
|
104 |
+
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
105 |
+
)
|
106 |
+
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
107 |
+
grouped = data.groupby(0)
|
108 |
+
if pandas_obj == "Series":
|
109 |
+
grouped = grouped[1]
|
110 |
+
|
111 |
+
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
|
112 |
+
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
|
113 |
+
tm.assert_equal(result, expected)
|
114 |
+
|
115 |
+
# Add func_2 to the cache
|
116 |
+
result = grouped.agg(func_2, engine="numba", engine_kwargs=engine_kwargs)
|
117 |
+
expected = grouped.agg(lambda x: np.mean(x) * 2.7, engine="cython")
|
118 |
+
tm.assert_equal(result, expected)
|
119 |
+
|
120 |
+
# Retest func_1 which should use the cache
|
121 |
+
result = grouped.agg(func_1, engine="numba", engine_kwargs=engine_kwargs)
|
122 |
+
expected = grouped.agg(lambda x: np.mean(x) - 3.4, engine="cython")
|
123 |
+
tm.assert_equal(result, expected)
|
124 |
+
|
125 |
+
|
126 |
+
def test_use_global_config():
|
127 |
+
pytest.importorskip("numba")
|
128 |
+
|
129 |
+
def func_1(values, index):
|
130 |
+
return np.mean(values) - 3.4
|
131 |
+
|
132 |
+
data = DataFrame(
|
133 |
+
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
|
134 |
+
)
|
135 |
+
grouped = data.groupby(0)
|
136 |
+
expected = grouped.agg(func_1, engine="numba")
|
137 |
+
with option_context("compute.use_numba", True):
|
138 |
+
result = grouped.agg(func_1, engine=None)
|
139 |
+
tm.assert_frame_equal(expected, result)
|
140 |
+
|
141 |
+
|
142 |
+
@pytest.mark.parametrize(
|
143 |
+
"agg_kwargs",
|
144 |
+
[
|
145 |
+
{"func": ["min", "max"]},
|
146 |
+
{"func": "min"},
|
147 |
+
{"func": {1: ["min", "max"], 2: "sum"}},
|
148 |
+
{"bmin": NamedAgg(column=1, aggfunc="min")},
|
149 |
+
],
|
150 |
+
)
|
151 |
+
def test_multifunc_numba_vs_cython_frame(agg_kwargs):
|
152 |
+
pytest.importorskip("numba")
|
153 |
+
data = DataFrame(
|
154 |
+
{
|
155 |
+
0: ["a", "a", "b", "b", "a"],
|
156 |
+
1: [1.0, 2.0, 3.0, 4.0, 5.0],
|
157 |
+
2: [1, 2, 3, 4, 5],
|
158 |
+
},
|
159 |
+
columns=[0, 1, 2],
|
160 |
+
)
|
161 |
+
grouped = data.groupby(0)
|
162 |
+
result = grouped.agg(**agg_kwargs, engine="numba")
|
163 |
+
expected = grouped.agg(**agg_kwargs, engine="cython")
|
164 |
+
tm.assert_frame_equal(result, expected)
|
165 |
+
|
166 |
+
|
167 |
+
@pytest.mark.parametrize(
|
168 |
+
"agg_kwargs,expected_func",
|
169 |
+
[
|
170 |
+
({"func": lambda values, index: values.sum()}, "sum"),
|
171 |
+
# FIXME
|
172 |
+
pytest.param(
|
173 |
+
{
|
174 |
+
"func": [
|
175 |
+
lambda values, index: values.sum(),
|
176 |
+
lambda values, index: values.min(),
|
177 |
+
]
|
178 |
+
},
|
179 |
+
["sum", "min"],
|
180 |
+
marks=pytest.mark.xfail(
|
181 |
+
reason="This doesn't work yet! Fails in nopython pipeline!"
|
182 |
+
),
|
183 |
+
),
|
184 |
+
],
|
185 |
+
)
|
186 |
+
def test_multifunc_numba_udf_frame(agg_kwargs, expected_func):
|
187 |
+
pytest.importorskip("numba")
|
188 |
+
data = DataFrame(
|
189 |
+
{
|
190 |
+
0: ["a", "a", "b", "b", "a"],
|
191 |
+
1: [1.0, 2.0, 3.0, 4.0, 5.0],
|
192 |
+
2: [1, 2, 3, 4, 5],
|
193 |
+
},
|
194 |
+
columns=[0, 1, 2],
|
195 |
+
)
|
196 |
+
grouped = data.groupby(0)
|
197 |
+
result = grouped.agg(**agg_kwargs, engine="numba")
|
198 |
+
expected = grouped.agg(expected_func, engine="cython")
|
199 |
+
# check_dtype can be removed if GH 44952 is addressed
|
200 |
+
# Currently, UDFs still always return float64 while reductions can preserve dtype
|
201 |
+
tm.assert_frame_equal(result, expected, check_dtype=False)
|
202 |
+
|
203 |
+
|
204 |
+
@pytest.mark.parametrize(
|
205 |
+
"agg_kwargs",
|
206 |
+
[{"func": ["min", "max"]}, {"func": "min"}, {"min_val": "min", "max_val": "max"}],
|
207 |
+
)
|
208 |
+
def test_multifunc_numba_vs_cython_series(agg_kwargs):
|
209 |
+
pytest.importorskip("numba")
|
210 |
+
labels = ["a", "a", "b", "b", "a"]
|
211 |
+
data = Series([1.0, 2.0, 3.0, 4.0, 5.0])
|
212 |
+
grouped = data.groupby(labels)
|
213 |
+
agg_kwargs["engine"] = "numba"
|
214 |
+
result = grouped.agg(**agg_kwargs)
|
215 |
+
agg_kwargs["engine"] = "cython"
|
216 |
+
expected = grouped.agg(**agg_kwargs)
|
217 |
+
if isinstance(expected, DataFrame):
|
218 |
+
tm.assert_frame_equal(result, expected)
|
219 |
+
else:
|
220 |
+
tm.assert_series_equal(result, expected)
|
221 |
+
|
222 |
+
|
223 |
+
@pytest.mark.single_cpu
|
224 |
+
@pytest.mark.parametrize(
|
225 |
+
"data,agg_kwargs",
|
226 |
+
[
|
227 |
+
(Series([1.0, 2.0, 3.0, 4.0, 5.0]), {"func": ["min", "max"]}),
|
228 |
+
(Series([1.0, 2.0, 3.0, 4.0, 5.0]), {"func": "min"}),
|
229 |
+
(
|
230 |
+
DataFrame(
|
231 |
+
{1: [1.0, 2.0, 3.0, 4.0, 5.0], 2: [1, 2, 3, 4, 5]}, columns=[1, 2]
|
232 |
+
),
|
233 |
+
{"func": ["min", "max"]},
|
234 |
+
),
|
235 |
+
(
|
236 |
+
DataFrame(
|
237 |
+
{1: [1.0, 2.0, 3.0, 4.0, 5.0], 2: [1, 2, 3, 4, 5]}, columns=[1, 2]
|
238 |
+
),
|
239 |
+
{"func": "min"},
|
240 |
+
),
|
241 |
+
(
|
242 |
+
DataFrame(
|
243 |
+
{1: [1.0, 2.0, 3.0, 4.0, 5.0], 2: [1, 2, 3, 4, 5]}, columns=[1, 2]
|
244 |
+
),
|
245 |
+
{"func": {1: ["min", "max"], 2: "sum"}},
|
246 |
+
),
|
247 |
+
(
|
248 |
+
DataFrame(
|
249 |
+
{1: [1.0, 2.0, 3.0, 4.0, 5.0], 2: [1, 2, 3, 4, 5]}, columns=[1, 2]
|
250 |
+
),
|
251 |
+
{"min_col": NamedAgg(column=1, aggfunc="min")},
|
252 |
+
),
|
253 |
+
],
|
254 |
+
)
|
255 |
+
def test_multifunc_numba_kwarg_propagation(data, agg_kwargs):
|
256 |
+
pytest.importorskip("numba")
|
257 |
+
labels = ["a", "a", "b", "b", "a"]
|
258 |
+
grouped = data.groupby(labels)
|
259 |
+
result = grouped.agg(**agg_kwargs, engine="numba", engine_kwargs={"parallel": True})
|
260 |
+
expected = grouped.agg(**agg_kwargs, engine="numba")
|
261 |
+
if isinstance(expected, DataFrame):
|
262 |
+
tm.assert_frame_equal(result, expected)
|
263 |
+
else:
|
264 |
+
tm.assert_series_equal(result, expected)
|
265 |
+
|
266 |
+
|
267 |
+
def test_args_not_cached():
|
268 |
+
# GH 41647
|
269 |
+
pytest.importorskip("numba")
|
270 |
+
|
271 |
+
def sum_last(values, index, n):
|
272 |
+
return values[-n:].sum()
|
273 |
+
|
274 |
+
df = DataFrame({"id": [0, 0, 1, 1], "x": [1, 1, 1, 1]})
|
275 |
+
grouped_x = df.groupby("id")["x"]
|
276 |
+
result = grouped_x.agg(sum_last, 1, engine="numba")
|
277 |
+
expected = Series([1.0] * 2, name="x", index=Index([0, 1], name="id"))
|
278 |
+
tm.assert_series_equal(result, expected)
|
279 |
+
|
280 |
+
result = grouped_x.agg(sum_last, 2, engine="numba")
|
281 |
+
expected = Series([2.0] * 2, name="x", index=Index([0, 1], name="id"))
|
282 |
+
tm.assert_series_equal(result, expected)
|
283 |
+
|
284 |
+
|
285 |
+
def test_index_data_correctly_passed():
|
286 |
+
# GH 43133
|
287 |
+
pytest.importorskip("numba")
|
288 |
+
|
289 |
+
def f(values, index):
|
290 |
+
return np.mean(index)
|
291 |
+
|
292 |
+
df = DataFrame({"group": ["A", "A", "B"], "v": [4, 5, 6]}, index=[-1, -2, -3])
|
293 |
+
result = df.groupby("group").aggregate(f, engine="numba")
|
294 |
+
expected = DataFrame(
|
295 |
+
[-1.5, -3.0], columns=["v"], index=Index(["A", "B"], name="group")
|
296 |
+
)
|
297 |
+
tm.assert_frame_equal(result, expected)
|
298 |
+
|
299 |
+
|
300 |
+
def test_engine_kwargs_not_cached():
|
301 |
+
# If the user passes a different set of engine_kwargs don't return the same
|
302 |
+
# jitted function
|
303 |
+
pytest.importorskip("numba")
|
304 |
+
nogil = True
|
305 |
+
parallel = False
|
306 |
+
nopython = True
|
307 |
+
|
308 |
+
def func_kwargs(values, index):
|
309 |
+
return nogil + parallel + nopython
|
310 |
+
|
311 |
+
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
312 |
+
df = DataFrame({"value": [0, 0, 0]})
|
313 |
+
result = df.groupby(level=0).aggregate(
|
314 |
+
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
|
315 |
+
)
|
316 |
+
expected = DataFrame({"value": [2.0, 2.0, 2.0]})
|
317 |
+
tm.assert_frame_equal(result, expected)
|
318 |
+
|
319 |
+
nogil = False
|
320 |
+
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
321 |
+
result = df.groupby(level=0).aggregate(
|
322 |
+
func_kwargs, engine="numba", engine_kwargs=engine_kwargs
|
323 |
+
)
|
324 |
+
expected = DataFrame({"value": [1.0, 1.0, 1.0]})
|
325 |
+
tm.assert_frame_equal(result, expected)
|
326 |
+
|
327 |
+
|
328 |
+
@pytest.mark.filterwarnings("ignore")
|
329 |
+
def test_multiindex_one_key(nogil, parallel, nopython):
|
330 |
+
pytest.importorskip("numba")
|
331 |
+
|
332 |
+
def numba_func(values, index):
|
333 |
+
return 1
|
334 |
+
|
335 |
+
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
|
336 |
+
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
337 |
+
result = df.groupby("A").agg(
|
338 |
+
numba_func, engine="numba", engine_kwargs=engine_kwargs
|
339 |
+
)
|
340 |
+
expected = DataFrame([1.0], index=Index([1], name="A"), columns=["C"])
|
341 |
+
tm.assert_frame_equal(result, expected)
|
342 |
+
|
343 |
+
|
344 |
+
def test_multiindex_multi_key_not_supported(nogil, parallel, nopython):
|
345 |
+
pytest.importorskip("numba")
|
346 |
+
|
347 |
+
def numba_func(values, index):
|
348 |
+
return 1
|
349 |
+
|
350 |
+
df = DataFrame([{"A": 1, "B": 2, "C": 3}]).set_index(["A", "B"])
|
351 |
+
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
|
352 |
+
with pytest.raises(NotImplementedError, match="more than 1 grouping labels"):
|
353 |
+
df.groupby(["A", "B"]).agg(
|
354 |
+
numba_func, engine="numba", engine_kwargs=engine_kwargs
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
def test_multilabel_numba_vs_cython(numba_supported_reductions):
|
359 |
+
pytest.importorskip("numba")
|
360 |
+
reduction, kwargs = numba_supported_reductions
|
361 |
+
df = DataFrame(
|
362 |
+
{
|
363 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
364 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
365 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
366 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
367 |
+
}
|
368 |
+
)
|
369 |
+
gb = df.groupby(["A", "B"])
|
370 |
+
res_agg = gb.agg(reduction, engine="numba", **kwargs)
|
371 |
+
expected_agg = gb.agg(reduction, engine="cython", **kwargs)
|
372 |
+
tm.assert_frame_equal(res_agg, expected_agg)
|
373 |
+
# Test that calling the aggregation directly also works
|
374 |
+
direct_res = getattr(gb, reduction)(engine="numba", **kwargs)
|
375 |
+
direct_expected = getattr(gb, reduction)(engine="cython", **kwargs)
|
376 |
+
tm.assert_frame_equal(direct_res, direct_expected)
|
377 |
+
|
378 |
+
|
379 |
+
def test_multilabel_udf_numba_vs_cython():
|
380 |
+
pytest.importorskip("numba")
|
381 |
+
df = DataFrame(
|
382 |
+
{
|
383 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
384 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
385 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
386 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
387 |
+
}
|
388 |
+
)
|
389 |
+
gb = df.groupby(["A", "B"])
|
390 |
+
result = gb.agg(lambda values, index: values.min(), engine="numba")
|
391 |
+
expected = gb.agg(lambda x: x.min(), engine="cython")
|
392 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/aggregate/test_other.py
ADDED
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
test all other .agg behavior
|
3 |
+
"""
|
4 |
+
|
5 |
+
import datetime as dt
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
|
11 |
+
from pandas.errors import SpecificationError
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from pandas import (
|
15 |
+
DataFrame,
|
16 |
+
Index,
|
17 |
+
MultiIndex,
|
18 |
+
PeriodIndex,
|
19 |
+
Series,
|
20 |
+
date_range,
|
21 |
+
period_range,
|
22 |
+
)
|
23 |
+
import pandas._testing as tm
|
24 |
+
|
25 |
+
from pandas.io.formats.printing import pprint_thing
|
26 |
+
|
27 |
+
|
28 |
+
def test_agg_partial_failure_raises():
|
29 |
+
# GH#43741
|
30 |
+
|
31 |
+
df = DataFrame(
|
32 |
+
{
|
33 |
+
"data1": np.random.default_rng(2).standard_normal(5),
|
34 |
+
"data2": np.random.default_rng(2).standard_normal(5),
|
35 |
+
"key1": ["a", "a", "b", "b", "a"],
|
36 |
+
"key2": ["one", "two", "one", "two", "one"],
|
37 |
+
}
|
38 |
+
)
|
39 |
+
grouped = df.groupby("key1")
|
40 |
+
|
41 |
+
def peak_to_peak(arr):
|
42 |
+
return arr.max() - arr.min()
|
43 |
+
|
44 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
45 |
+
grouped.agg([peak_to_peak])
|
46 |
+
|
47 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
48 |
+
grouped.agg(peak_to_peak)
|
49 |
+
|
50 |
+
|
51 |
+
def test_agg_datetimes_mixed():
|
52 |
+
data = [[1, "2012-01-01", 1.0], [2, "2012-01-02", 2.0], [3, None, 3.0]]
|
53 |
+
|
54 |
+
df1 = DataFrame(
|
55 |
+
{
|
56 |
+
"key": [x[0] for x in data],
|
57 |
+
"date": [x[1] for x in data],
|
58 |
+
"value": [x[2] for x in data],
|
59 |
+
}
|
60 |
+
)
|
61 |
+
|
62 |
+
data = [
|
63 |
+
[
|
64 |
+
row[0],
|
65 |
+
(dt.datetime.strptime(row[1], "%Y-%m-%d").date() if row[1] else None),
|
66 |
+
row[2],
|
67 |
+
]
|
68 |
+
for row in data
|
69 |
+
]
|
70 |
+
|
71 |
+
df2 = DataFrame(
|
72 |
+
{
|
73 |
+
"key": [x[0] for x in data],
|
74 |
+
"date": [x[1] for x in data],
|
75 |
+
"value": [x[2] for x in data],
|
76 |
+
}
|
77 |
+
)
|
78 |
+
|
79 |
+
df1["weights"] = df1["value"] / df1["value"].sum()
|
80 |
+
gb1 = df1.groupby("date").aggregate("sum")
|
81 |
+
|
82 |
+
df2["weights"] = df1["value"] / df1["value"].sum()
|
83 |
+
gb2 = df2.groupby("date").aggregate("sum")
|
84 |
+
|
85 |
+
assert len(gb1) == len(gb2)
|
86 |
+
|
87 |
+
|
88 |
+
def test_agg_period_index():
|
89 |
+
prng = period_range("2012-1-1", freq="M", periods=3)
|
90 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 2)), index=prng)
|
91 |
+
rs = df.groupby(level=0).sum()
|
92 |
+
assert isinstance(rs.index, PeriodIndex)
|
93 |
+
|
94 |
+
# GH 3579
|
95 |
+
index = period_range(start="1999-01", periods=5, freq="M")
|
96 |
+
s1 = Series(np.random.default_rng(2).random(len(index)), index=index)
|
97 |
+
s2 = Series(np.random.default_rng(2).random(len(index)), index=index)
|
98 |
+
df = DataFrame.from_dict({"s1": s1, "s2": s2})
|
99 |
+
grouped = df.groupby(df.index.month)
|
100 |
+
list(grouped)
|
101 |
+
|
102 |
+
|
103 |
+
def test_agg_dict_parameter_cast_result_dtypes():
|
104 |
+
# GH 12821
|
105 |
+
|
106 |
+
df = DataFrame(
|
107 |
+
{
|
108 |
+
"class": ["A", "A", "B", "B", "C", "C", "D", "D"],
|
109 |
+
"time": date_range("1/1/2011", periods=8, freq="h"),
|
110 |
+
}
|
111 |
+
)
|
112 |
+
df.loc[[0, 1, 2, 5], "time"] = None
|
113 |
+
|
114 |
+
# test for `first` function
|
115 |
+
exp = df.loc[[0, 3, 4, 6]].set_index("class")
|
116 |
+
grouped = df.groupby("class")
|
117 |
+
tm.assert_frame_equal(grouped.first(), exp)
|
118 |
+
tm.assert_frame_equal(grouped.agg("first"), exp)
|
119 |
+
tm.assert_frame_equal(grouped.agg({"time": "first"}), exp)
|
120 |
+
tm.assert_series_equal(grouped.time.first(), exp["time"])
|
121 |
+
tm.assert_series_equal(grouped.time.agg("first"), exp["time"])
|
122 |
+
|
123 |
+
# test for `last` function
|
124 |
+
exp = df.loc[[0, 3, 4, 7]].set_index("class")
|
125 |
+
grouped = df.groupby("class")
|
126 |
+
tm.assert_frame_equal(grouped.last(), exp)
|
127 |
+
tm.assert_frame_equal(grouped.agg("last"), exp)
|
128 |
+
tm.assert_frame_equal(grouped.agg({"time": "last"}), exp)
|
129 |
+
tm.assert_series_equal(grouped.time.last(), exp["time"])
|
130 |
+
tm.assert_series_equal(grouped.time.agg("last"), exp["time"])
|
131 |
+
|
132 |
+
# count
|
133 |
+
exp = Series([2, 2, 2, 2], index=Index(list("ABCD"), name="class"), name="time")
|
134 |
+
tm.assert_series_equal(grouped.time.agg(len), exp)
|
135 |
+
tm.assert_series_equal(grouped.time.size(), exp)
|
136 |
+
|
137 |
+
exp = Series([0, 1, 1, 2], index=Index(list("ABCD"), name="class"), name="time")
|
138 |
+
tm.assert_series_equal(grouped.time.count(), exp)
|
139 |
+
|
140 |
+
|
141 |
+
def test_agg_cast_results_dtypes():
|
142 |
+
# similar to GH12821
|
143 |
+
# xref #11444
|
144 |
+
u = [dt.datetime(2015, x + 1, 1) for x in range(12)]
|
145 |
+
v = list("aaabbbbbbccd")
|
146 |
+
df = DataFrame({"X": v, "Y": u})
|
147 |
+
|
148 |
+
result = df.groupby("X")["Y"].agg(len)
|
149 |
+
expected = df.groupby("X")["Y"].count()
|
150 |
+
tm.assert_series_equal(result, expected)
|
151 |
+
|
152 |
+
|
153 |
+
def test_aggregate_float64_no_int64():
|
154 |
+
# see gh-11199
|
155 |
+
df = DataFrame({"a": [1, 2, 3, 4, 5], "b": [1, 2, 2, 4, 5], "c": [1, 2, 3, 4, 5]})
|
156 |
+
|
157 |
+
expected = DataFrame({"a": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5])
|
158 |
+
expected.index.name = "b"
|
159 |
+
|
160 |
+
result = df.groupby("b")[["a"]].mean()
|
161 |
+
tm.assert_frame_equal(result, expected)
|
162 |
+
|
163 |
+
expected = DataFrame({"a": [1, 2.5, 4, 5], "c": [1, 2.5, 4, 5]}, index=[1, 2, 4, 5])
|
164 |
+
expected.index.name = "b"
|
165 |
+
|
166 |
+
result = df.groupby("b")[["a", "c"]].mean()
|
167 |
+
tm.assert_frame_equal(result, expected)
|
168 |
+
|
169 |
+
|
170 |
+
def test_aggregate_api_consistency():
|
171 |
+
# GH 9052
|
172 |
+
# make sure that the aggregates via dict
|
173 |
+
# are consistent
|
174 |
+
df = DataFrame(
|
175 |
+
{
|
176 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
177 |
+
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
|
178 |
+
"C": np.random.default_rng(2).standard_normal(8) + 1.0,
|
179 |
+
"D": np.arange(8),
|
180 |
+
}
|
181 |
+
)
|
182 |
+
|
183 |
+
grouped = df.groupby(["A", "B"])
|
184 |
+
c_mean = grouped["C"].mean()
|
185 |
+
c_sum = grouped["C"].sum()
|
186 |
+
d_mean = grouped["D"].mean()
|
187 |
+
d_sum = grouped["D"].sum()
|
188 |
+
|
189 |
+
result = grouped["D"].agg(["sum", "mean"])
|
190 |
+
expected = pd.concat([d_sum, d_mean], axis=1)
|
191 |
+
expected.columns = ["sum", "mean"]
|
192 |
+
tm.assert_frame_equal(result, expected, check_like=True)
|
193 |
+
|
194 |
+
result = grouped.agg(["sum", "mean"])
|
195 |
+
expected = pd.concat([c_sum, c_mean, d_sum, d_mean], axis=1)
|
196 |
+
expected.columns = MultiIndex.from_product([["C", "D"], ["sum", "mean"]])
|
197 |
+
tm.assert_frame_equal(result, expected, check_like=True)
|
198 |
+
|
199 |
+
result = grouped[["D", "C"]].agg(["sum", "mean"])
|
200 |
+
expected = pd.concat([d_sum, d_mean, c_sum, c_mean], axis=1)
|
201 |
+
expected.columns = MultiIndex.from_product([["D", "C"], ["sum", "mean"]])
|
202 |
+
tm.assert_frame_equal(result, expected, check_like=True)
|
203 |
+
|
204 |
+
result = grouped.agg({"C": "mean", "D": "sum"})
|
205 |
+
expected = pd.concat([d_sum, c_mean], axis=1)
|
206 |
+
tm.assert_frame_equal(result, expected, check_like=True)
|
207 |
+
|
208 |
+
result = grouped.agg({"C": ["mean", "sum"], "D": ["mean", "sum"]})
|
209 |
+
expected = pd.concat([c_mean, c_sum, d_mean, d_sum], axis=1)
|
210 |
+
expected.columns = MultiIndex.from_product([["C", "D"], ["mean", "sum"]])
|
211 |
+
|
212 |
+
msg = r"Column\(s\) \['r', 'r2'\] do not exist"
|
213 |
+
with pytest.raises(KeyError, match=msg):
|
214 |
+
grouped[["D", "C"]].agg({"r": "sum", "r2": "mean"})
|
215 |
+
|
216 |
+
|
217 |
+
def test_agg_dict_renaming_deprecation():
|
218 |
+
# 15931
|
219 |
+
df = DataFrame({"A": [1, 1, 1, 2, 2], "B": range(5), "C": range(5)})
|
220 |
+
|
221 |
+
msg = r"nested renamer is not supported"
|
222 |
+
with pytest.raises(SpecificationError, match=msg):
|
223 |
+
df.groupby("A").agg(
|
224 |
+
{"B": {"foo": ["sum", "max"]}, "C": {"bar": ["count", "min"]}}
|
225 |
+
)
|
226 |
+
|
227 |
+
msg = r"Column\(s\) \['ma'\] do not exist"
|
228 |
+
with pytest.raises(KeyError, match=msg):
|
229 |
+
df.groupby("A")[["B", "C"]].agg({"ma": "max"})
|
230 |
+
|
231 |
+
msg = r"nested renamer is not supported"
|
232 |
+
with pytest.raises(SpecificationError, match=msg):
|
233 |
+
df.groupby("A").B.agg({"foo": "count"})
|
234 |
+
|
235 |
+
|
236 |
+
def test_agg_compat():
|
237 |
+
# GH 12334
|
238 |
+
df = DataFrame(
|
239 |
+
{
|
240 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
241 |
+
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
|
242 |
+
"C": np.random.default_rng(2).standard_normal(8) + 1.0,
|
243 |
+
"D": np.arange(8),
|
244 |
+
}
|
245 |
+
)
|
246 |
+
|
247 |
+
g = df.groupby(["A", "B"])
|
248 |
+
|
249 |
+
msg = r"nested renamer is not supported"
|
250 |
+
with pytest.raises(SpecificationError, match=msg):
|
251 |
+
g["D"].agg({"C": ["sum", "std"]})
|
252 |
+
|
253 |
+
with pytest.raises(SpecificationError, match=msg):
|
254 |
+
g["D"].agg({"C": "sum", "D": "std"})
|
255 |
+
|
256 |
+
|
257 |
+
def test_agg_nested_dicts():
|
258 |
+
# API change for disallowing these types of nested dicts
|
259 |
+
df = DataFrame(
|
260 |
+
{
|
261 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
262 |
+
"B": ["one", "one", "two", "two", "two", "two", "one", "two"],
|
263 |
+
"C": np.random.default_rng(2).standard_normal(8) + 1.0,
|
264 |
+
"D": np.arange(8),
|
265 |
+
}
|
266 |
+
)
|
267 |
+
|
268 |
+
g = df.groupby(["A", "B"])
|
269 |
+
|
270 |
+
msg = r"nested renamer is not supported"
|
271 |
+
with pytest.raises(SpecificationError, match=msg):
|
272 |
+
g.aggregate({"r1": {"C": ["mean", "sum"]}, "r2": {"D": ["mean", "sum"]}})
|
273 |
+
|
274 |
+
with pytest.raises(SpecificationError, match=msg):
|
275 |
+
g.agg({"C": {"ra": ["mean", "std"]}, "D": {"rb": ["mean", "std"]}})
|
276 |
+
|
277 |
+
# same name as the original column
|
278 |
+
# GH9052
|
279 |
+
with pytest.raises(SpecificationError, match=msg):
|
280 |
+
g["D"].agg({"result1": np.sum, "result2": np.mean})
|
281 |
+
|
282 |
+
with pytest.raises(SpecificationError, match=msg):
|
283 |
+
g["D"].agg({"D": np.sum, "result2": np.mean})
|
284 |
+
|
285 |
+
|
286 |
+
def test_agg_item_by_item_raise_typeerror():
|
287 |
+
df = DataFrame(np.random.default_rng(2).integers(10, size=(20, 10)))
|
288 |
+
|
289 |
+
def raiseException(df):
|
290 |
+
pprint_thing("----------------------------------------")
|
291 |
+
pprint_thing(df.to_string())
|
292 |
+
raise TypeError("test")
|
293 |
+
|
294 |
+
with pytest.raises(TypeError, match="test"):
|
295 |
+
df.groupby(0).agg(raiseException)
|
296 |
+
|
297 |
+
|
298 |
+
def test_series_agg_multikey():
|
299 |
+
ts = Series(
|
300 |
+
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
|
301 |
+
)
|
302 |
+
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
|
303 |
+
|
304 |
+
result = grouped.agg("sum")
|
305 |
+
expected = grouped.sum()
|
306 |
+
tm.assert_series_equal(result, expected)
|
307 |
+
|
308 |
+
|
309 |
+
def test_series_agg_multi_pure_python():
|
310 |
+
data = DataFrame(
|
311 |
+
{
|
312 |
+
"A": [
|
313 |
+
"foo",
|
314 |
+
"foo",
|
315 |
+
"foo",
|
316 |
+
"foo",
|
317 |
+
"bar",
|
318 |
+
"bar",
|
319 |
+
"bar",
|
320 |
+
"bar",
|
321 |
+
"foo",
|
322 |
+
"foo",
|
323 |
+
"foo",
|
324 |
+
],
|
325 |
+
"B": [
|
326 |
+
"one",
|
327 |
+
"one",
|
328 |
+
"one",
|
329 |
+
"two",
|
330 |
+
"one",
|
331 |
+
"one",
|
332 |
+
"one",
|
333 |
+
"two",
|
334 |
+
"two",
|
335 |
+
"two",
|
336 |
+
"one",
|
337 |
+
],
|
338 |
+
"C": [
|
339 |
+
"dull",
|
340 |
+
"dull",
|
341 |
+
"shiny",
|
342 |
+
"dull",
|
343 |
+
"dull",
|
344 |
+
"shiny",
|
345 |
+
"shiny",
|
346 |
+
"dull",
|
347 |
+
"shiny",
|
348 |
+
"shiny",
|
349 |
+
"shiny",
|
350 |
+
],
|
351 |
+
"D": np.random.default_rng(2).standard_normal(11),
|
352 |
+
"E": np.random.default_rng(2).standard_normal(11),
|
353 |
+
"F": np.random.default_rng(2).standard_normal(11),
|
354 |
+
}
|
355 |
+
)
|
356 |
+
|
357 |
+
def bad(x):
|
358 |
+
assert len(x.values.base) > 0
|
359 |
+
return "foo"
|
360 |
+
|
361 |
+
result = data.groupby(["A", "B"]).agg(bad)
|
362 |
+
expected = data.groupby(["A", "B"]).agg(lambda x: "foo")
|
363 |
+
tm.assert_frame_equal(result, expected)
|
364 |
+
|
365 |
+
|
366 |
+
def test_agg_consistency():
|
367 |
+
# agg with ([]) and () not consistent
|
368 |
+
# GH 6715
|
369 |
+
def P1(a):
|
370 |
+
return np.percentile(a.dropna(), q=1)
|
371 |
+
|
372 |
+
df = DataFrame(
|
373 |
+
{
|
374 |
+
"col1": [1, 2, 3, 4],
|
375 |
+
"col2": [10, 25, 26, 31],
|
376 |
+
"date": [
|
377 |
+
dt.date(2013, 2, 10),
|
378 |
+
dt.date(2013, 2, 10),
|
379 |
+
dt.date(2013, 2, 11),
|
380 |
+
dt.date(2013, 2, 11),
|
381 |
+
],
|
382 |
+
}
|
383 |
+
)
|
384 |
+
|
385 |
+
g = df.groupby("date")
|
386 |
+
|
387 |
+
expected = g.agg([P1])
|
388 |
+
expected.columns = expected.columns.levels[0]
|
389 |
+
|
390 |
+
result = g.agg(P1)
|
391 |
+
tm.assert_frame_equal(result, expected)
|
392 |
+
|
393 |
+
|
394 |
+
def test_agg_callables():
|
395 |
+
# GH 7929
|
396 |
+
df = DataFrame({"foo": [1, 2], "bar": [3, 4]}).astype(np.int64)
|
397 |
+
|
398 |
+
class fn_class:
|
399 |
+
def __call__(self, x):
|
400 |
+
return sum(x)
|
401 |
+
|
402 |
+
equiv_callables = [
|
403 |
+
sum,
|
404 |
+
np.sum,
|
405 |
+
lambda x: sum(x),
|
406 |
+
lambda x: x.sum(),
|
407 |
+
partial(sum),
|
408 |
+
fn_class(),
|
409 |
+
]
|
410 |
+
|
411 |
+
expected = df.groupby("foo").agg("sum")
|
412 |
+
for ecall in equiv_callables:
|
413 |
+
warn = FutureWarning if ecall is sum or ecall is np.sum else None
|
414 |
+
msg = "using DataFrameGroupBy.sum"
|
415 |
+
with tm.assert_produces_warning(warn, match=msg):
|
416 |
+
result = df.groupby("foo").agg(ecall)
|
417 |
+
tm.assert_frame_equal(result, expected)
|
418 |
+
|
419 |
+
|
420 |
+
def test_agg_over_numpy_arrays():
|
421 |
+
# GH 3788
|
422 |
+
df = DataFrame(
|
423 |
+
[
|
424 |
+
[1, np.array([10, 20, 30])],
|
425 |
+
[1, np.array([40, 50, 60])],
|
426 |
+
[2, np.array([20, 30, 40])],
|
427 |
+
],
|
428 |
+
columns=["category", "arraydata"],
|
429 |
+
)
|
430 |
+
gb = df.groupby("category")
|
431 |
+
|
432 |
+
expected_data = [[np.array([50, 70, 90])], [np.array([20, 30, 40])]]
|
433 |
+
expected_index = Index([1, 2], name="category")
|
434 |
+
expected_column = ["arraydata"]
|
435 |
+
expected = DataFrame(expected_data, index=expected_index, columns=expected_column)
|
436 |
+
|
437 |
+
alt = gb.sum(numeric_only=False)
|
438 |
+
tm.assert_frame_equal(alt, expected)
|
439 |
+
|
440 |
+
result = gb.agg("sum", numeric_only=False)
|
441 |
+
tm.assert_frame_equal(result, expected)
|
442 |
+
|
443 |
+
# FIXME: the original version of this test called `gb.agg(sum)`
|
444 |
+
# and that raises TypeError if `numeric_only=False` is passed
|
445 |
+
|
446 |
+
|
447 |
+
@pytest.mark.parametrize("as_period", [True, False])
|
448 |
+
def test_agg_tzaware_non_datetime_result(as_period):
|
449 |
+
# discussed in GH#29589, fixed in GH#29641, operating on tzaware values
|
450 |
+
# with function that is not dtype-preserving
|
451 |
+
dti = date_range("2012-01-01", periods=4, tz="UTC")
|
452 |
+
if as_period:
|
453 |
+
dti = dti.tz_localize(None).to_period("D")
|
454 |
+
|
455 |
+
df = DataFrame({"a": [0, 0, 1, 1], "b": dti})
|
456 |
+
gb = df.groupby("a")
|
457 |
+
|
458 |
+
# Case that _does_ preserve the dtype
|
459 |
+
result = gb["b"].agg(lambda x: x.iloc[0])
|
460 |
+
expected = Series(dti[::2], name="b")
|
461 |
+
expected.index.name = "a"
|
462 |
+
tm.assert_series_equal(result, expected)
|
463 |
+
|
464 |
+
# Cases that do _not_ preserve the dtype
|
465 |
+
result = gb["b"].agg(lambda x: x.iloc[0].year)
|
466 |
+
expected = Series([2012, 2012], name="b")
|
467 |
+
expected.index.name = "a"
|
468 |
+
tm.assert_series_equal(result, expected)
|
469 |
+
|
470 |
+
result = gb["b"].agg(lambda x: x.iloc[-1] - x.iloc[0])
|
471 |
+
expected = Series([pd.Timedelta(days=1), pd.Timedelta(days=1)], name="b")
|
472 |
+
expected.index.name = "a"
|
473 |
+
if as_period:
|
474 |
+
expected = Series([pd.offsets.Day(1), pd.offsets.Day(1)], name="b")
|
475 |
+
expected.index.name = "a"
|
476 |
+
tm.assert_series_equal(result, expected)
|
477 |
+
|
478 |
+
|
479 |
+
def test_agg_timezone_round_trip():
|
480 |
+
# GH 15426
|
481 |
+
ts = pd.Timestamp("2016-01-01 12:00:00", tz="US/Pacific")
|
482 |
+
df = DataFrame({"a": 1, "b": [ts + dt.timedelta(minutes=nn) for nn in range(10)]})
|
483 |
+
|
484 |
+
result1 = df.groupby("a")["b"].agg("min").iloc[0]
|
485 |
+
result2 = df.groupby("a")["b"].agg(lambda x: np.min(x)).iloc[0]
|
486 |
+
result3 = df.groupby("a")["b"].min().iloc[0]
|
487 |
+
|
488 |
+
assert result1 == ts
|
489 |
+
assert result2 == ts
|
490 |
+
assert result3 == ts
|
491 |
+
|
492 |
+
dates = [
|
493 |
+
pd.Timestamp(f"2016-01-0{i:d} 12:00:00", tz="US/Pacific") for i in range(1, 5)
|
494 |
+
]
|
495 |
+
df = DataFrame({"A": ["a", "b"] * 2, "B": dates})
|
496 |
+
grouped = df.groupby("A")
|
497 |
+
|
498 |
+
ts = df["B"].iloc[0]
|
499 |
+
assert ts == grouped.nth(0)["B"].iloc[0]
|
500 |
+
assert ts == grouped.head(1)["B"].iloc[0]
|
501 |
+
assert ts == grouped.first()["B"].iloc[0]
|
502 |
+
|
503 |
+
# GH#27110 applying iloc should return a DataFrame
|
504 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
505 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
506 |
+
assert ts == grouped.apply(lambda x: x.iloc[0]).iloc[0, 1]
|
507 |
+
|
508 |
+
ts = df["B"].iloc[2]
|
509 |
+
assert ts == grouped.last()["B"].iloc[0]
|
510 |
+
|
511 |
+
# GH#27110 applying iloc should return a DataFrame
|
512 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
513 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
514 |
+
assert ts == grouped.apply(lambda x: x.iloc[-1]).iloc[0, 1]
|
515 |
+
|
516 |
+
|
517 |
+
def test_sum_uint64_overflow():
|
518 |
+
# see gh-14758
|
519 |
+
# Convert to uint64 and don't overflow
|
520 |
+
df = DataFrame([[1, 2], [3, 4], [5, 6]], dtype=object)
|
521 |
+
df = df + 9223372036854775807
|
522 |
+
|
523 |
+
index = Index(
|
524 |
+
[9223372036854775808, 9223372036854775810, 9223372036854775812], dtype=np.uint64
|
525 |
+
)
|
526 |
+
expected = DataFrame(
|
527 |
+
{1: [9223372036854775809, 9223372036854775811, 9223372036854775813]},
|
528 |
+
index=index,
|
529 |
+
dtype=object,
|
530 |
+
)
|
531 |
+
|
532 |
+
expected.index.name = 0
|
533 |
+
result = df.groupby(0).sum(numeric_only=False)
|
534 |
+
tm.assert_frame_equal(result, expected)
|
535 |
+
|
536 |
+
# out column is non-numeric, so with numeric_only=True it is dropped
|
537 |
+
result2 = df.groupby(0).sum(numeric_only=True)
|
538 |
+
expected2 = expected[[]]
|
539 |
+
tm.assert_frame_equal(result2, expected2)
|
540 |
+
|
541 |
+
|
542 |
+
@pytest.mark.parametrize(
|
543 |
+
"structure, expected",
|
544 |
+
[
|
545 |
+
(tuple, DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}})),
|
546 |
+
(list, DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}})),
|
547 |
+
(
|
548 |
+
lambda x: tuple(x),
|
549 |
+
DataFrame({"C": {(1, 1): (1, 1, 1), (3, 4): (3, 4, 4)}}),
|
550 |
+
),
|
551 |
+
(
|
552 |
+
lambda x: list(x),
|
553 |
+
DataFrame({"C": {(1, 1): [1, 1, 1], (3, 4): [3, 4, 4]}}),
|
554 |
+
),
|
555 |
+
],
|
556 |
+
)
|
557 |
+
def test_agg_structs_dataframe(structure, expected):
|
558 |
+
df = DataFrame(
|
559 |
+
{"A": [1, 1, 1, 3, 3, 3], "B": [1, 1, 1, 4, 4, 4], "C": [1, 1, 1, 3, 4, 4]}
|
560 |
+
)
|
561 |
+
|
562 |
+
result = df.groupby(["A", "B"]).aggregate(structure)
|
563 |
+
expected.index.names = ["A", "B"]
|
564 |
+
tm.assert_frame_equal(result, expected)
|
565 |
+
|
566 |
+
|
567 |
+
@pytest.mark.parametrize(
|
568 |
+
"structure, expected",
|
569 |
+
[
|
570 |
+
(tuple, Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name="C")),
|
571 |
+
(list, Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name="C")),
|
572 |
+
(lambda x: tuple(x), Series([(1, 1, 1), (3, 4, 4)], index=[1, 3], name="C")),
|
573 |
+
(lambda x: list(x), Series([[1, 1, 1], [3, 4, 4]], index=[1, 3], name="C")),
|
574 |
+
],
|
575 |
+
)
|
576 |
+
def test_agg_structs_series(structure, expected):
|
577 |
+
# Issue #18079
|
578 |
+
df = DataFrame(
|
579 |
+
{"A": [1, 1, 1, 3, 3, 3], "B": [1, 1, 1, 4, 4, 4], "C": [1, 1, 1, 3, 4, 4]}
|
580 |
+
)
|
581 |
+
|
582 |
+
result = df.groupby("A")["C"].aggregate(structure)
|
583 |
+
expected.index.name = "A"
|
584 |
+
tm.assert_series_equal(result, expected)
|
585 |
+
|
586 |
+
|
587 |
+
def test_agg_category_nansum(observed):
|
588 |
+
categories = ["a", "b", "c"]
|
589 |
+
df = DataFrame(
|
590 |
+
{"A": pd.Categorical(["a", "a", "b"], categories=categories), "B": [1, 2, 3]}
|
591 |
+
)
|
592 |
+
msg = "using SeriesGroupBy.sum"
|
593 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
594 |
+
result = df.groupby("A", observed=observed).B.agg(np.nansum)
|
595 |
+
expected = Series(
|
596 |
+
[3, 3, 0],
|
597 |
+
index=pd.CategoricalIndex(["a", "b", "c"], categories=categories, name="A"),
|
598 |
+
name="B",
|
599 |
+
)
|
600 |
+
if observed:
|
601 |
+
expected = expected[expected != 0]
|
602 |
+
tm.assert_series_equal(result, expected)
|
603 |
+
|
604 |
+
|
605 |
+
def test_agg_list_like_func():
|
606 |
+
# GH 18473
|
607 |
+
df = DataFrame({"A": [str(x) for x in range(3)], "B": [str(x) for x in range(3)]})
|
608 |
+
grouped = df.groupby("A", as_index=False, sort=False)
|
609 |
+
result = grouped.agg({"B": lambda x: list(x)})
|
610 |
+
expected = DataFrame(
|
611 |
+
{"A": [str(x) for x in range(3)], "B": [[str(x)] for x in range(3)]}
|
612 |
+
)
|
613 |
+
tm.assert_frame_equal(result, expected)
|
614 |
+
|
615 |
+
|
616 |
+
def test_agg_lambda_with_timezone():
|
617 |
+
# GH 23683
|
618 |
+
df = DataFrame(
|
619 |
+
{
|
620 |
+
"tag": [1, 1],
|
621 |
+
"date": [
|
622 |
+
pd.Timestamp("2018-01-01", tz="UTC"),
|
623 |
+
pd.Timestamp("2018-01-02", tz="UTC"),
|
624 |
+
],
|
625 |
+
}
|
626 |
+
)
|
627 |
+
result = df.groupby("tag").agg({"date": lambda e: e.head(1)})
|
628 |
+
expected = DataFrame(
|
629 |
+
[pd.Timestamp("2018-01-01", tz="UTC")],
|
630 |
+
index=Index([1], name="tag"),
|
631 |
+
columns=["date"],
|
632 |
+
)
|
633 |
+
tm.assert_frame_equal(result, expected)
|
634 |
+
|
635 |
+
|
636 |
+
@pytest.mark.parametrize(
|
637 |
+
"err_cls",
|
638 |
+
[
|
639 |
+
NotImplementedError,
|
640 |
+
RuntimeError,
|
641 |
+
KeyError,
|
642 |
+
IndexError,
|
643 |
+
OSError,
|
644 |
+
ValueError,
|
645 |
+
ArithmeticError,
|
646 |
+
AttributeError,
|
647 |
+
],
|
648 |
+
)
|
649 |
+
def test_groupby_agg_err_catching(err_cls):
|
650 |
+
# make sure we suppress anything other than TypeError or AssertionError
|
651 |
+
# in _python_agg_general
|
652 |
+
|
653 |
+
# Use a non-standard EA to make sure we don't go down ndarray paths
|
654 |
+
from pandas.tests.extension.decimal.array import (
|
655 |
+
DecimalArray,
|
656 |
+
make_data,
|
657 |
+
to_decimal,
|
658 |
+
)
|
659 |
+
|
660 |
+
data = make_data()[:5]
|
661 |
+
df = DataFrame(
|
662 |
+
{"id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data)}
|
663 |
+
)
|
664 |
+
|
665 |
+
expected = Series(to_decimal([data[0], data[3]]))
|
666 |
+
|
667 |
+
def weird_func(x):
|
668 |
+
# weird function that raise something other than TypeError or IndexError
|
669 |
+
# in _python_agg_general
|
670 |
+
if len(x) == 0:
|
671 |
+
raise err_cls
|
672 |
+
return x.iloc[0]
|
673 |
+
|
674 |
+
result = df["decimals"].groupby(df["id1"]).agg(weird_func)
|
675 |
+
tm.assert_series_equal(result, expected, check_names=False)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/conftest.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
DataFrame,
|
6 |
+
Index,
|
7 |
+
Series,
|
8 |
+
date_range,
|
9 |
+
)
|
10 |
+
from pandas.core.groupby.base import (
|
11 |
+
reduction_kernels,
|
12 |
+
transformation_kernels,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.fixture(params=[True, False])
|
17 |
+
def sort(request):
|
18 |
+
return request.param
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.fixture(params=[True, False])
|
22 |
+
def as_index(request):
|
23 |
+
return request.param
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.fixture(params=[True, False])
|
27 |
+
def dropna(request):
|
28 |
+
return request.param
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.fixture(params=[True, False])
|
32 |
+
def observed(request):
|
33 |
+
return request.param
|
34 |
+
|
35 |
+
|
36 |
+
@pytest.fixture
|
37 |
+
def df():
|
38 |
+
return DataFrame(
|
39 |
+
{
|
40 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
41 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
42 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
43 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
44 |
+
}
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.fixture
|
49 |
+
def ts():
|
50 |
+
return Series(
|
51 |
+
np.random.default_rng(2).standard_normal(30),
|
52 |
+
index=date_range("2000-01-01", periods=30, freq="B"),
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
@pytest.fixture
|
57 |
+
def tsframe():
|
58 |
+
return DataFrame(
|
59 |
+
np.random.default_rng(2).standard_normal((30, 4)),
|
60 |
+
columns=Index(list("ABCD"), dtype=object),
|
61 |
+
index=date_range("2000-01-01", periods=30, freq="B"),
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
@pytest.fixture
|
66 |
+
def three_group():
|
67 |
+
return DataFrame(
|
68 |
+
{
|
69 |
+
"A": [
|
70 |
+
"foo",
|
71 |
+
"foo",
|
72 |
+
"foo",
|
73 |
+
"foo",
|
74 |
+
"bar",
|
75 |
+
"bar",
|
76 |
+
"bar",
|
77 |
+
"bar",
|
78 |
+
"foo",
|
79 |
+
"foo",
|
80 |
+
"foo",
|
81 |
+
],
|
82 |
+
"B": [
|
83 |
+
"one",
|
84 |
+
"one",
|
85 |
+
"one",
|
86 |
+
"two",
|
87 |
+
"one",
|
88 |
+
"one",
|
89 |
+
"one",
|
90 |
+
"two",
|
91 |
+
"two",
|
92 |
+
"two",
|
93 |
+
"one",
|
94 |
+
],
|
95 |
+
"C": [
|
96 |
+
"dull",
|
97 |
+
"dull",
|
98 |
+
"shiny",
|
99 |
+
"dull",
|
100 |
+
"dull",
|
101 |
+
"shiny",
|
102 |
+
"shiny",
|
103 |
+
"dull",
|
104 |
+
"shiny",
|
105 |
+
"shiny",
|
106 |
+
"shiny",
|
107 |
+
],
|
108 |
+
"D": np.random.default_rng(2).standard_normal(11),
|
109 |
+
"E": np.random.default_rng(2).standard_normal(11),
|
110 |
+
"F": np.random.default_rng(2).standard_normal(11),
|
111 |
+
}
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
@pytest.fixture()
|
116 |
+
def slice_test_df():
|
117 |
+
data = [
|
118 |
+
[0, "a", "a0_at_0"],
|
119 |
+
[1, "b", "b0_at_1"],
|
120 |
+
[2, "a", "a1_at_2"],
|
121 |
+
[3, "b", "b1_at_3"],
|
122 |
+
[4, "c", "c0_at_4"],
|
123 |
+
[5, "a", "a2_at_5"],
|
124 |
+
[6, "a", "a3_at_6"],
|
125 |
+
[7, "a", "a4_at_7"],
|
126 |
+
]
|
127 |
+
df = DataFrame(data, columns=["Index", "Group", "Value"])
|
128 |
+
return df.set_index("Index")
|
129 |
+
|
130 |
+
|
131 |
+
@pytest.fixture()
|
132 |
+
def slice_test_grouped(slice_test_df):
|
133 |
+
return slice_test_df.groupby("Group", as_index=False)
|
134 |
+
|
135 |
+
|
136 |
+
@pytest.fixture(params=sorted(reduction_kernels))
|
137 |
+
def reduction_func(request):
|
138 |
+
"""
|
139 |
+
yields the string names of all groupby reduction functions, one at a time.
|
140 |
+
"""
|
141 |
+
return request.param
|
142 |
+
|
143 |
+
|
144 |
+
@pytest.fixture(params=sorted(transformation_kernels))
|
145 |
+
def transformation_func(request):
|
146 |
+
"""yields the string names of all groupby transformation functions."""
|
147 |
+
return request.param
|
148 |
+
|
149 |
+
|
150 |
+
@pytest.fixture(params=sorted(reduction_kernels) + sorted(transformation_kernels))
|
151 |
+
def groupby_func(request):
|
152 |
+
"""yields both aggregation and transformation functions."""
|
153 |
+
return request.param
|
154 |
+
|
155 |
+
|
156 |
+
@pytest.fixture(params=[True, False])
|
157 |
+
def parallel(request):
|
158 |
+
"""parallel keyword argument for numba.jit"""
|
159 |
+
return request.param
|
160 |
+
|
161 |
+
|
162 |
+
# Can parameterize nogil & nopython over True | False, but limiting per
|
163 |
+
# https://github.com/pandas-dev/pandas/pull/41971#issuecomment-860607472
|
164 |
+
|
165 |
+
|
166 |
+
@pytest.fixture(params=[False])
|
167 |
+
def nogil(request):
|
168 |
+
"""nogil keyword argument for numba.jit"""
|
169 |
+
return request.param
|
170 |
+
|
171 |
+
|
172 |
+
@pytest.fixture(params=[True])
|
173 |
+
def nopython(request):
|
174 |
+
"""nopython keyword argument for numba.jit"""
|
175 |
+
return request.param
|
176 |
+
|
177 |
+
|
178 |
+
@pytest.fixture(
|
179 |
+
params=[
|
180 |
+
("mean", {}),
|
181 |
+
("var", {"ddof": 1}),
|
182 |
+
("var", {"ddof": 0}),
|
183 |
+
("std", {"ddof": 1}),
|
184 |
+
("std", {"ddof": 0}),
|
185 |
+
("sum", {}),
|
186 |
+
("min", {}),
|
187 |
+
("max", {}),
|
188 |
+
("sum", {"min_count": 2}),
|
189 |
+
("min", {"min_count": 2}),
|
190 |
+
("max", {"min_count": 2}),
|
191 |
+
],
|
192 |
+
ids=[
|
193 |
+
"mean",
|
194 |
+
"var_1",
|
195 |
+
"var_0",
|
196 |
+
"std_1",
|
197 |
+
"std_0",
|
198 |
+
"sum",
|
199 |
+
"min",
|
200 |
+
"max",
|
201 |
+
"sum-min_count",
|
202 |
+
"min-min_count",
|
203 |
+
"max-min_count",
|
204 |
+
],
|
205 |
+
)
|
206 |
+
def numba_supported_reductions(request):
|
207 |
+
"""reductions supported with engine='numba'"""
|
208 |
+
return request.param
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_all_methods.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests that apply to all groupby operation methods.
|
3 |
+
|
4 |
+
The only tests that should appear here are those that use the `groupby_func` fixture.
|
5 |
+
Even if it does use that fixture, prefer a more specific test file if it available
|
6 |
+
such as:
|
7 |
+
|
8 |
+
- test_categorical
|
9 |
+
- test_groupby_dropna
|
10 |
+
- test_groupby_subclass
|
11 |
+
- test_raises
|
12 |
+
"""
|
13 |
+
|
14 |
+
import pytest
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
from pandas import DataFrame
|
18 |
+
import pandas._testing as tm
|
19 |
+
from pandas.tests.groupby import get_groupby_method_args
|
20 |
+
|
21 |
+
|
22 |
+
def test_multiindex_group_all_columns_when_empty(groupby_func):
|
23 |
+
# GH 32464
|
24 |
+
df = DataFrame({"a": [], "b": [], "c": []}).set_index(["a", "b", "c"])
|
25 |
+
gb = df.groupby(["a", "b", "c"], group_keys=False)
|
26 |
+
method = getattr(gb, groupby_func)
|
27 |
+
args = get_groupby_method_args(groupby_func, df)
|
28 |
+
|
29 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
30 |
+
warn_msg = "DataFrameGroupBy.fillna is deprecated"
|
31 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
32 |
+
result = method(*args).index
|
33 |
+
expected = df.index
|
34 |
+
tm.assert_index_equal(result, expected)
|
35 |
+
|
36 |
+
|
37 |
+
def test_duplicate_columns(request, groupby_func, as_index):
|
38 |
+
# GH#50806
|
39 |
+
if groupby_func == "corrwith":
|
40 |
+
msg = "GH#50845 - corrwith fails when there are duplicate columns"
|
41 |
+
request.applymarker(pytest.mark.xfail(reason=msg))
|
42 |
+
df = DataFrame([[1, 3, 6], [1, 4, 7], [2, 5, 8]], columns=list("abb"))
|
43 |
+
args = get_groupby_method_args(groupby_func, df)
|
44 |
+
gb = df.groupby("a", as_index=as_index)
|
45 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
46 |
+
warn_msg = "DataFrameGroupBy.fillna is deprecated"
|
47 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
48 |
+
result = getattr(gb, groupby_func)(*args)
|
49 |
+
|
50 |
+
expected_df = df.set_axis(["a", "b", "c"], axis=1)
|
51 |
+
expected_args = get_groupby_method_args(groupby_func, expected_df)
|
52 |
+
expected_gb = expected_df.groupby("a", as_index=as_index)
|
53 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
54 |
+
warn_msg = "DataFrameGroupBy.fillna is deprecated"
|
55 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
56 |
+
expected = getattr(expected_gb, groupby_func)(*expected_args)
|
57 |
+
if groupby_func not in ("size", "ngroup", "cumcount"):
|
58 |
+
expected = expected.rename(columns={"c": "b"})
|
59 |
+
tm.assert_equal(result, expected)
|
60 |
+
|
61 |
+
|
62 |
+
@pytest.mark.parametrize(
|
63 |
+
"idx",
|
64 |
+
[
|
65 |
+
pd.Index(["a", "a"], name="foo"),
|
66 |
+
pd.MultiIndex.from_tuples((("a", "a"), ("a", "a")), names=["foo", "bar"]),
|
67 |
+
],
|
68 |
+
)
|
69 |
+
def test_dup_labels_output_shape(groupby_func, idx):
|
70 |
+
if groupby_func in {"size", "ngroup", "cumcount"}:
|
71 |
+
pytest.skip(f"Not applicable for {groupby_func}")
|
72 |
+
|
73 |
+
df = DataFrame([[1, 1]], columns=idx)
|
74 |
+
grp_by = df.groupby([0])
|
75 |
+
|
76 |
+
args = get_groupby_method_args(groupby_func, df)
|
77 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
78 |
+
warn_msg = "DataFrameGroupBy.fillna is deprecated"
|
79 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
80 |
+
result = getattr(grp_by, groupby_func)(*args)
|
81 |
+
|
82 |
+
assert result.shape == (1, 2)
|
83 |
+
tm.assert_index_equal(result.columns, idx)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_api.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests of the groupby API, including internal consistency and with other pandas objects.
|
3 |
+
|
4 |
+
Tests in this file should only check the existence, names, and arguments of groupby
|
5 |
+
methods. It should not test the results of any groupby operation.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import inspect
|
9 |
+
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
from pandas import (
|
13 |
+
DataFrame,
|
14 |
+
Series,
|
15 |
+
)
|
16 |
+
from pandas.core.groupby.base import (
|
17 |
+
groupby_other_methods,
|
18 |
+
reduction_kernels,
|
19 |
+
transformation_kernels,
|
20 |
+
)
|
21 |
+
from pandas.core.groupby.generic import (
|
22 |
+
DataFrameGroupBy,
|
23 |
+
SeriesGroupBy,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def test_tab_completion(multiindex_dataframe_random_data):
|
28 |
+
grp = multiindex_dataframe_random_data.groupby(level="second")
|
29 |
+
results = {v for v in dir(grp) if not v.startswith("_")}
|
30 |
+
expected = {
|
31 |
+
"A",
|
32 |
+
"B",
|
33 |
+
"C",
|
34 |
+
"agg",
|
35 |
+
"aggregate",
|
36 |
+
"apply",
|
37 |
+
"boxplot",
|
38 |
+
"filter",
|
39 |
+
"first",
|
40 |
+
"get_group",
|
41 |
+
"groups",
|
42 |
+
"hist",
|
43 |
+
"indices",
|
44 |
+
"last",
|
45 |
+
"max",
|
46 |
+
"mean",
|
47 |
+
"median",
|
48 |
+
"min",
|
49 |
+
"ngroups",
|
50 |
+
"nth",
|
51 |
+
"ohlc",
|
52 |
+
"plot",
|
53 |
+
"prod",
|
54 |
+
"size",
|
55 |
+
"std",
|
56 |
+
"sum",
|
57 |
+
"transform",
|
58 |
+
"var",
|
59 |
+
"sem",
|
60 |
+
"count",
|
61 |
+
"nunique",
|
62 |
+
"head",
|
63 |
+
"describe",
|
64 |
+
"cummax",
|
65 |
+
"quantile",
|
66 |
+
"rank",
|
67 |
+
"cumprod",
|
68 |
+
"tail",
|
69 |
+
"resample",
|
70 |
+
"cummin",
|
71 |
+
"fillna",
|
72 |
+
"cumsum",
|
73 |
+
"cumcount",
|
74 |
+
"ngroup",
|
75 |
+
"all",
|
76 |
+
"shift",
|
77 |
+
"skew",
|
78 |
+
"take",
|
79 |
+
"pct_change",
|
80 |
+
"any",
|
81 |
+
"corr",
|
82 |
+
"corrwith",
|
83 |
+
"cov",
|
84 |
+
"dtypes",
|
85 |
+
"ndim",
|
86 |
+
"diff",
|
87 |
+
"idxmax",
|
88 |
+
"idxmin",
|
89 |
+
"ffill",
|
90 |
+
"bfill",
|
91 |
+
"rolling",
|
92 |
+
"expanding",
|
93 |
+
"pipe",
|
94 |
+
"sample",
|
95 |
+
"ewm",
|
96 |
+
"value_counts",
|
97 |
+
}
|
98 |
+
assert results == expected
|
99 |
+
|
100 |
+
|
101 |
+
def test_all_methods_categorized(multiindex_dataframe_random_data):
|
102 |
+
grp = multiindex_dataframe_random_data.groupby(
|
103 |
+
multiindex_dataframe_random_data.iloc[:, 0]
|
104 |
+
)
|
105 |
+
names = {_ for _ in dir(grp) if not _.startswith("_")} - set(
|
106 |
+
multiindex_dataframe_random_data.columns
|
107 |
+
)
|
108 |
+
new_names = set(names)
|
109 |
+
new_names -= reduction_kernels
|
110 |
+
new_names -= transformation_kernels
|
111 |
+
new_names -= groupby_other_methods
|
112 |
+
|
113 |
+
assert not reduction_kernels & transformation_kernels
|
114 |
+
assert not reduction_kernels & groupby_other_methods
|
115 |
+
assert not transformation_kernels & groupby_other_methods
|
116 |
+
|
117 |
+
# new public method?
|
118 |
+
if new_names:
|
119 |
+
msg = f"""
|
120 |
+
There are uncategorized methods defined on the Grouper class:
|
121 |
+
{new_names}.
|
122 |
+
|
123 |
+
Was a new method recently added?
|
124 |
+
|
125 |
+
Every public method On Grouper must appear in exactly one the
|
126 |
+
following three lists defined in pandas.core.groupby.base:
|
127 |
+
- `reduction_kernels`
|
128 |
+
- `transformation_kernels`
|
129 |
+
- `groupby_other_methods`
|
130 |
+
see the comments in pandas/core/groupby/base.py for guidance on
|
131 |
+
how to fix this test.
|
132 |
+
"""
|
133 |
+
raise AssertionError(msg)
|
134 |
+
|
135 |
+
# removed a public method?
|
136 |
+
all_categorized = reduction_kernels | transformation_kernels | groupby_other_methods
|
137 |
+
if names != all_categorized:
|
138 |
+
msg = f"""
|
139 |
+
Some methods which are supposed to be on the Grouper class
|
140 |
+
are missing:
|
141 |
+
{all_categorized - names}.
|
142 |
+
|
143 |
+
They're still defined in one of the lists that live in pandas/core/groupby/base.py.
|
144 |
+
If you removed a method, you should update them
|
145 |
+
"""
|
146 |
+
raise AssertionError(msg)
|
147 |
+
|
148 |
+
|
149 |
+
def test_frame_consistency(groupby_func):
|
150 |
+
# GH#48028
|
151 |
+
if groupby_func in ("first", "last"):
|
152 |
+
msg = "first and last are entirely different between frame and groupby"
|
153 |
+
pytest.skip(reason=msg)
|
154 |
+
|
155 |
+
if groupby_func in ("cumcount", "ngroup"):
|
156 |
+
assert not hasattr(DataFrame, groupby_func)
|
157 |
+
return
|
158 |
+
|
159 |
+
frame_method = getattr(DataFrame, groupby_func)
|
160 |
+
gb_method = getattr(DataFrameGroupBy, groupby_func)
|
161 |
+
result = set(inspect.signature(gb_method).parameters)
|
162 |
+
if groupby_func == "size":
|
163 |
+
# "size" is a method on GroupBy but property on DataFrame:
|
164 |
+
expected = {"self"}
|
165 |
+
else:
|
166 |
+
expected = set(inspect.signature(frame_method).parameters)
|
167 |
+
|
168 |
+
# Exclude certain arguments from result and expected depending on the operation
|
169 |
+
# Some of these may be purposeful inconsistencies between the APIs
|
170 |
+
exclude_expected, exclude_result = set(), set()
|
171 |
+
if groupby_func in ("any", "all"):
|
172 |
+
exclude_expected = {"kwargs", "bool_only", "axis"}
|
173 |
+
elif groupby_func in ("count",):
|
174 |
+
exclude_expected = {"numeric_only", "axis"}
|
175 |
+
elif groupby_func in ("nunique",):
|
176 |
+
exclude_expected = {"axis"}
|
177 |
+
elif groupby_func in ("max", "min"):
|
178 |
+
exclude_expected = {"axis", "kwargs", "skipna"}
|
179 |
+
exclude_result = {"min_count", "engine", "engine_kwargs"}
|
180 |
+
elif groupby_func in ("mean", "std", "sum", "var"):
|
181 |
+
exclude_expected = {"axis", "kwargs", "skipna"}
|
182 |
+
exclude_result = {"engine", "engine_kwargs"}
|
183 |
+
elif groupby_func in ("median", "prod", "sem"):
|
184 |
+
exclude_expected = {"axis", "kwargs", "skipna"}
|
185 |
+
elif groupby_func in ("backfill", "bfill", "ffill", "pad"):
|
186 |
+
exclude_expected = {"downcast", "inplace", "axis", "limit_area"}
|
187 |
+
elif groupby_func in ("cummax", "cummin"):
|
188 |
+
exclude_expected = {"skipna", "args"}
|
189 |
+
exclude_result = {"numeric_only"}
|
190 |
+
elif groupby_func in ("cumprod", "cumsum"):
|
191 |
+
exclude_expected = {"skipna"}
|
192 |
+
elif groupby_func in ("pct_change",):
|
193 |
+
exclude_expected = {"kwargs"}
|
194 |
+
exclude_result = {"axis"}
|
195 |
+
elif groupby_func in ("rank",):
|
196 |
+
exclude_expected = {"numeric_only"}
|
197 |
+
elif groupby_func in ("quantile",):
|
198 |
+
exclude_expected = {"method", "axis"}
|
199 |
+
|
200 |
+
# Ensure excluded arguments are actually in the signatures
|
201 |
+
assert result & exclude_result == exclude_result
|
202 |
+
assert expected & exclude_expected == exclude_expected
|
203 |
+
|
204 |
+
result -= exclude_result
|
205 |
+
expected -= exclude_expected
|
206 |
+
assert result == expected
|
207 |
+
|
208 |
+
|
209 |
+
def test_series_consistency(request, groupby_func):
|
210 |
+
# GH#48028
|
211 |
+
if groupby_func in ("first", "last"):
|
212 |
+
pytest.skip("first and last are entirely different between Series and groupby")
|
213 |
+
|
214 |
+
if groupby_func in ("cumcount", "corrwith", "ngroup"):
|
215 |
+
assert not hasattr(Series, groupby_func)
|
216 |
+
return
|
217 |
+
|
218 |
+
series_method = getattr(Series, groupby_func)
|
219 |
+
gb_method = getattr(SeriesGroupBy, groupby_func)
|
220 |
+
result = set(inspect.signature(gb_method).parameters)
|
221 |
+
if groupby_func == "size":
|
222 |
+
# "size" is a method on GroupBy but property on Series
|
223 |
+
expected = {"self"}
|
224 |
+
else:
|
225 |
+
expected = set(inspect.signature(series_method).parameters)
|
226 |
+
|
227 |
+
# Exclude certain arguments from result and expected depending on the operation
|
228 |
+
# Some of these may be purposeful inconsistencies between the APIs
|
229 |
+
exclude_expected, exclude_result = set(), set()
|
230 |
+
if groupby_func in ("any", "all"):
|
231 |
+
exclude_expected = {"kwargs", "bool_only", "axis"}
|
232 |
+
elif groupby_func in ("diff",):
|
233 |
+
exclude_result = {"axis"}
|
234 |
+
elif groupby_func in ("max", "min"):
|
235 |
+
exclude_expected = {"axis", "kwargs", "skipna"}
|
236 |
+
exclude_result = {"min_count", "engine", "engine_kwargs"}
|
237 |
+
elif groupby_func in ("mean", "std", "sum", "var"):
|
238 |
+
exclude_expected = {"axis", "kwargs", "skipna"}
|
239 |
+
exclude_result = {"engine", "engine_kwargs"}
|
240 |
+
elif groupby_func in ("median", "prod", "sem"):
|
241 |
+
exclude_expected = {"axis", "kwargs", "skipna"}
|
242 |
+
elif groupby_func in ("backfill", "bfill", "ffill", "pad"):
|
243 |
+
exclude_expected = {"downcast", "inplace", "axis", "limit_area"}
|
244 |
+
elif groupby_func in ("cummax", "cummin"):
|
245 |
+
exclude_expected = {"skipna", "args"}
|
246 |
+
exclude_result = {"numeric_only"}
|
247 |
+
elif groupby_func in ("cumprod", "cumsum"):
|
248 |
+
exclude_expected = {"skipna"}
|
249 |
+
elif groupby_func in ("pct_change",):
|
250 |
+
exclude_expected = {"kwargs"}
|
251 |
+
exclude_result = {"axis"}
|
252 |
+
elif groupby_func in ("rank",):
|
253 |
+
exclude_expected = {"numeric_only"}
|
254 |
+
elif groupby_func in ("idxmin", "idxmax"):
|
255 |
+
exclude_expected = {"args", "kwargs"}
|
256 |
+
elif groupby_func in ("quantile",):
|
257 |
+
exclude_result = {"numeric_only"}
|
258 |
+
|
259 |
+
# Ensure excluded arguments are actually in the signatures
|
260 |
+
assert result & exclude_result == exclude_result
|
261 |
+
assert expected & exclude_expected == exclude_expected
|
262 |
+
|
263 |
+
result -= exclude_result
|
264 |
+
expected -= exclude_expected
|
265 |
+
assert result == expected
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_apply.py
ADDED
@@ -0,0 +1,1606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
date,
|
3 |
+
datetime,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
from pandas import (
|
11 |
+
DataFrame,
|
12 |
+
Index,
|
13 |
+
MultiIndex,
|
14 |
+
Series,
|
15 |
+
bdate_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
from pandas.tests.groupby import get_groupby_method_args
|
19 |
+
|
20 |
+
|
21 |
+
def test_apply_func_that_appends_group_to_list_without_copy():
|
22 |
+
# GH: 17718
|
23 |
+
|
24 |
+
df = DataFrame(1, index=list(range(10)) * 10, columns=[0]).reset_index()
|
25 |
+
groups = []
|
26 |
+
|
27 |
+
def store(group):
|
28 |
+
groups.append(group)
|
29 |
+
|
30 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
31 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
32 |
+
df.groupby("index").apply(store)
|
33 |
+
expected_value = DataFrame(
|
34 |
+
{"index": [0] * 10, 0: [1] * 10}, index=pd.RangeIndex(0, 100, 10)
|
35 |
+
)
|
36 |
+
|
37 |
+
tm.assert_frame_equal(groups[0], expected_value)
|
38 |
+
|
39 |
+
|
40 |
+
def test_apply_index_date(using_infer_string):
|
41 |
+
# GH 5788
|
42 |
+
ts = [
|
43 |
+
"2011-05-16 00:00",
|
44 |
+
"2011-05-16 01:00",
|
45 |
+
"2011-05-16 02:00",
|
46 |
+
"2011-05-16 03:00",
|
47 |
+
"2011-05-17 02:00",
|
48 |
+
"2011-05-17 03:00",
|
49 |
+
"2011-05-17 04:00",
|
50 |
+
"2011-05-17 05:00",
|
51 |
+
"2011-05-18 02:00",
|
52 |
+
"2011-05-18 03:00",
|
53 |
+
"2011-05-18 04:00",
|
54 |
+
"2011-05-18 05:00",
|
55 |
+
]
|
56 |
+
df = DataFrame(
|
57 |
+
{
|
58 |
+
"value": [
|
59 |
+
1.40893,
|
60 |
+
1.40760,
|
61 |
+
1.40750,
|
62 |
+
1.40649,
|
63 |
+
1.40893,
|
64 |
+
1.40760,
|
65 |
+
1.40750,
|
66 |
+
1.40649,
|
67 |
+
1.40893,
|
68 |
+
1.40760,
|
69 |
+
1.40750,
|
70 |
+
1.40649,
|
71 |
+
],
|
72 |
+
},
|
73 |
+
index=Index(pd.to_datetime(ts), name="date_time"),
|
74 |
+
)
|
75 |
+
expected = df.groupby(df.index.date).idxmax()
|
76 |
+
result = df.groupby(df.index.date).apply(lambda x: x.idxmax())
|
77 |
+
tm.assert_frame_equal(result, expected)
|
78 |
+
|
79 |
+
|
80 |
+
def test_apply_index_date_object(using_infer_string):
|
81 |
+
# GH 5789
|
82 |
+
# don't auto coerce dates
|
83 |
+
ts = [
|
84 |
+
"2011-05-16 00:00",
|
85 |
+
"2011-05-16 01:00",
|
86 |
+
"2011-05-16 02:00",
|
87 |
+
"2011-05-16 03:00",
|
88 |
+
"2011-05-17 02:00",
|
89 |
+
"2011-05-17 03:00",
|
90 |
+
"2011-05-17 04:00",
|
91 |
+
"2011-05-17 05:00",
|
92 |
+
"2011-05-18 02:00",
|
93 |
+
"2011-05-18 03:00",
|
94 |
+
"2011-05-18 04:00",
|
95 |
+
"2011-05-18 05:00",
|
96 |
+
]
|
97 |
+
df = DataFrame([row.split() for row in ts], columns=["date", "time"])
|
98 |
+
df["value"] = [
|
99 |
+
1.40893,
|
100 |
+
1.40760,
|
101 |
+
1.40750,
|
102 |
+
1.40649,
|
103 |
+
1.40893,
|
104 |
+
1.40760,
|
105 |
+
1.40750,
|
106 |
+
1.40649,
|
107 |
+
1.40893,
|
108 |
+
1.40760,
|
109 |
+
1.40750,
|
110 |
+
1.40649,
|
111 |
+
]
|
112 |
+
dtype = "string[pyarrow_numpy]" if using_infer_string else object
|
113 |
+
exp_idx = Index(
|
114 |
+
["2011-05-16", "2011-05-17", "2011-05-18"], dtype=dtype, name="date"
|
115 |
+
)
|
116 |
+
expected = Series(["00:00", "02:00", "02:00"], index=exp_idx)
|
117 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
118 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
119 |
+
result = df.groupby("date", group_keys=False).apply(
|
120 |
+
lambda x: x["time"][x["value"].idxmax()]
|
121 |
+
)
|
122 |
+
tm.assert_series_equal(result, expected)
|
123 |
+
|
124 |
+
|
125 |
+
def test_apply_trivial(using_infer_string):
|
126 |
+
# GH 20066
|
127 |
+
# trivial apply: ignore input and return a constant dataframe.
|
128 |
+
df = DataFrame(
|
129 |
+
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
130 |
+
columns=["key", "data"],
|
131 |
+
)
|
132 |
+
dtype = "string" if using_infer_string else "object"
|
133 |
+
expected = pd.concat([df.iloc[1:], df.iloc[1:]], axis=1, keys=["float64", dtype])
|
134 |
+
|
135 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
136 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
137 |
+
gb = df.groupby([str(x) for x in df.dtypes], axis=1)
|
138 |
+
result = gb.apply(lambda x: df.iloc[1:])
|
139 |
+
|
140 |
+
tm.assert_frame_equal(result, expected)
|
141 |
+
|
142 |
+
|
143 |
+
def test_apply_trivial_fail(using_infer_string):
|
144 |
+
# GH 20066
|
145 |
+
df = DataFrame(
|
146 |
+
{"key": ["a", "a", "b", "b", "a"], "data": [1.0, 2.0, 3.0, 4.0, 5.0]},
|
147 |
+
columns=["key", "data"],
|
148 |
+
)
|
149 |
+
dtype = "string" if using_infer_string else "object"
|
150 |
+
expected = pd.concat([df, df], axis=1, keys=["float64", dtype])
|
151 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
152 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
153 |
+
gb = df.groupby([str(x) for x in df.dtypes], axis=1, group_keys=True)
|
154 |
+
result = gb.apply(lambda x: df)
|
155 |
+
|
156 |
+
tm.assert_frame_equal(result, expected)
|
157 |
+
|
158 |
+
|
159 |
+
@pytest.mark.parametrize(
|
160 |
+
"df, group_names",
|
161 |
+
[
|
162 |
+
(DataFrame({"a": [1, 1, 1, 2, 3], "b": ["a", "a", "a", "b", "c"]}), [1, 2, 3]),
|
163 |
+
(DataFrame({"a": [0, 0, 1, 1], "b": [0, 1, 0, 1]}), [0, 1]),
|
164 |
+
(DataFrame({"a": [1]}), [1]),
|
165 |
+
(DataFrame({"a": [1, 1, 1, 2, 2, 1, 1, 2], "b": range(8)}), [1, 2]),
|
166 |
+
(DataFrame({"a": [1, 2, 3, 1, 2, 3], "two": [4, 5, 6, 7, 8, 9]}), [1, 2, 3]),
|
167 |
+
(
|
168 |
+
DataFrame(
|
169 |
+
{
|
170 |
+
"a": list("aaabbbcccc"),
|
171 |
+
"B": [3, 4, 3, 6, 5, 2, 1, 9, 5, 4],
|
172 |
+
"C": [4, 0, 2, 2, 2, 7, 8, 6, 2, 8],
|
173 |
+
}
|
174 |
+
),
|
175 |
+
["a", "b", "c"],
|
176 |
+
),
|
177 |
+
(DataFrame([[1, 2, 3], [2, 2, 3]], columns=["a", "b", "c"]), [1, 2]),
|
178 |
+
],
|
179 |
+
ids=[
|
180 |
+
"GH2936",
|
181 |
+
"GH7739 & GH10519",
|
182 |
+
"GH10519",
|
183 |
+
"GH2656",
|
184 |
+
"GH12155",
|
185 |
+
"GH20084",
|
186 |
+
"GH21417",
|
187 |
+
],
|
188 |
+
)
|
189 |
+
def test_group_apply_once_per_group(df, group_names):
|
190 |
+
# GH2936, GH7739, GH10519, GH2656, GH12155, GH20084, GH21417
|
191 |
+
|
192 |
+
# This test should ensure that a function is only evaluated
|
193 |
+
# once per group. Previously the function has been evaluated twice
|
194 |
+
# on the first group to check if the Cython index slider is safe to use
|
195 |
+
# This test ensures that the side effect (append to list) is only triggered
|
196 |
+
# once per group
|
197 |
+
|
198 |
+
names = []
|
199 |
+
# cannot parameterize over the functions since they need external
|
200 |
+
# `names` to detect side effects
|
201 |
+
|
202 |
+
def f_copy(group):
|
203 |
+
# this takes the fast apply path
|
204 |
+
names.append(group.name)
|
205 |
+
return group.copy()
|
206 |
+
|
207 |
+
def f_nocopy(group):
|
208 |
+
# this takes the slow apply path
|
209 |
+
names.append(group.name)
|
210 |
+
return group
|
211 |
+
|
212 |
+
def f_scalar(group):
|
213 |
+
# GH7739, GH2656
|
214 |
+
names.append(group.name)
|
215 |
+
return 0
|
216 |
+
|
217 |
+
def f_none(group):
|
218 |
+
# GH10519, GH12155, GH21417
|
219 |
+
names.append(group.name)
|
220 |
+
|
221 |
+
def f_constant_df(group):
|
222 |
+
# GH2936, GH20084
|
223 |
+
names.append(group.name)
|
224 |
+
return DataFrame({"a": [1], "b": [1]})
|
225 |
+
|
226 |
+
for func in [f_copy, f_nocopy, f_scalar, f_none, f_constant_df]:
|
227 |
+
del names[:]
|
228 |
+
|
229 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
230 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
231 |
+
df.groupby("a", group_keys=False).apply(func)
|
232 |
+
assert names == group_names
|
233 |
+
|
234 |
+
|
235 |
+
def test_group_apply_once_per_group2(capsys):
|
236 |
+
# GH: 31111
|
237 |
+
# groupby-apply need to execute len(set(group_by_columns)) times
|
238 |
+
|
239 |
+
expected = 2 # Number of times `apply` should call a function for the current test
|
240 |
+
|
241 |
+
df = DataFrame(
|
242 |
+
{
|
243 |
+
"group_by_column": [0, 0, 0, 0, 1, 1, 1, 1],
|
244 |
+
"test_column": ["0", "2", "4", "6", "8", "10", "12", "14"],
|
245 |
+
},
|
246 |
+
index=["0", "2", "4", "6", "8", "10", "12", "14"],
|
247 |
+
)
|
248 |
+
|
249 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
250 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
251 |
+
df.groupby("group_by_column", group_keys=False).apply(
|
252 |
+
lambda df: print("function_called")
|
253 |
+
)
|
254 |
+
|
255 |
+
result = capsys.readouterr().out.count("function_called")
|
256 |
+
# If `groupby` behaves unexpectedly, this test will break
|
257 |
+
assert result == expected
|
258 |
+
|
259 |
+
|
260 |
+
def test_apply_fast_slow_identical():
|
261 |
+
# GH 31613
|
262 |
+
|
263 |
+
df = DataFrame({"A": [0, 0, 1], "b": range(3)})
|
264 |
+
|
265 |
+
# For simple index structures we check for fast/slow apply using
|
266 |
+
# an identity check on in/output
|
267 |
+
def slow(group):
|
268 |
+
return group
|
269 |
+
|
270 |
+
def fast(group):
|
271 |
+
return group.copy()
|
272 |
+
|
273 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
274 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
275 |
+
fast_df = df.groupby("A", group_keys=False).apply(fast)
|
276 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
277 |
+
slow_df = df.groupby("A", group_keys=False).apply(slow)
|
278 |
+
|
279 |
+
tm.assert_frame_equal(fast_df, slow_df)
|
280 |
+
|
281 |
+
|
282 |
+
@pytest.mark.parametrize(
|
283 |
+
"func",
|
284 |
+
[
|
285 |
+
lambda x: x,
|
286 |
+
lambda x: x[:],
|
287 |
+
lambda x: x.copy(deep=False),
|
288 |
+
lambda x: x.copy(deep=True),
|
289 |
+
],
|
290 |
+
)
|
291 |
+
def test_groupby_apply_identity_maybecopy_index_identical(func):
|
292 |
+
# GH 14927
|
293 |
+
# Whether the function returns a copy of the input data or not should not
|
294 |
+
# have an impact on the index structure of the result since this is not
|
295 |
+
# transparent to the user
|
296 |
+
|
297 |
+
df = DataFrame({"g": [1, 2, 2, 2], "a": [1, 2, 3, 4], "b": [5, 6, 7, 8]})
|
298 |
+
|
299 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
300 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
301 |
+
result = df.groupby("g", group_keys=False).apply(func)
|
302 |
+
tm.assert_frame_equal(result, df)
|
303 |
+
|
304 |
+
|
305 |
+
def test_apply_with_mixed_dtype():
|
306 |
+
# GH3480, apply with mixed dtype on axis=1 breaks in 0.11
|
307 |
+
df = DataFrame(
|
308 |
+
{
|
309 |
+
"foo1": np.random.default_rng(2).standard_normal(6),
|
310 |
+
"foo2": ["one", "two", "two", "three", "one", "two"],
|
311 |
+
}
|
312 |
+
)
|
313 |
+
result = df.apply(lambda x: x, axis=1).dtypes
|
314 |
+
expected = df.dtypes
|
315 |
+
tm.assert_series_equal(result, expected)
|
316 |
+
|
317 |
+
# GH 3610 incorrect dtype conversion with as_index=False
|
318 |
+
df = DataFrame({"c1": [1, 2, 6, 6, 8]})
|
319 |
+
df["c2"] = df.c1 / 2.0
|
320 |
+
result1 = df.groupby("c2").mean().reset_index().c2
|
321 |
+
result2 = df.groupby("c2", as_index=False).mean().c2
|
322 |
+
tm.assert_series_equal(result1, result2)
|
323 |
+
|
324 |
+
|
325 |
+
def test_groupby_as_index_apply():
|
326 |
+
# GH #4648 and #3417
|
327 |
+
df = DataFrame(
|
328 |
+
{
|
329 |
+
"item_id": ["b", "b", "a", "c", "a", "b"],
|
330 |
+
"user_id": [1, 2, 1, 1, 3, 1],
|
331 |
+
"time": range(6),
|
332 |
+
}
|
333 |
+
)
|
334 |
+
|
335 |
+
g_as = df.groupby("user_id", as_index=True)
|
336 |
+
g_not_as = df.groupby("user_id", as_index=False)
|
337 |
+
|
338 |
+
res_as = g_as.head(2).index
|
339 |
+
res_not_as = g_not_as.head(2).index
|
340 |
+
exp = Index([0, 1, 2, 4])
|
341 |
+
tm.assert_index_equal(res_as, exp)
|
342 |
+
tm.assert_index_equal(res_not_as, exp)
|
343 |
+
|
344 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
345 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
346 |
+
res_as_apply = g_as.apply(lambda x: x.head(2)).index
|
347 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
348 |
+
res_not_as_apply = g_not_as.apply(lambda x: x.head(2)).index
|
349 |
+
|
350 |
+
# apply doesn't maintain the original ordering
|
351 |
+
# changed in GH5610 as the as_index=False returns a MI here
|
352 |
+
exp_not_as_apply = MultiIndex.from_tuples([(0, 0), (0, 2), (1, 1), (2, 4)])
|
353 |
+
tp = [(1, 0), (1, 2), (2, 1), (3, 4)]
|
354 |
+
exp_as_apply = MultiIndex.from_tuples(tp, names=["user_id", None])
|
355 |
+
|
356 |
+
tm.assert_index_equal(res_as_apply, exp_as_apply)
|
357 |
+
tm.assert_index_equal(res_not_as_apply, exp_not_as_apply)
|
358 |
+
|
359 |
+
ind = Index(list("abcde"))
|
360 |
+
df = DataFrame([[1, 2], [2, 3], [1, 4], [1, 5], [2, 6]], index=ind)
|
361 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
362 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
363 |
+
res = df.groupby(0, as_index=False, group_keys=False).apply(lambda x: x).index
|
364 |
+
tm.assert_index_equal(res, ind)
|
365 |
+
|
366 |
+
|
367 |
+
def test_apply_concat_preserve_names(three_group):
|
368 |
+
grouped = three_group.groupby(["A", "B"])
|
369 |
+
|
370 |
+
def desc(group):
|
371 |
+
result = group.describe()
|
372 |
+
result.index.name = "stat"
|
373 |
+
return result
|
374 |
+
|
375 |
+
def desc2(group):
|
376 |
+
result = group.describe()
|
377 |
+
result.index.name = "stat"
|
378 |
+
result = result[: len(group)]
|
379 |
+
# weirdo
|
380 |
+
return result
|
381 |
+
|
382 |
+
def desc3(group):
|
383 |
+
result = group.describe()
|
384 |
+
|
385 |
+
# names are different
|
386 |
+
result.index.name = f"stat_{len(group):d}"
|
387 |
+
|
388 |
+
result = result[: len(group)]
|
389 |
+
# weirdo
|
390 |
+
return result
|
391 |
+
|
392 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
393 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
394 |
+
result = grouped.apply(desc)
|
395 |
+
assert result.index.names == ("A", "B", "stat")
|
396 |
+
|
397 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
398 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
399 |
+
result2 = grouped.apply(desc2)
|
400 |
+
assert result2.index.names == ("A", "B", "stat")
|
401 |
+
|
402 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
403 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
404 |
+
result3 = grouped.apply(desc3)
|
405 |
+
assert result3.index.names == ("A", "B", None)
|
406 |
+
|
407 |
+
|
408 |
+
def test_apply_series_to_frame():
|
409 |
+
def f(piece):
|
410 |
+
with np.errstate(invalid="ignore"):
|
411 |
+
logged = np.log(piece)
|
412 |
+
return DataFrame(
|
413 |
+
{"value": piece, "demeaned": piece - piece.mean(), "logged": logged}
|
414 |
+
)
|
415 |
+
|
416 |
+
dr = bdate_range("1/1/2000", periods=100)
|
417 |
+
ts = Series(np.random.default_rng(2).standard_normal(100), index=dr)
|
418 |
+
|
419 |
+
grouped = ts.groupby(lambda x: x.month, group_keys=False)
|
420 |
+
result = grouped.apply(f)
|
421 |
+
|
422 |
+
assert isinstance(result, DataFrame)
|
423 |
+
assert not hasattr(result, "name") # GH49907
|
424 |
+
tm.assert_index_equal(result.index, ts.index)
|
425 |
+
|
426 |
+
|
427 |
+
def test_apply_series_yield_constant(df):
|
428 |
+
result = df.groupby(["A", "B"])["C"].apply(len)
|
429 |
+
assert result.index.names[:2] == ("A", "B")
|
430 |
+
|
431 |
+
|
432 |
+
def test_apply_frame_yield_constant(df):
|
433 |
+
# GH13568
|
434 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
435 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
436 |
+
result = df.groupby(["A", "B"]).apply(len)
|
437 |
+
assert isinstance(result, Series)
|
438 |
+
assert result.name is None
|
439 |
+
|
440 |
+
result = df.groupby(["A", "B"])[["C", "D"]].apply(len)
|
441 |
+
assert isinstance(result, Series)
|
442 |
+
assert result.name is None
|
443 |
+
|
444 |
+
|
445 |
+
def test_apply_frame_to_series(df):
|
446 |
+
grouped = df.groupby(["A", "B"])
|
447 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
448 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
449 |
+
result = grouped.apply(len)
|
450 |
+
expected = grouped.count()["C"]
|
451 |
+
tm.assert_index_equal(result.index, expected.index)
|
452 |
+
tm.assert_numpy_array_equal(result.values, expected.values)
|
453 |
+
|
454 |
+
|
455 |
+
def test_apply_frame_not_as_index_column_name(df):
|
456 |
+
# GH 35964 - path within _wrap_applied_output not hit by a test
|
457 |
+
grouped = df.groupby(["A", "B"], as_index=False)
|
458 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
459 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
460 |
+
result = grouped.apply(len)
|
461 |
+
expected = grouped.count().rename(columns={"C": np.nan}).drop(columns="D")
|
462 |
+
# TODO(GH#34306): Use assert_frame_equal when column name is not np.nan
|
463 |
+
tm.assert_index_equal(result.index, expected.index)
|
464 |
+
tm.assert_numpy_array_equal(result.values, expected.values)
|
465 |
+
|
466 |
+
|
467 |
+
def test_apply_frame_concat_series():
|
468 |
+
def trans(group):
|
469 |
+
return group.groupby("B")["C"].sum().sort_values().iloc[:2]
|
470 |
+
|
471 |
+
def trans2(group):
|
472 |
+
grouped = group.groupby(df.reindex(group.index)["B"])
|
473 |
+
return grouped.sum().sort_values().iloc[:2]
|
474 |
+
|
475 |
+
df = DataFrame(
|
476 |
+
{
|
477 |
+
"A": np.random.default_rng(2).integers(0, 5, 1000),
|
478 |
+
"B": np.random.default_rng(2).integers(0, 5, 1000),
|
479 |
+
"C": np.random.default_rng(2).standard_normal(1000),
|
480 |
+
}
|
481 |
+
)
|
482 |
+
|
483 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
484 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
485 |
+
result = df.groupby("A").apply(trans)
|
486 |
+
exp = df.groupby("A")["C"].apply(trans2)
|
487 |
+
tm.assert_series_equal(result, exp, check_names=False)
|
488 |
+
assert result.name == "C"
|
489 |
+
|
490 |
+
|
491 |
+
def test_apply_transform(ts):
|
492 |
+
grouped = ts.groupby(lambda x: x.month, group_keys=False)
|
493 |
+
result = grouped.apply(lambda x: x * 2)
|
494 |
+
expected = grouped.transform(lambda x: x * 2)
|
495 |
+
tm.assert_series_equal(result, expected)
|
496 |
+
|
497 |
+
|
498 |
+
def test_apply_multikey_corner(tsframe):
|
499 |
+
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
|
500 |
+
|
501 |
+
def f(group):
|
502 |
+
return group.sort_values("A")[-5:]
|
503 |
+
|
504 |
+
result = grouped.apply(f)
|
505 |
+
for key, group in grouped:
|
506 |
+
tm.assert_frame_equal(result.loc[key], f(group))
|
507 |
+
|
508 |
+
|
509 |
+
@pytest.mark.parametrize("group_keys", [True, False])
|
510 |
+
def test_apply_chunk_view(group_keys):
|
511 |
+
# Low level tinkering could be unsafe, make sure not
|
512 |
+
df = DataFrame({"key": [1, 1, 1, 2, 2, 2, 3, 3, 3], "value": range(9)})
|
513 |
+
|
514 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
515 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
516 |
+
result = df.groupby("key", group_keys=group_keys).apply(lambda x: x.iloc[:2])
|
517 |
+
expected = df.take([0, 1, 3, 4, 6, 7])
|
518 |
+
if group_keys:
|
519 |
+
expected.index = MultiIndex.from_arrays(
|
520 |
+
[[1, 1, 2, 2, 3, 3], expected.index], names=["key", None]
|
521 |
+
)
|
522 |
+
|
523 |
+
tm.assert_frame_equal(result, expected)
|
524 |
+
|
525 |
+
|
526 |
+
def test_apply_no_name_column_conflict():
|
527 |
+
df = DataFrame(
|
528 |
+
{
|
529 |
+
"name": [1, 1, 1, 1, 1, 1, 2, 2, 2, 2],
|
530 |
+
"name2": [0, 0, 0, 1, 1, 1, 0, 0, 1, 1],
|
531 |
+
"value": range(9, -1, -1),
|
532 |
+
}
|
533 |
+
)
|
534 |
+
|
535 |
+
# it works! #2605
|
536 |
+
grouped = df.groupby(["name", "name2"])
|
537 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
538 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
539 |
+
grouped.apply(lambda x: x.sort_values("value", inplace=True))
|
540 |
+
|
541 |
+
|
542 |
+
def test_apply_typecast_fail():
|
543 |
+
df = DataFrame(
|
544 |
+
{
|
545 |
+
"d": [1.0, 1.0, 1.0, 2.0, 2.0, 2.0],
|
546 |
+
"c": np.tile(["a", "b", "c"], 2),
|
547 |
+
"v": np.arange(1.0, 7.0),
|
548 |
+
}
|
549 |
+
)
|
550 |
+
|
551 |
+
def f(group):
|
552 |
+
v = group["v"]
|
553 |
+
group["v2"] = (v - v.min()) / (v.max() - v.min())
|
554 |
+
return group
|
555 |
+
|
556 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
557 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
558 |
+
result = df.groupby("d", group_keys=False).apply(f)
|
559 |
+
|
560 |
+
expected = df.copy()
|
561 |
+
expected["v2"] = np.tile([0.0, 0.5, 1], 2)
|
562 |
+
|
563 |
+
tm.assert_frame_equal(result, expected)
|
564 |
+
|
565 |
+
|
566 |
+
def test_apply_multiindex_fail():
|
567 |
+
index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]])
|
568 |
+
df = DataFrame(
|
569 |
+
{
|
570 |
+
"d": [1.0, 1.0, 1.0, 2.0, 2.0, 2.0],
|
571 |
+
"c": np.tile(["a", "b", "c"], 2),
|
572 |
+
"v": np.arange(1.0, 7.0),
|
573 |
+
},
|
574 |
+
index=index,
|
575 |
+
)
|
576 |
+
|
577 |
+
def f(group):
|
578 |
+
v = group["v"]
|
579 |
+
group["v2"] = (v - v.min()) / (v.max() - v.min())
|
580 |
+
return group
|
581 |
+
|
582 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
583 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
584 |
+
result = df.groupby("d", group_keys=False).apply(f)
|
585 |
+
|
586 |
+
expected = df.copy()
|
587 |
+
expected["v2"] = np.tile([0.0, 0.5, 1], 2)
|
588 |
+
|
589 |
+
tm.assert_frame_equal(result, expected)
|
590 |
+
|
591 |
+
|
592 |
+
def test_apply_corner(tsframe):
|
593 |
+
result = tsframe.groupby(lambda x: x.year, group_keys=False).apply(lambda x: x * 2)
|
594 |
+
expected = tsframe * 2
|
595 |
+
tm.assert_frame_equal(result, expected)
|
596 |
+
|
597 |
+
|
598 |
+
def test_apply_without_copy():
|
599 |
+
# GH 5545
|
600 |
+
# returning a non-copy in an applied function fails
|
601 |
+
|
602 |
+
data = DataFrame(
|
603 |
+
{
|
604 |
+
"id_field": [100, 100, 200, 300],
|
605 |
+
"category": ["a", "b", "c", "c"],
|
606 |
+
"value": [1, 2, 3, 4],
|
607 |
+
}
|
608 |
+
)
|
609 |
+
|
610 |
+
def filt1(x):
|
611 |
+
if x.shape[0] == 1:
|
612 |
+
return x.copy()
|
613 |
+
else:
|
614 |
+
return x[x.category == "c"]
|
615 |
+
|
616 |
+
def filt2(x):
|
617 |
+
if x.shape[0] == 1:
|
618 |
+
return x
|
619 |
+
else:
|
620 |
+
return x[x.category == "c"]
|
621 |
+
|
622 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
623 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
624 |
+
expected = data.groupby("id_field").apply(filt1)
|
625 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
626 |
+
result = data.groupby("id_field").apply(filt2)
|
627 |
+
tm.assert_frame_equal(result, expected)
|
628 |
+
|
629 |
+
|
630 |
+
@pytest.mark.parametrize("test_series", [True, False])
|
631 |
+
def test_apply_with_duplicated_non_sorted_axis(test_series):
|
632 |
+
# GH 30667
|
633 |
+
df = DataFrame(
|
634 |
+
[["x", "p"], ["x", "p"], ["x", "o"]], columns=["X", "Y"], index=[1, 2, 2]
|
635 |
+
)
|
636 |
+
if test_series:
|
637 |
+
ser = df.set_index("Y")["X"]
|
638 |
+
result = ser.groupby(level=0, group_keys=False).apply(lambda x: x)
|
639 |
+
|
640 |
+
# not expecting the order to remain the same for duplicated axis
|
641 |
+
result = result.sort_index()
|
642 |
+
expected = ser.sort_index()
|
643 |
+
tm.assert_series_equal(result, expected)
|
644 |
+
else:
|
645 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
646 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
647 |
+
result = df.groupby("Y", group_keys=False).apply(lambda x: x)
|
648 |
+
|
649 |
+
# not expecting the order to remain the same for duplicated axis
|
650 |
+
result = result.sort_values("Y")
|
651 |
+
expected = df.sort_values("Y")
|
652 |
+
tm.assert_frame_equal(result, expected)
|
653 |
+
|
654 |
+
|
655 |
+
def test_apply_reindex_values():
|
656 |
+
# GH: 26209
|
657 |
+
# reindexing from a single column of a groupby object with duplicate indices caused
|
658 |
+
# a ValueError (cannot reindex from duplicate axis) in 0.24.2, the problem was
|
659 |
+
# solved in #30679
|
660 |
+
values = [1, 2, 3, 4]
|
661 |
+
indices = [1, 1, 2, 2]
|
662 |
+
df = DataFrame({"group": ["Group1", "Group2"] * 2, "value": values}, index=indices)
|
663 |
+
expected = Series(values, index=indices, name="value")
|
664 |
+
|
665 |
+
def reindex_helper(x):
|
666 |
+
return x.reindex(np.arange(x.index.min(), x.index.max() + 1))
|
667 |
+
|
668 |
+
# the following group by raised a ValueError
|
669 |
+
result = df.groupby("group", group_keys=False).value.apply(reindex_helper)
|
670 |
+
tm.assert_series_equal(expected, result)
|
671 |
+
|
672 |
+
|
673 |
+
def test_apply_corner_cases():
|
674 |
+
# #535, can't use sliding iterator
|
675 |
+
|
676 |
+
N = 1000
|
677 |
+
labels = np.random.default_rng(2).integers(0, 100, size=N)
|
678 |
+
df = DataFrame(
|
679 |
+
{
|
680 |
+
"key": labels,
|
681 |
+
"value1": np.random.default_rng(2).standard_normal(N),
|
682 |
+
"value2": ["foo", "bar", "baz", "qux"] * (N // 4),
|
683 |
+
}
|
684 |
+
)
|
685 |
+
|
686 |
+
grouped = df.groupby("key", group_keys=False)
|
687 |
+
|
688 |
+
def f(g):
|
689 |
+
g["value3"] = g["value1"] * 2
|
690 |
+
return g
|
691 |
+
|
692 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
693 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
694 |
+
result = grouped.apply(f)
|
695 |
+
assert "value3" in result
|
696 |
+
|
697 |
+
|
698 |
+
def test_apply_numeric_coercion_when_datetime():
|
699 |
+
# In the past, group-by/apply operations have been over-eager
|
700 |
+
# in converting dtypes to numeric, in the presence of datetime
|
701 |
+
# columns. Various GH issues were filed, the reproductions
|
702 |
+
# for which are here.
|
703 |
+
|
704 |
+
# GH 15670
|
705 |
+
df = DataFrame(
|
706 |
+
{"Number": [1, 2], "Date": ["2017-03-02"] * 2, "Str": ["foo", "inf"]}
|
707 |
+
)
|
708 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
709 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
710 |
+
expected = df.groupby(["Number"]).apply(lambda x: x.iloc[0])
|
711 |
+
df.Date = pd.to_datetime(df.Date)
|
712 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
713 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
714 |
+
result = df.groupby(["Number"]).apply(lambda x: x.iloc[0])
|
715 |
+
tm.assert_series_equal(result["Str"], expected["Str"])
|
716 |
+
|
717 |
+
# GH 15421
|
718 |
+
df = DataFrame(
|
719 |
+
{"A": [10, 20, 30], "B": ["foo", "3", "4"], "T": [pd.Timestamp("12:31:22")] * 3}
|
720 |
+
)
|
721 |
+
|
722 |
+
def get_B(g):
|
723 |
+
return g.iloc[0][["B"]]
|
724 |
+
|
725 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
726 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
727 |
+
result = df.groupby("A").apply(get_B)["B"]
|
728 |
+
expected = df.B
|
729 |
+
expected.index = df.A
|
730 |
+
tm.assert_series_equal(result, expected)
|
731 |
+
|
732 |
+
# GH 14423
|
733 |
+
def predictions(tool):
|
734 |
+
out = Series(index=["p1", "p2", "useTime"], dtype=object)
|
735 |
+
if "step1" in list(tool.State):
|
736 |
+
out["p1"] = str(tool[tool.State == "step1"].Machine.values[0])
|
737 |
+
if "step2" in list(tool.State):
|
738 |
+
out["p2"] = str(tool[tool.State == "step2"].Machine.values[0])
|
739 |
+
out["useTime"] = str(tool[tool.State == "step2"].oTime.values[0])
|
740 |
+
return out
|
741 |
+
|
742 |
+
df1 = DataFrame(
|
743 |
+
{
|
744 |
+
"Key": ["B", "B", "A", "A"],
|
745 |
+
"State": ["step1", "step2", "step1", "step2"],
|
746 |
+
"oTime": ["", "2016-09-19 05:24:33", "", "2016-09-19 23:59:04"],
|
747 |
+
"Machine": ["23", "36L", "36R", "36R"],
|
748 |
+
}
|
749 |
+
)
|
750 |
+
df2 = df1.copy()
|
751 |
+
df2.oTime = pd.to_datetime(df2.oTime)
|
752 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
753 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
754 |
+
expected = df1.groupby("Key").apply(predictions).p1
|
755 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
756 |
+
result = df2.groupby("Key").apply(predictions).p1
|
757 |
+
tm.assert_series_equal(expected, result)
|
758 |
+
|
759 |
+
|
760 |
+
def test_apply_aggregating_timedelta_and_datetime():
|
761 |
+
# Regression test for GH 15562
|
762 |
+
# The following groupby caused ValueErrors and IndexErrors pre 0.20.0
|
763 |
+
|
764 |
+
df = DataFrame(
|
765 |
+
{
|
766 |
+
"clientid": ["A", "B", "C"],
|
767 |
+
"datetime": [np.datetime64("2017-02-01 00:00:00")] * 3,
|
768 |
+
}
|
769 |
+
)
|
770 |
+
df["time_delta_zero"] = df.datetime - df.datetime
|
771 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
772 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
773 |
+
result = df.groupby("clientid").apply(
|
774 |
+
lambda ddf: Series(
|
775 |
+
{"clientid_age": ddf.time_delta_zero.min(), "date": ddf.datetime.min()}
|
776 |
+
)
|
777 |
+
)
|
778 |
+
expected = DataFrame(
|
779 |
+
{
|
780 |
+
"clientid": ["A", "B", "C"],
|
781 |
+
"clientid_age": [np.timedelta64(0, "D")] * 3,
|
782 |
+
"date": [np.datetime64("2017-02-01 00:00:00")] * 3,
|
783 |
+
}
|
784 |
+
).set_index("clientid")
|
785 |
+
|
786 |
+
tm.assert_frame_equal(result, expected)
|
787 |
+
|
788 |
+
|
789 |
+
def test_apply_groupby_datetimeindex():
|
790 |
+
# GH 26182
|
791 |
+
# groupby apply failed on dataframe with DatetimeIndex
|
792 |
+
|
793 |
+
data = [["A", 10], ["B", 20], ["B", 30], ["C", 40], ["C", 50]]
|
794 |
+
df = DataFrame(
|
795 |
+
data, columns=["Name", "Value"], index=pd.date_range("2020-09-01", "2020-09-05")
|
796 |
+
)
|
797 |
+
|
798 |
+
result = df.groupby("Name").sum()
|
799 |
+
|
800 |
+
expected = DataFrame({"Name": ["A", "B", "C"], "Value": [10, 50, 90]})
|
801 |
+
expected.set_index("Name", inplace=True)
|
802 |
+
|
803 |
+
tm.assert_frame_equal(result, expected)
|
804 |
+
|
805 |
+
|
806 |
+
def test_time_field_bug():
|
807 |
+
# Test a fix for the following error related to GH issue 11324 When
|
808 |
+
# non-key fields in a group-by dataframe contained time-based fields
|
809 |
+
# that were not returned by the apply function, an exception would be
|
810 |
+
# raised.
|
811 |
+
|
812 |
+
df = DataFrame({"a": 1, "b": [datetime.now() for nn in range(10)]})
|
813 |
+
|
814 |
+
def func_with_no_date(batch):
|
815 |
+
return Series({"c": 2})
|
816 |
+
|
817 |
+
def func_with_date(batch):
|
818 |
+
return Series({"b": datetime(2015, 1, 1), "c": 2})
|
819 |
+
|
820 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
821 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
822 |
+
dfg_no_conversion = df.groupby(by=["a"]).apply(func_with_no_date)
|
823 |
+
dfg_no_conversion_expected = DataFrame({"c": 2}, index=[1])
|
824 |
+
dfg_no_conversion_expected.index.name = "a"
|
825 |
+
|
826 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
827 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
828 |
+
dfg_conversion = df.groupby(by=["a"]).apply(func_with_date)
|
829 |
+
dfg_conversion_expected = DataFrame(
|
830 |
+
{"b": pd.Timestamp(2015, 1, 1).as_unit("ns"), "c": 2}, index=[1]
|
831 |
+
)
|
832 |
+
dfg_conversion_expected.index.name = "a"
|
833 |
+
|
834 |
+
tm.assert_frame_equal(dfg_no_conversion, dfg_no_conversion_expected)
|
835 |
+
tm.assert_frame_equal(dfg_conversion, dfg_conversion_expected)
|
836 |
+
|
837 |
+
|
838 |
+
def test_gb_apply_list_of_unequal_len_arrays():
|
839 |
+
# GH1738
|
840 |
+
df = DataFrame(
|
841 |
+
{
|
842 |
+
"group1": ["a", "a", "a", "b", "b", "b", "a", "a", "a", "b", "b", "b"],
|
843 |
+
"group2": ["c", "c", "d", "d", "d", "e", "c", "c", "d", "d", "d", "e"],
|
844 |
+
"weight": [1.1, 2, 3, 4, 5, 6, 2, 4, 6, 8, 1, 2],
|
845 |
+
"value": [7.1, 8, 9, 10, 11, 12, 8, 7, 6, 5, 4, 3],
|
846 |
+
}
|
847 |
+
)
|
848 |
+
df = df.set_index(["group1", "group2"])
|
849 |
+
df_grouped = df.groupby(level=["group1", "group2"], sort=True)
|
850 |
+
|
851 |
+
def noddy(value, weight):
|
852 |
+
out = np.array(value * weight).repeat(3)
|
853 |
+
return out
|
854 |
+
|
855 |
+
# the kernel function returns arrays of unequal length
|
856 |
+
# pandas sniffs the first one, sees it's an array and not
|
857 |
+
# a list, and assumed the rest are of equal length
|
858 |
+
# and so tries a vstack
|
859 |
+
|
860 |
+
# don't die
|
861 |
+
df_grouped.apply(lambda x: noddy(x.value, x.weight))
|
862 |
+
|
863 |
+
|
864 |
+
def test_groupby_apply_all_none():
|
865 |
+
# Tests to make sure no errors if apply function returns all None
|
866 |
+
# values. Issue 9684.
|
867 |
+
test_df = DataFrame({"groups": [0, 0, 1, 1], "random_vars": [8, 7, 4, 5]})
|
868 |
+
|
869 |
+
def test_func(x):
|
870 |
+
pass
|
871 |
+
|
872 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
873 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
874 |
+
result = test_df.groupby("groups").apply(test_func)
|
875 |
+
expected = DataFrame()
|
876 |
+
tm.assert_frame_equal(result, expected)
|
877 |
+
|
878 |
+
|
879 |
+
def test_groupby_apply_none_first():
|
880 |
+
# GH 12824. Tests if apply returns None first.
|
881 |
+
test_df1 = DataFrame({"groups": [1, 1, 1, 2], "vars": [0, 1, 2, 3]})
|
882 |
+
test_df2 = DataFrame({"groups": [1, 2, 2, 2], "vars": [0, 1, 2, 3]})
|
883 |
+
|
884 |
+
def test_func(x):
|
885 |
+
if x.shape[0] < 2:
|
886 |
+
return None
|
887 |
+
return x.iloc[[0, -1]]
|
888 |
+
|
889 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
890 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
891 |
+
result1 = test_df1.groupby("groups").apply(test_func)
|
892 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
893 |
+
result2 = test_df2.groupby("groups").apply(test_func)
|
894 |
+
index1 = MultiIndex.from_arrays([[1, 1], [0, 2]], names=["groups", None])
|
895 |
+
index2 = MultiIndex.from_arrays([[2, 2], [1, 3]], names=["groups", None])
|
896 |
+
expected1 = DataFrame({"groups": [1, 1], "vars": [0, 2]}, index=index1)
|
897 |
+
expected2 = DataFrame({"groups": [2, 2], "vars": [1, 3]}, index=index2)
|
898 |
+
tm.assert_frame_equal(result1, expected1)
|
899 |
+
tm.assert_frame_equal(result2, expected2)
|
900 |
+
|
901 |
+
|
902 |
+
def test_groupby_apply_return_empty_chunk():
|
903 |
+
# GH 22221: apply filter which returns some empty groups
|
904 |
+
df = DataFrame({"value": [0, 1], "group": ["filled", "empty"]})
|
905 |
+
groups = df.groupby("group")
|
906 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
907 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
908 |
+
result = groups.apply(lambda group: group[group.value != 1]["value"])
|
909 |
+
expected = Series(
|
910 |
+
[0],
|
911 |
+
name="value",
|
912 |
+
index=MultiIndex.from_product(
|
913 |
+
[["empty", "filled"], [0]], names=["group", None]
|
914 |
+
).drop("empty"),
|
915 |
+
)
|
916 |
+
tm.assert_series_equal(result, expected)
|
917 |
+
|
918 |
+
|
919 |
+
def test_apply_with_mixed_types():
|
920 |
+
# gh-20949
|
921 |
+
df = DataFrame({"A": "a a b".split(), "B": [1, 2, 3], "C": [4, 6, 5]})
|
922 |
+
g = df.groupby("A", group_keys=False)
|
923 |
+
|
924 |
+
result = g.transform(lambda x: x / x.sum())
|
925 |
+
expected = DataFrame({"B": [1 / 3.0, 2 / 3.0, 1], "C": [0.4, 0.6, 1.0]})
|
926 |
+
tm.assert_frame_equal(result, expected)
|
927 |
+
|
928 |
+
result = g.apply(lambda x: x / x.sum())
|
929 |
+
tm.assert_frame_equal(result, expected)
|
930 |
+
|
931 |
+
|
932 |
+
def test_func_returns_object():
|
933 |
+
# GH 28652
|
934 |
+
df = DataFrame({"a": [1, 2]}, index=Index([1, 2]))
|
935 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
936 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
937 |
+
result = df.groupby("a").apply(lambda g: g.index)
|
938 |
+
expected = Series([Index([1]), Index([2])], index=Index([1, 2], name="a"))
|
939 |
+
|
940 |
+
tm.assert_series_equal(result, expected)
|
941 |
+
|
942 |
+
|
943 |
+
@pytest.mark.parametrize(
|
944 |
+
"group_column_dtlike",
|
945 |
+
[datetime.today(), datetime.today().date(), datetime.today().time()],
|
946 |
+
)
|
947 |
+
def test_apply_datetime_issue(group_column_dtlike, using_infer_string):
|
948 |
+
# GH-28247
|
949 |
+
# groupby-apply throws an error if one of the columns in the DataFrame
|
950 |
+
# is a datetime object and the column labels are different from
|
951 |
+
# standard int values in range(len(num_columns))
|
952 |
+
|
953 |
+
df = DataFrame({"a": ["foo"], "b": [group_column_dtlike]})
|
954 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
955 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
956 |
+
result = df.groupby("a").apply(lambda x: Series(["spam"], index=[42]))
|
957 |
+
|
958 |
+
dtype = "string" if using_infer_string else "object"
|
959 |
+
expected = DataFrame(["spam"], Index(["foo"], dtype=dtype, name="a"), columns=[42])
|
960 |
+
tm.assert_frame_equal(result, expected)
|
961 |
+
|
962 |
+
|
963 |
+
def test_apply_series_return_dataframe_groups():
|
964 |
+
# GH 10078
|
965 |
+
tdf = DataFrame(
|
966 |
+
{
|
967 |
+
"day": {
|
968 |
+
0: pd.Timestamp("2015-02-24 00:00:00"),
|
969 |
+
1: pd.Timestamp("2015-02-24 00:00:00"),
|
970 |
+
2: pd.Timestamp("2015-02-24 00:00:00"),
|
971 |
+
3: pd.Timestamp("2015-02-24 00:00:00"),
|
972 |
+
4: pd.Timestamp("2015-02-24 00:00:00"),
|
973 |
+
},
|
974 |
+
"userAgent": {
|
975 |
+
0: "some UA string",
|
976 |
+
1: "some UA string",
|
977 |
+
2: "some UA string",
|
978 |
+
3: "another UA string",
|
979 |
+
4: "some UA string",
|
980 |
+
},
|
981 |
+
"userId": {
|
982 |
+
0: "17661101",
|
983 |
+
1: "17661101",
|
984 |
+
2: "17661101",
|
985 |
+
3: "17661101",
|
986 |
+
4: "17661101",
|
987 |
+
},
|
988 |
+
}
|
989 |
+
)
|
990 |
+
|
991 |
+
def most_common_values(df):
|
992 |
+
return Series({c: s.value_counts().index[0] for c, s in df.items()})
|
993 |
+
|
994 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
995 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
996 |
+
result = tdf.groupby("day").apply(most_common_values)["userId"]
|
997 |
+
expected = Series(
|
998 |
+
["17661101"], index=pd.DatetimeIndex(["2015-02-24"], name="day"), name="userId"
|
999 |
+
)
|
1000 |
+
tm.assert_series_equal(result, expected)
|
1001 |
+
|
1002 |
+
|
1003 |
+
@pytest.mark.parametrize("category", [False, True])
|
1004 |
+
def test_apply_multi_level_name(category):
|
1005 |
+
# https://github.com/pandas-dev/pandas/issues/31068
|
1006 |
+
b = [1, 2] * 5
|
1007 |
+
if category:
|
1008 |
+
b = pd.Categorical(b, categories=[1, 2, 3])
|
1009 |
+
expected_index = pd.CategoricalIndex([1, 2, 3], categories=[1, 2, 3], name="B")
|
1010 |
+
expected_values = [20, 25, 0]
|
1011 |
+
else:
|
1012 |
+
expected_index = Index([1, 2], name="B")
|
1013 |
+
expected_values = [20, 25]
|
1014 |
+
expected = DataFrame(
|
1015 |
+
{"C": expected_values, "D": expected_values}, index=expected_index
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
df = DataFrame(
|
1019 |
+
{"A": np.arange(10), "B": b, "C": list(range(10)), "D": list(range(10))}
|
1020 |
+
).set_index(["A", "B"])
|
1021 |
+
result = df.groupby("B", observed=False).apply(lambda x: x.sum())
|
1022 |
+
tm.assert_frame_equal(result, expected)
|
1023 |
+
assert df.index.names == ["A", "B"]
|
1024 |
+
|
1025 |
+
|
1026 |
+
def test_groupby_apply_datetime_result_dtypes(using_infer_string):
|
1027 |
+
# GH 14849
|
1028 |
+
data = DataFrame.from_records(
|
1029 |
+
[
|
1030 |
+
(pd.Timestamp(2016, 1, 1), "red", "dark", 1, "8"),
|
1031 |
+
(pd.Timestamp(2015, 1, 1), "green", "stormy", 2, "9"),
|
1032 |
+
(pd.Timestamp(2014, 1, 1), "blue", "bright", 3, "10"),
|
1033 |
+
(pd.Timestamp(2013, 1, 1), "blue", "calm", 4, "potato"),
|
1034 |
+
],
|
1035 |
+
columns=["observation", "color", "mood", "intensity", "score"],
|
1036 |
+
)
|
1037 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1038 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1039 |
+
result = data.groupby("color").apply(lambda g: g.iloc[0]).dtypes
|
1040 |
+
dtype = "string" if using_infer_string else object
|
1041 |
+
expected = Series(
|
1042 |
+
[np.dtype("datetime64[ns]"), dtype, dtype, np.int64, dtype],
|
1043 |
+
index=["observation", "color", "mood", "intensity", "score"],
|
1044 |
+
)
|
1045 |
+
tm.assert_series_equal(result, expected)
|
1046 |
+
|
1047 |
+
|
1048 |
+
@pytest.mark.parametrize(
|
1049 |
+
"index",
|
1050 |
+
[
|
1051 |
+
pd.CategoricalIndex(list("abc")),
|
1052 |
+
pd.interval_range(0, 3),
|
1053 |
+
pd.period_range("2020", periods=3, freq="D"),
|
1054 |
+
MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
|
1055 |
+
],
|
1056 |
+
)
|
1057 |
+
def test_apply_index_has_complex_internals(index):
|
1058 |
+
# GH 31248
|
1059 |
+
df = DataFrame({"group": [1, 1, 2], "value": [0, 1, 0]}, index=index)
|
1060 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1061 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1062 |
+
result = df.groupby("group", group_keys=False).apply(lambda x: x)
|
1063 |
+
tm.assert_frame_equal(result, df)
|
1064 |
+
|
1065 |
+
|
1066 |
+
@pytest.mark.parametrize(
|
1067 |
+
"function, expected_values",
|
1068 |
+
[
|
1069 |
+
(lambda x: x.index.to_list(), [[0, 1], [2, 3]]),
|
1070 |
+
(lambda x: set(x.index.to_list()), [{0, 1}, {2, 3}]),
|
1071 |
+
(lambda x: tuple(x.index.to_list()), [(0, 1), (2, 3)]),
|
1072 |
+
(
|
1073 |
+
lambda x: dict(enumerate(x.index.to_list())),
|
1074 |
+
[{0: 0, 1: 1}, {0: 2, 1: 3}],
|
1075 |
+
),
|
1076 |
+
(
|
1077 |
+
lambda x: [{n: i} for (n, i) in enumerate(x.index.to_list())],
|
1078 |
+
[[{0: 0}, {1: 1}], [{0: 2}, {1: 3}]],
|
1079 |
+
),
|
1080 |
+
],
|
1081 |
+
)
|
1082 |
+
def test_apply_function_returns_non_pandas_non_scalar(function, expected_values):
|
1083 |
+
# GH 31441
|
1084 |
+
df = DataFrame(["A", "A", "B", "B"], columns=["groups"])
|
1085 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1086 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1087 |
+
result = df.groupby("groups").apply(function)
|
1088 |
+
expected = Series(expected_values, index=Index(["A", "B"], name="groups"))
|
1089 |
+
tm.assert_series_equal(result, expected)
|
1090 |
+
|
1091 |
+
|
1092 |
+
def test_apply_function_returns_numpy_array():
|
1093 |
+
# GH 31605
|
1094 |
+
def fct(group):
|
1095 |
+
return group["B"].values.flatten()
|
1096 |
+
|
1097 |
+
df = DataFrame({"A": ["a", "a", "b", "none"], "B": [1, 2, 3, np.nan]})
|
1098 |
+
|
1099 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1100 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1101 |
+
result = df.groupby("A").apply(fct)
|
1102 |
+
expected = Series(
|
1103 |
+
[[1.0, 2.0], [3.0], [np.nan]], index=Index(["a", "b", "none"], name="A")
|
1104 |
+
)
|
1105 |
+
tm.assert_series_equal(result, expected)
|
1106 |
+
|
1107 |
+
|
1108 |
+
@pytest.mark.parametrize("function", [lambda gr: gr.index, lambda gr: gr.index + 1 - 1])
|
1109 |
+
def test_apply_function_index_return(function):
|
1110 |
+
# GH: 22541
|
1111 |
+
df = DataFrame([1, 2, 2, 2, 1, 2, 3, 1, 3, 1], columns=["id"])
|
1112 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1113 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1114 |
+
result = df.groupby("id").apply(function)
|
1115 |
+
expected = Series(
|
1116 |
+
[Index([0, 4, 7, 9]), Index([1, 2, 3, 5]), Index([6, 8])],
|
1117 |
+
index=Index([1, 2, 3], name="id"),
|
1118 |
+
)
|
1119 |
+
tm.assert_series_equal(result, expected)
|
1120 |
+
|
1121 |
+
|
1122 |
+
def test_apply_function_with_indexing_return_column():
|
1123 |
+
# GH#7002, GH#41480, GH#49256
|
1124 |
+
df = DataFrame(
|
1125 |
+
{
|
1126 |
+
"foo1": ["one", "two", "two", "three", "one", "two"],
|
1127 |
+
"foo2": [1, 2, 4, 4, 5, 6],
|
1128 |
+
}
|
1129 |
+
)
|
1130 |
+
result = df.groupby("foo1", as_index=False).apply(lambda x: x.mean())
|
1131 |
+
expected = DataFrame(
|
1132 |
+
{
|
1133 |
+
"foo1": ["one", "three", "two"],
|
1134 |
+
"foo2": [3.0, 4.0, 4.0],
|
1135 |
+
}
|
1136 |
+
)
|
1137 |
+
tm.assert_frame_equal(result, expected)
|
1138 |
+
|
1139 |
+
|
1140 |
+
@pytest.mark.parametrize(
|
1141 |
+
"udf",
|
1142 |
+
[(lambda x: x.copy()), (lambda x: x.copy().rename(lambda y: y + 1))],
|
1143 |
+
)
|
1144 |
+
@pytest.mark.parametrize("group_keys", [True, False])
|
1145 |
+
def test_apply_result_type(group_keys, udf):
|
1146 |
+
# https://github.com/pandas-dev/pandas/issues/34809
|
1147 |
+
# We'd like to control whether the group keys end up in the index
|
1148 |
+
# regardless of whether the UDF happens to be a transform.
|
1149 |
+
df = DataFrame({"A": ["a", "b"], "B": [1, 2]})
|
1150 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1151 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1152 |
+
df_result = df.groupby("A", group_keys=group_keys).apply(udf)
|
1153 |
+
series_result = df.B.groupby(df.A, group_keys=group_keys).apply(udf)
|
1154 |
+
|
1155 |
+
if group_keys:
|
1156 |
+
assert df_result.index.nlevels == 2
|
1157 |
+
assert series_result.index.nlevels == 2
|
1158 |
+
else:
|
1159 |
+
assert df_result.index.nlevels == 1
|
1160 |
+
assert series_result.index.nlevels == 1
|
1161 |
+
|
1162 |
+
|
1163 |
+
def test_result_order_group_keys_false():
|
1164 |
+
# GH 34998
|
1165 |
+
# apply result order should not depend on whether index is the same or just equal
|
1166 |
+
df = DataFrame({"A": [2, 1, 2], "B": [1, 2, 3]})
|
1167 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1168 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1169 |
+
result = df.groupby("A", group_keys=False).apply(lambda x: x)
|
1170 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1171 |
+
expected = df.groupby("A", group_keys=False).apply(lambda x: x.copy())
|
1172 |
+
tm.assert_frame_equal(result, expected)
|
1173 |
+
|
1174 |
+
|
1175 |
+
def test_apply_with_timezones_aware():
|
1176 |
+
# GH: 27212
|
1177 |
+
dates = ["2001-01-01"] * 2 + ["2001-01-02"] * 2 + ["2001-01-03"] * 2
|
1178 |
+
index_no_tz = pd.DatetimeIndex(dates)
|
1179 |
+
index_tz = pd.DatetimeIndex(dates, tz="UTC")
|
1180 |
+
df1 = DataFrame({"x": list(range(2)) * 3, "y": range(6), "t": index_no_tz})
|
1181 |
+
df2 = DataFrame({"x": list(range(2)) * 3, "y": range(6), "t": index_tz})
|
1182 |
+
|
1183 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1184 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1185 |
+
result1 = df1.groupby("x", group_keys=False).apply(
|
1186 |
+
lambda df: df[["x", "y"]].copy()
|
1187 |
+
)
|
1188 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1189 |
+
result2 = df2.groupby("x", group_keys=False).apply(
|
1190 |
+
lambda df: df[["x", "y"]].copy()
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
tm.assert_frame_equal(result1, result2)
|
1194 |
+
|
1195 |
+
|
1196 |
+
def test_apply_is_unchanged_when_other_methods_are_called_first(reduction_func):
|
1197 |
+
# GH #34656
|
1198 |
+
# GH #34271
|
1199 |
+
df = DataFrame(
|
1200 |
+
{
|
1201 |
+
"a": [99, 99, 99, 88, 88, 88],
|
1202 |
+
"b": [1, 2, 3, 4, 5, 6],
|
1203 |
+
"c": [10, 20, 30, 40, 50, 60],
|
1204 |
+
}
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
expected = DataFrame(
|
1208 |
+
{"b": [15, 6], "c": [150, 60]},
|
1209 |
+
index=Index([88, 99], name="a"),
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
# Check output when no other methods are called before .apply()
|
1213 |
+
grp = df.groupby(by="a")
|
1214 |
+
msg = "The behavior of DataFrame.sum with axis=None is deprecated"
|
1215 |
+
with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False):
|
1216 |
+
result = grp.apply(sum, include_groups=False)
|
1217 |
+
tm.assert_frame_equal(result, expected)
|
1218 |
+
|
1219 |
+
# Check output when another method is called before .apply()
|
1220 |
+
grp = df.groupby(by="a")
|
1221 |
+
args = get_groupby_method_args(reduction_func, df)
|
1222 |
+
_ = getattr(grp, reduction_func)(*args)
|
1223 |
+
with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False):
|
1224 |
+
result = grp.apply(sum, include_groups=False)
|
1225 |
+
tm.assert_frame_equal(result, expected)
|
1226 |
+
|
1227 |
+
|
1228 |
+
def test_apply_with_date_in_multiindex_does_not_convert_to_timestamp():
|
1229 |
+
# GH 29617
|
1230 |
+
|
1231 |
+
df = DataFrame(
|
1232 |
+
{
|
1233 |
+
"A": ["a", "a", "a", "b"],
|
1234 |
+
"B": [
|
1235 |
+
date(2020, 1, 10),
|
1236 |
+
date(2020, 1, 10),
|
1237 |
+
date(2020, 2, 10),
|
1238 |
+
date(2020, 2, 10),
|
1239 |
+
],
|
1240 |
+
"C": [1, 2, 3, 4],
|
1241 |
+
},
|
1242 |
+
index=Index([100, 101, 102, 103], name="idx"),
|
1243 |
+
)
|
1244 |
+
|
1245 |
+
grp = df.groupby(["A", "B"])
|
1246 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1247 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1248 |
+
result = grp.apply(lambda x: x.head(1))
|
1249 |
+
|
1250 |
+
expected = df.iloc[[0, 2, 3]]
|
1251 |
+
expected = expected.reset_index()
|
1252 |
+
expected.index = MultiIndex.from_frame(expected[["A", "B", "idx"]])
|
1253 |
+
expected = expected.drop(columns="idx")
|
1254 |
+
|
1255 |
+
tm.assert_frame_equal(result, expected)
|
1256 |
+
for val in result.index.levels[1]:
|
1257 |
+
assert type(val) is date
|
1258 |
+
|
1259 |
+
|
1260 |
+
def test_apply_by_cols_equals_apply_by_rows_transposed():
|
1261 |
+
# GH 16646
|
1262 |
+
# Operating on the columns, or transposing and operating on the rows
|
1263 |
+
# should give the same result. There was previously a bug where the
|
1264 |
+
# by_rows operation would work fine, but by_cols would throw a ValueError
|
1265 |
+
|
1266 |
+
df = DataFrame(
|
1267 |
+
np.random.default_rng(2).random([6, 4]),
|
1268 |
+
columns=MultiIndex.from_product([["A", "B"], [1, 2]]),
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
1272 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1273 |
+
gb = df.T.groupby(axis=0, level=0)
|
1274 |
+
by_rows = gb.apply(lambda x: x.droplevel(axis=0, level=0))
|
1275 |
+
|
1276 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
1277 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1278 |
+
gb2 = df.groupby(axis=1, level=0)
|
1279 |
+
by_cols = gb2.apply(lambda x: x.droplevel(axis=1, level=0))
|
1280 |
+
|
1281 |
+
tm.assert_frame_equal(by_cols, by_rows.T)
|
1282 |
+
tm.assert_frame_equal(by_cols, df)
|
1283 |
+
|
1284 |
+
|
1285 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
1286 |
+
def test_apply_dropna_with_indexed_same(dropna):
|
1287 |
+
# GH 38227
|
1288 |
+
# GH#43205
|
1289 |
+
df = DataFrame(
|
1290 |
+
{
|
1291 |
+
"col": [1, 2, 3, 4, 5],
|
1292 |
+
"group": ["a", np.nan, np.nan, "b", "b"],
|
1293 |
+
},
|
1294 |
+
index=list("xxyxz"),
|
1295 |
+
)
|
1296 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1297 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1298 |
+
result = df.groupby("group", dropna=dropna, group_keys=False).apply(lambda x: x)
|
1299 |
+
expected = df.dropna() if dropna else df.iloc[[0, 3, 1, 2, 4]]
|
1300 |
+
tm.assert_frame_equal(result, expected)
|
1301 |
+
|
1302 |
+
|
1303 |
+
@pytest.mark.parametrize(
|
1304 |
+
"as_index, expected",
|
1305 |
+
[
|
1306 |
+
[
|
1307 |
+
False,
|
1308 |
+
DataFrame(
|
1309 |
+
[[1, 1, 1], [2, 2, 1]], columns=Index(["a", "b", None], dtype=object)
|
1310 |
+
),
|
1311 |
+
],
|
1312 |
+
[
|
1313 |
+
True,
|
1314 |
+
Series(
|
1315 |
+
[1, 1], index=MultiIndex.from_tuples([(1, 1), (2, 2)], names=["a", "b"])
|
1316 |
+
),
|
1317 |
+
],
|
1318 |
+
],
|
1319 |
+
)
|
1320 |
+
def test_apply_as_index_constant_lambda(as_index, expected):
|
1321 |
+
# GH 13217
|
1322 |
+
df = DataFrame({"a": [1, 1, 2, 2], "b": [1, 1, 2, 2], "c": [1, 1, 1, 1]})
|
1323 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1324 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1325 |
+
result = df.groupby(["a", "b"], as_index=as_index).apply(lambda x: 1)
|
1326 |
+
tm.assert_equal(result, expected)
|
1327 |
+
|
1328 |
+
|
1329 |
+
def test_sort_index_groups():
|
1330 |
+
# GH 20420
|
1331 |
+
df = DataFrame(
|
1332 |
+
{"A": [1, 2, 3, 4, 5], "B": [6, 7, 8, 9, 0], "C": [1, 1, 1, 2, 2]},
|
1333 |
+
index=range(5),
|
1334 |
+
)
|
1335 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1336 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1337 |
+
result = df.groupby("C").apply(lambda x: x.A.sort_index())
|
1338 |
+
expected = Series(
|
1339 |
+
range(1, 6),
|
1340 |
+
index=MultiIndex.from_tuples(
|
1341 |
+
[(1, 0), (1, 1), (1, 2), (2, 3), (2, 4)], names=["C", None]
|
1342 |
+
),
|
1343 |
+
name="A",
|
1344 |
+
)
|
1345 |
+
tm.assert_series_equal(result, expected)
|
1346 |
+
|
1347 |
+
|
1348 |
+
def test_positional_slice_groups_datetimelike():
|
1349 |
+
# GH 21651
|
1350 |
+
expected = DataFrame(
|
1351 |
+
{
|
1352 |
+
"date": pd.date_range("2010-01-01", freq="12h", periods=5),
|
1353 |
+
"vals": range(5),
|
1354 |
+
"let": list("abcde"),
|
1355 |
+
}
|
1356 |
+
)
|
1357 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1358 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1359 |
+
result = expected.groupby(
|
1360 |
+
[expected.let, expected.date.dt.date], group_keys=False
|
1361 |
+
).apply(lambda x: x.iloc[0:])
|
1362 |
+
tm.assert_frame_equal(result, expected)
|
1363 |
+
|
1364 |
+
|
1365 |
+
def test_groupby_apply_shape_cache_safety():
|
1366 |
+
# GH#42702 this fails if we cache_readonly Block.shape
|
1367 |
+
df = DataFrame({"A": ["a", "a", "b"], "B": [1, 2, 3], "C": [4, 6, 5]})
|
1368 |
+
gb = df.groupby("A")
|
1369 |
+
result = gb[["B", "C"]].apply(lambda x: x.astype(float).max() - x.min())
|
1370 |
+
|
1371 |
+
expected = DataFrame(
|
1372 |
+
{"B": [1.0, 0.0], "C": [2.0, 0.0]}, index=Index(["a", "b"], name="A")
|
1373 |
+
)
|
1374 |
+
tm.assert_frame_equal(result, expected)
|
1375 |
+
|
1376 |
+
|
1377 |
+
def test_groupby_apply_to_series_name():
|
1378 |
+
# GH52444
|
1379 |
+
df = DataFrame.from_dict(
|
1380 |
+
{
|
1381 |
+
"a": ["a", "b", "a", "b"],
|
1382 |
+
"b1": ["aa", "ac", "ac", "ad"],
|
1383 |
+
"b2": ["aa", "aa", "aa", "ac"],
|
1384 |
+
}
|
1385 |
+
)
|
1386 |
+
grp = df.groupby("a")[["b1", "b2"]]
|
1387 |
+
result = grp.apply(lambda x: x.unstack().value_counts())
|
1388 |
+
|
1389 |
+
expected_idx = MultiIndex.from_arrays(
|
1390 |
+
arrays=[["a", "a", "b", "b", "b"], ["aa", "ac", "ac", "ad", "aa"]],
|
1391 |
+
names=["a", None],
|
1392 |
+
)
|
1393 |
+
expected = Series([3, 1, 2, 1, 1], index=expected_idx, name="count")
|
1394 |
+
tm.assert_series_equal(result, expected)
|
1395 |
+
|
1396 |
+
|
1397 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
1398 |
+
def test_apply_na(dropna):
|
1399 |
+
# GH#28984
|
1400 |
+
df = DataFrame(
|
1401 |
+
{"grp": [1, 1, 2, 2], "y": [1, 0, 2, 5], "z": [1, 2, np.nan, np.nan]}
|
1402 |
+
)
|
1403 |
+
dfgrp = df.groupby("grp", dropna=dropna)
|
1404 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1405 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1406 |
+
result = dfgrp.apply(lambda grp_df: grp_df.nlargest(1, "z"))
|
1407 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1408 |
+
expected = dfgrp.apply(lambda x: x.sort_values("z", ascending=False).head(1))
|
1409 |
+
tm.assert_frame_equal(result, expected)
|
1410 |
+
|
1411 |
+
|
1412 |
+
def test_apply_empty_string_nan_coerce_bug():
|
1413 |
+
# GH#24903
|
1414 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1415 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1416 |
+
result = (
|
1417 |
+
DataFrame(
|
1418 |
+
{
|
1419 |
+
"a": [1, 1, 2, 2],
|
1420 |
+
"b": ["", "", "", ""],
|
1421 |
+
"c": pd.to_datetime([1, 2, 3, 4], unit="s"),
|
1422 |
+
}
|
1423 |
+
)
|
1424 |
+
.groupby(["a", "b"])
|
1425 |
+
.apply(lambda df: df.iloc[-1])
|
1426 |
+
)
|
1427 |
+
expected = DataFrame(
|
1428 |
+
[[1, "", pd.to_datetime(2, unit="s")], [2, "", pd.to_datetime(4, unit="s")]],
|
1429 |
+
columns=["a", "b", "c"],
|
1430 |
+
index=MultiIndex.from_tuples([(1, ""), (2, "")], names=["a", "b"]),
|
1431 |
+
)
|
1432 |
+
tm.assert_frame_equal(result, expected)
|
1433 |
+
|
1434 |
+
|
1435 |
+
@pytest.mark.parametrize("index_values", [[1, 2, 3], [1.0, 2.0, 3.0]])
|
1436 |
+
def test_apply_index_key_error_bug(index_values):
|
1437 |
+
# GH 44310
|
1438 |
+
result = DataFrame(
|
1439 |
+
{
|
1440 |
+
"a": ["aa", "a2", "a3"],
|
1441 |
+
"b": [1, 2, 3],
|
1442 |
+
},
|
1443 |
+
index=Index(index_values),
|
1444 |
+
)
|
1445 |
+
expected = DataFrame(
|
1446 |
+
{
|
1447 |
+
"b_mean": [2.0, 3.0, 1.0],
|
1448 |
+
},
|
1449 |
+
index=Index(["a2", "a3", "aa"], name="a"),
|
1450 |
+
)
|
1451 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1452 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1453 |
+
result = result.groupby("a").apply(
|
1454 |
+
lambda df: Series([df["b"].mean()], index=["b_mean"])
|
1455 |
+
)
|
1456 |
+
tm.assert_frame_equal(result, expected)
|
1457 |
+
|
1458 |
+
|
1459 |
+
@pytest.mark.parametrize(
|
1460 |
+
"arg,idx",
|
1461 |
+
[
|
1462 |
+
[
|
1463 |
+
[
|
1464 |
+
1,
|
1465 |
+
2,
|
1466 |
+
3,
|
1467 |
+
],
|
1468 |
+
[
|
1469 |
+
0.1,
|
1470 |
+
0.3,
|
1471 |
+
0.2,
|
1472 |
+
],
|
1473 |
+
],
|
1474 |
+
[
|
1475 |
+
[
|
1476 |
+
1,
|
1477 |
+
2,
|
1478 |
+
3,
|
1479 |
+
],
|
1480 |
+
[
|
1481 |
+
0.1,
|
1482 |
+
0.2,
|
1483 |
+
0.3,
|
1484 |
+
],
|
1485 |
+
],
|
1486 |
+
[
|
1487 |
+
[
|
1488 |
+
1,
|
1489 |
+
4,
|
1490 |
+
3,
|
1491 |
+
],
|
1492 |
+
[
|
1493 |
+
0.1,
|
1494 |
+
0.4,
|
1495 |
+
0.2,
|
1496 |
+
],
|
1497 |
+
],
|
1498 |
+
],
|
1499 |
+
)
|
1500 |
+
def test_apply_nonmonotonic_float_index(arg, idx):
|
1501 |
+
# GH 34455
|
1502 |
+
expected = DataFrame({"col": arg}, index=idx)
|
1503 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1504 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1505 |
+
result = expected.groupby("col", group_keys=False).apply(lambda x: x)
|
1506 |
+
tm.assert_frame_equal(result, expected)
|
1507 |
+
|
1508 |
+
|
1509 |
+
@pytest.mark.parametrize("args, kwargs", [([True], {}), ([], {"numeric_only": True})])
|
1510 |
+
def test_apply_str_with_args(df, args, kwargs):
|
1511 |
+
# GH#46479
|
1512 |
+
gb = df.groupby("A")
|
1513 |
+
result = gb.apply("sum", *args, **kwargs)
|
1514 |
+
expected = gb.sum(numeric_only=True)
|
1515 |
+
tm.assert_frame_equal(result, expected)
|
1516 |
+
|
1517 |
+
|
1518 |
+
@pytest.mark.parametrize("name", ["some_name", None])
|
1519 |
+
def test_result_name_when_one_group(name):
|
1520 |
+
# GH 46369
|
1521 |
+
ser = Series([1, 2], name=name)
|
1522 |
+
result = ser.groupby(["a", "a"], group_keys=False).apply(lambda x: x)
|
1523 |
+
expected = Series([1, 2], name=name)
|
1524 |
+
|
1525 |
+
tm.assert_series_equal(result, expected)
|
1526 |
+
|
1527 |
+
|
1528 |
+
@pytest.mark.parametrize(
|
1529 |
+
"method, op",
|
1530 |
+
[
|
1531 |
+
("apply", lambda gb: gb.values[-1]),
|
1532 |
+
("apply", lambda gb: gb["b"].iloc[0]),
|
1533 |
+
("agg", "skew"),
|
1534 |
+
("agg", "prod"),
|
1535 |
+
("agg", "sum"),
|
1536 |
+
],
|
1537 |
+
)
|
1538 |
+
def test_empty_df(method, op):
|
1539 |
+
# GH 47985
|
1540 |
+
empty_df = DataFrame({"a": [], "b": []})
|
1541 |
+
gb = empty_df.groupby("a", group_keys=True)
|
1542 |
+
group = getattr(gb, "b")
|
1543 |
+
|
1544 |
+
result = getattr(group, method)(op)
|
1545 |
+
expected = Series(
|
1546 |
+
[], name="b", dtype="float64", index=Index([], dtype="float64", name="a")
|
1547 |
+
)
|
1548 |
+
|
1549 |
+
tm.assert_series_equal(result, expected)
|
1550 |
+
|
1551 |
+
|
1552 |
+
@pytest.mark.parametrize("include_groups", [True, False])
|
1553 |
+
def test_include_groups(include_groups):
|
1554 |
+
# GH#7155
|
1555 |
+
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]})
|
1556 |
+
gb = df.groupby("a")
|
1557 |
+
warn = DeprecationWarning if include_groups else None
|
1558 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1559 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1560 |
+
result = gb.apply(lambda x: x.sum(), include_groups=include_groups)
|
1561 |
+
expected = DataFrame({"a": [2, 2], "b": [7, 5]}, index=Index([1, 2], name="a"))
|
1562 |
+
if not include_groups:
|
1563 |
+
expected = expected[["b"]]
|
1564 |
+
tm.assert_frame_equal(result, expected)
|
1565 |
+
|
1566 |
+
|
1567 |
+
@pytest.mark.parametrize("f", [max, min, sum])
|
1568 |
+
@pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key
|
1569 |
+
def test_builtins_apply(keys, f):
|
1570 |
+
# see gh-8155
|
1571 |
+
rs = np.random.default_rng(2)
|
1572 |
+
df = DataFrame(rs.integers(1, 7, (10, 2)), columns=["jim", "joe"])
|
1573 |
+
df["jolie"] = rs.standard_normal(10)
|
1574 |
+
|
1575 |
+
gb = df.groupby(keys)
|
1576 |
+
|
1577 |
+
fname = f.__name__
|
1578 |
+
|
1579 |
+
warn = None if f is not sum else FutureWarning
|
1580 |
+
msg = "The behavior of DataFrame.sum with axis=None is deprecated"
|
1581 |
+
with tm.assert_produces_warning(
|
1582 |
+
warn, match=msg, check_stacklevel=False, raise_on_extra_warnings=False
|
1583 |
+
):
|
1584 |
+
# Also warns on deprecation GH#53425
|
1585 |
+
result = gb.apply(f)
|
1586 |
+
ngroups = len(df.drop_duplicates(subset=keys))
|
1587 |
+
|
1588 |
+
assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))"
|
1589 |
+
assert result.shape == (ngroups, 3), assert_msg
|
1590 |
+
|
1591 |
+
npfunc = lambda x: getattr(np, fname)(x, axis=0) # numpy's equivalent function
|
1592 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
1593 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1594 |
+
expected = gb.apply(npfunc)
|
1595 |
+
tm.assert_frame_equal(result, expected)
|
1596 |
+
|
1597 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
1598 |
+
expected2 = gb.apply(lambda x: npfunc(x))
|
1599 |
+
tm.assert_frame_equal(result, expected2)
|
1600 |
+
|
1601 |
+
if f != sum:
|
1602 |
+
expected = gb.agg(fname).reset_index()
|
1603 |
+
expected.set_index(keys, inplace=True, drop=False)
|
1604 |
+
tm.assert_frame_equal(result, expected, check_dtype=False)
|
1605 |
+
|
1606 |
+
tm.assert_series_equal(getattr(result, fname)(axis=0), getattr(df, fname)(axis=0))
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_apply_mutate.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import pandas._testing as tm
|
5 |
+
|
6 |
+
|
7 |
+
def test_group_by_copy():
|
8 |
+
# GH#44803
|
9 |
+
df = pd.DataFrame(
|
10 |
+
{
|
11 |
+
"name": ["Alice", "Bob", "Carl"],
|
12 |
+
"age": [20, 21, 20],
|
13 |
+
}
|
14 |
+
).set_index("name")
|
15 |
+
|
16 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
17 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
18 |
+
grp_by_same_value = df.groupby(["age"], group_keys=False).apply(
|
19 |
+
lambda group: group
|
20 |
+
)
|
21 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
22 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
23 |
+
grp_by_copy = df.groupby(["age"], group_keys=False).apply(
|
24 |
+
lambda group: group.copy()
|
25 |
+
)
|
26 |
+
tm.assert_frame_equal(grp_by_same_value, grp_by_copy)
|
27 |
+
|
28 |
+
|
29 |
+
def test_mutate_groups():
|
30 |
+
# GH3380
|
31 |
+
|
32 |
+
df = pd.DataFrame(
|
33 |
+
{
|
34 |
+
"cat1": ["a"] * 8 + ["b"] * 6,
|
35 |
+
"cat2": ["c"] * 2
|
36 |
+
+ ["d"] * 2
|
37 |
+
+ ["e"] * 2
|
38 |
+
+ ["f"] * 2
|
39 |
+
+ ["c"] * 2
|
40 |
+
+ ["d"] * 2
|
41 |
+
+ ["e"] * 2,
|
42 |
+
"cat3": [f"g{x}" for x in range(1, 15)],
|
43 |
+
"val": np.random.default_rng(2).integers(100, size=14),
|
44 |
+
}
|
45 |
+
)
|
46 |
+
|
47 |
+
def f_copy(x):
|
48 |
+
x = x.copy()
|
49 |
+
x["rank"] = x.val.rank(method="min")
|
50 |
+
return x.groupby("cat2")["rank"].min()
|
51 |
+
|
52 |
+
def f_no_copy(x):
|
53 |
+
x["rank"] = x.val.rank(method="min")
|
54 |
+
return x.groupby("cat2")["rank"].min()
|
55 |
+
|
56 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
57 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
58 |
+
grpby_copy = df.groupby("cat1").apply(f_copy)
|
59 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
60 |
+
grpby_no_copy = df.groupby("cat1").apply(f_no_copy)
|
61 |
+
tm.assert_series_equal(grpby_copy, grpby_no_copy)
|
62 |
+
|
63 |
+
|
64 |
+
def test_no_mutate_but_looks_like():
|
65 |
+
# GH 8467
|
66 |
+
# first show's mutation indicator
|
67 |
+
# second does not, but should yield the same results
|
68 |
+
df = pd.DataFrame({"key": [1, 1, 1, 2, 2, 2, 3, 3, 3], "value": range(9)})
|
69 |
+
|
70 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
71 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
72 |
+
result1 = df.groupby("key", group_keys=True).apply(lambda x: x[:].key)
|
73 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
74 |
+
result2 = df.groupby("key", group_keys=True).apply(lambda x: x.key)
|
75 |
+
tm.assert_series_equal(result1, result2)
|
76 |
+
|
77 |
+
|
78 |
+
def test_apply_function_with_indexing(warn_copy_on_write):
|
79 |
+
# GH: 33058
|
80 |
+
df = pd.DataFrame(
|
81 |
+
{"col1": ["A", "A", "A", "B", "B", "B"], "col2": [1, 2, 3, 4, 5, 6]}
|
82 |
+
)
|
83 |
+
|
84 |
+
def fn(x):
|
85 |
+
x.loc[x.index[-1], "col2"] = 0
|
86 |
+
return x.col2
|
87 |
+
|
88 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
89 |
+
with tm.assert_produces_warning(
|
90 |
+
DeprecationWarning, match=msg, raise_on_extra_warnings=not warn_copy_on_write
|
91 |
+
):
|
92 |
+
result = df.groupby(["col1"], as_index=False).apply(fn)
|
93 |
+
expected = pd.Series(
|
94 |
+
[1, 2, 0, 4, 5, 0],
|
95 |
+
index=pd.MultiIndex.from_tuples(
|
96 |
+
[(0, 0), (0, 1), (0, 2), (1, 3), (1, 4), (1, 5)]
|
97 |
+
),
|
98 |
+
name="col2",
|
99 |
+
)
|
100 |
+
tm.assert_series_equal(result, expected)
|
101 |
+
|
102 |
+
|
103 |
+
def test_apply_mutate_columns_multiindex():
|
104 |
+
# GH 12652
|
105 |
+
df = pd.DataFrame(
|
106 |
+
{
|
107 |
+
("C", "julian"): [1, 2, 3],
|
108 |
+
("B", "geoffrey"): [1, 2, 3],
|
109 |
+
("A", "julian"): [1, 2, 3],
|
110 |
+
("B", "julian"): [1, 2, 3],
|
111 |
+
("A", "geoffrey"): [1, 2, 3],
|
112 |
+
("C", "geoffrey"): [1, 2, 3],
|
113 |
+
},
|
114 |
+
columns=pd.MultiIndex.from_tuples(
|
115 |
+
[
|
116 |
+
("A", "julian"),
|
117 |
+
("A", "geoffrey"),
|
118 |
+
("B", "julian"),
|
119 |
+
("B", "geoffrey"),
|
120 |
+
("C", "julian"),
|
121 |
+
("C", "geoffrey"),
|
122 |
+
]
|
123 |
+
),
|
124 |
+
)
|
125 |
+
|
126 |
+
def add_column(grouped):
|
127 |
+
name = grouped.columns[0][1]
|
128 |
+
grouped["sum", name] = grouped.sum(axis=1)
|
129 |
+
return grouped
|
130 |
+
|
131 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
132 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
133 |
+
gb = df.groupby(level=1, axis=1)
|
134 |
+
result = gb.apply(add_column)
|
135 |
+
expected = pd.DataFrame(
|
136 |
+
[
|
137 |
+
[1, 1, 1, 3, 1, 1, 1, 3],
|
138 |
+
[2, 2, 2, 6, 2, 2, 2, 6],
|
139 |
+
[
|
140 |
+
3,
|
141 |
+
3,
|
142 |
+
3,
|
143 |
+
9,
|
144 |
+
3,
|
145 |
+
3,
|
146 |
+
3,
|
147 |
+
9,
|
148 |
+
],
|
149 |
+
],
|
150 |
+
columns=pd.MultiIndex.from_tuples(
|
151 |
+
[
|
152 |
+
("geoffrey", "A", "geoffrey"),
|
153 |
+
("geoffrey", "B", "geoffrey"),
|
154 |
+
("geoffrey", "C", "geoffrey"),
|
155 |
+
("geoffrey", "sum", "geoffrey"),
|
156 |
+
("julian", "A", "julian"),
|
157 |
+
("julian", "B", "julian"),
|
158 |
+
("julian", "C", "julian"),
|
159 |
+
("julian", "sum", "julian"),
|
160 |
+
]
|
161 |
+
),
|
162 |
+
)
|
163 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_bin_groupby.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._libs import lib
|
5 |
+
import pandas.util._test_decorators as td
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
def assert_block_lengths(x):
|
12 |
+
assert len(x) == len(x._mgr.blocks[0].mgr_locs)
|
13 |
+
return 0
|
14 |
+
|
15 |
+
|
16 |
+
def cumsum_max(x):
|
17 |
+
x.cumsum().max()
|
18 |
+
return 0
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.mark.parametrize(
|
22 |
+
"func",
|
23 |
+
[
|
24 |
+
cumsum_max,
|
25 |
+
pytest.param(assert_block_lengths, marks=td.skip_array_manager_invalid_test),
|
26 |
+
],
|
27 |
+
)
|
28 |
+
def test_mgr_locs_updated(func):
|
29 |
+
# https://github.com/pandas-dev/pandas/issues/31802
|
30 |
+
# Some operations may require creating new blocks, which requires
|
31 |
+
# valid mgr_locs
|
32 |
+
df = pd.DataFrame({"A": ["a", "a", "a"], "B": ["a", "b", "b"], "C": [1, 1, 1]})
|
33 |
+
result = df.groupby(["A", "B"]).agg(func)
|
34 |
+
expected = pd.DataFrame(
|
35 |
+
{"C": [0, 0]},
|
36 |
+
index=pd.MultiIndex.from_product([["a"], ["a", "b"]], names=["A", "B"]),
|
37 |
+
)
|
38 |
+
tm.assert_frame_equal(result, expected)
|
39 |
+
|
40 |
+
|
41 |
+
@pytest.mark.parametrize(
|
42 |
+
"binner,closed,expected",
|
43 |
+
[
|
44 |
+
(
|
45 |
+
np.array([0, 3, 6, 9], dtype=np.int64),
|
46 |
+
"left",
|
47 |
+
np.array([2, 5, 6], dtype=np.int64),
|
48 |
+
),
|
49 |
+
(
|
50 |
+
np.array([0, 3, 6, 9], dtype=np.int64),
|
51 |
+
"right",
|
52 |
+
np.array([3, 6, 6], dtype=np.int64),
|
53 |
+
),
|
54 |
+
(np.array([0, 3, 6], dtype=np.int64), "left", np.array([2, 5], dtype=np.int64)),
|
55 |
+
(
|
56 |
+
np.array([0, 3, 6], dtype=np.int64),
|
57 |
+
"right",
|
58 |
+
np.array([3, 6], dtype=np.int64),
|
59 |
+
),
|
60 |
+
],
|
61 |
+
)
|
62 |
+
def test_generate_bins(binner, closed, expected):
|
63 |
+
values = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64)
|
64 |
+
result = lib.generate_bins_dt64(values, binner, closed=closed)
|
65 |
+
tm.assert_numpy_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_categorical.py
ADDED
@@ -0,0 +1,2169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import (
|
8 |
+
Categorical,
|
9 |
+
CategoricalIndex,
|
10 |
+
DataFrame,
|
11 |
+
Index,
|
12 |
+
MultiIndex,
|
13 |
+
Series,
|
14 |
+
qcut,
|
15 |
+
)
|
16 |
+
import pandas._testing as tm
|
17 |
+
from pandas.api.typing import SeriesGroupBy
|
18 |
+
from pandas.tests.groupby import get_groupby_method_args
|
19 |
+
|
20 |
+
|
21 |
+
def cartesian_product_for_groupers(result, args, names, fill_value=np.nan):
|
22 |
+
"""Reindex to a cartesian production for the groupers,
|
23 |
+
preserving the nature (Categorical) of each grouper
|
24 |
+
"""
|
25 |
+
|
26 |
+
def f(a):
|
27 |
+
if isinstance(a, (CategoricalIndex, Categorical)):
|
28 |
+
categories = a.categories
|
29 |
+
a = Categorical.from_codes(
|
30 |
+
np.arange(len(categories)), categories=categories, ordered=a.ordered
|
31 |
+
)
|
32 |
+
return a
|
33 |
+
|
34 |
+
index = MultiIndex.from_product(map(f, args), names=names)
|
35 |
+
return result.reindex(index, fill_value=fill_value).sort_index()
|
36 |
+
|
37 |
+
|
38 |
+
_results_for_groupbys_with_missing_categories = {
|
39 |
+
# This maps the builtin groupby functions to their expected outputs for
|
40 |
+
# missing categories when they are called on a categorical grouper with
|
41 |
+
# observed=False. Some functions are expected to return NaN, some zero.
|
42 |
+
# These expected values can be used across several tests (i.e. they are
|
43 |
+
# the same for SeriesGroupBy and DataFrameGroupBy) but they should only be
|
44 |
+
# hardcoded in one place.
|
45 |
+
"all": np.nan,
|
46 |
+
"any": np.nan,
|
47 |
+
"count": 0,
|
48 |
+
"corrwith": np.nan,
|
49 |
+
"first": np.nan,
|
50 |
+
"idxmax": np.nan,
|
51 |
+
"idxmin": np.nan,
|
52 |
+
"last": np.nan,
|
53 |
+
"max": np.nan,
|
54 |
+
"mean": np.nan,
|
55 |
+
"median": np.nan,
|
56 |
+
"min": np.nan,
|
57 |
+
"nth": np.nan,
|
58 |
+
"nunique": 0,
|
59 |
+
"prod": np.nan,
|
60 |
+
"quantile": np.nan,
|
61 |
+
"sem": np.nan,
|
62 |
+
"size": 0,
|
63 |
+
"skew": np.nan,
|
64 |
+
"std": np.nan,
|
65 |
+
"sum": 0,
|
66 |
+
"var": np.nan,
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
def test_apply_use_categorical_name(df):
|
71 |
+
cats = qcut(df.C, 4)
|
72 |
+
|
73 |
+
def get_stats(group):
|
74 |
+
return {
|
75 |
+
"min": group.min(),
|
76 |
+
"max": group.max(),
|
77 |
+
"count": group.count(),
|
78 |
+
"mean": group.mean(),
|
79 |
+
}
|
80 |
+
|
81 |
+
result = df.groupby(cats, observed=False).D.apply(get_stats)
|
82 |
+
assert result.index.names[0] == "C"
|
83 |
+
|
84 |
+
|
85 |
+
def test_basic(using_infer_string): # TODO: split this test
|
86 |
+
cats = Categorical(
|
87 |
+
["a", "a", "a", "b", "b", "b", "c", "c", "c"],
|
88 |
+
categories=["a", "b", "c", "d"],
|
89 |
+
ordered=True,
|
90 |
+
)
|
91 |
+
data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats})
|
92 |
+
|
93 |
+
exp_index = CategoricalIndex(list("abcd"), name="b", ordered=True)
|
94 |
+
expected = DataFrame({"a": [1, 2, 4, np.nan]}, index=exp_index)
|
95 |
+
result = data.groupby("b", observed=False).mean()
|
96 |
+
tm.assert_frame_equal(result, expected)
|
97 |
+
|
98 |
+
cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True)
|
99 |
+
cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True)
|
100 |
+
df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})
|
101 |
+
|
102 |
+
# single grouper
|
103 |
+
gb = df.groupby("A", observed=False)
|
104 |
+
exp_idx = CategoricalIndex(["a", "b", "z"], name="A", ordered=True)
|
105 |
+
expected = DataFrame({"values": Series([3, 7, 0], index=exp_idx)})
|
106 |
+
result = gb.sum(numeric_only=True)
|
107 |
+
tm.assert_frame_equal(result, expected)
|
108 |
+
|
109 |
+
# GH 8623
|
110 |
+
x = DataFrame(
|
111 |
+
[[1, "John P. Doe"], [2, "Jane Dove"], [1, "John P. Doe"]],
|
112 |
+
columns=["person_id", "person_name"],
|
113 |
+
)
|
114 |
+
x["person_name"] = Categorical(x.person_name)
|
115 |
+
|
116 |
+
g = x.groupby(["person_id"], observed=False)
|
117 |
+
result = g.transform(lambda x: x)
|
118 |
+
tm.assert_frame_equal(result, x[["person_name"]])
|
119 |
+
|
120 |
+
result = x.drop_duplicates("person_name")
|
121 |
+
expected = x.iloc[[0, 1]]
|
122 |
+
tm.assert_frame_equal(result, expected)
|
123 |
+
|
124 |
+
def f(x):
|
125 |
+
return x.drop_duplicates("person_name").iloc[0]
|
126 |
+
|
127 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
128 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
129 |
+
result = g.apply(f)
|
130 |
+
expected = x.iloc[[0, 1]].copy()
|
131 |
+
expected.index = Index([1, 2], name="person_id")
|
132 |
+
dtype = "string[pyarrow_numpy]" if using_infer_string else object
|
133 |
+
expected["person_name"] = expected["person_name"].astype(dtype)
|
134 |
+
tm.assert_frame_equal(result, expected)
|
135 |
+
|
136 |
+
# GH 9921
|
137 |
+
# Monotonic
|
138 |
+
df = DataFrame({"a": [5, 15, 25]})
|
139 |
+
c = pd.cut(df.a, bins=[0, 10, 20, 30, 40])
|
140 |
+
|
141 |
+
msg = "using SeriesGroupBy.sum"
|
142 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
143 |
+
# GH#53425
|
144 |
+
result = df.a.groupby(c, observed=False).transform(sum)
|
145 |
+
tm.assert_series_equal(result, df["a"])
|
146 |
+
|
147 |
+
tm.assert_series_equal(
|
148 |
+
df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"]
|
149 |
+
)
|
150 |
+
msg = "using DataFrameGroupBy.sum"
|
151 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
152 |
+
# GH#53425
|
153 |
+
result = df.groupby(c, observed=False).transform(sum)
|
154 |
+
expected = df[["a"]]
|
155 |
+
tm.assert_frame_equal(result, expected)
|
156 |
+
|
157 |
+
gbc = df.groupby(c, observed=False)
|
158 |
+
result = gbc.transform(lambda xs: np.max(xs, axis=0))
|
159 |
+
tm.assert_frame_equal(result, df[["a"]])
|
160 |
+
|
161 |
+
result2 = gbc.transform(lambda xs: np.max(xs, axis=0))
|
162 |
+
msg = "using DataFrameGroupBy.max"
|
163 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
164 |
+
# GH#53425
|
165 |
+
result3 = gbc.transform(max)
|
166 |
+
result4 = gbc.transform(np.maximum.reduce)
|
167 |
+
result5 = gbc.transform(lambda xs: np.maximum.reduce(xs))
|
168 |
+
tm.assert_frame_equal(result2, df[["a"]], check_dtype=False)
|
169 |
+
tm.assert_frame_equal(result3, df[["a"]], check_dtype=False)
|
170 |
+
tm.assert_frame_equal(result4, df[["a"]])
|
171 |
+
tm.assert_frame_equal(result5, df[["a"]])
|
172 |
+
|
173 |
+
# Filter
|
174 |
+
tm.assert_series_equal(df.a.groupby(c, observed=False).filter(np.all), df["a"])
|
175 |
+
tm.assert_frame_equal(df.groupby(c, observed=False).filter(np.all), df)
|
176 |
+
|
177 |
+
# Non-monotonic
|
178 |
+
df = DataFrame({"a": [5, 15, 25, -5]})
|
179 |
+
c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40])
|
180 |
+
|
181 |
+
msg = "using SeriesGroupBy.sum"
|
182 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
183 |
+
# GH#53425
|
184 |
+
result = df.a.groupby(c, observed=False).transform(sum)
|
185 |
+
tm.assert_series_equal(result, df["a"])
|
186 |
+
|
187 |
+
tm.assert_series_equal(
|
188 |
+
df.a.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df["a"]
|
189 |
+
)
|
190 |
+
msg = "using DataFrameGroupBy.sum"
|
191 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
192 |
+
# GH#53425
|
193 |
+
result = df.groupby(c, observed=False).transform(sum)
|
194 |
+
expected = df[["a"]]
|
195 |
+
tm.assert_frame_equal(result, expected)
|
196 |
+
|
197 |
+
tm.assert_frame_equal(
|
198 |
+
df.groupby(c, observed=False).transform(lambda xs: np.sum(xs)), df[["a"]]
|
199 |
+
)
|
200 |
+
|
201 |
+
# GH 9603
|
202 |
+
df = DataFrame({"a": [1, 0, 0, 0]})
|
203 |
+
c = pd.cut(df.a, [0, 1, 2, 3, 4], labels=Categorical(list("abcd")))
|
204 |
+
result = df.groupby(c, observed=False).apply(len)
|
205 |
+
|
206 |
+
exp_index = CategoricalIndex(c.values.categories, ordered=c.values.ordered)
|
207 |
+
expected = Series([1, 0, 0, 0], index=exp_index)
|
208 |
+
expected.index.name = "a"
|
209 |
+
tm.assert_series_equal(result, expected)
|
210 |
+
|
211 |
+
# more basic
|
212 |
+
levels = ["foo", "bar", "baz", "qux"]
|
213 |
+
codes = np.random.default_rng(2).integers(0, 4, size=100)
|
214 |
+
|
215 |
+
cats = Categorical.from_codes(codes, levels, ordered=True)
|
216 |
+
|
217 |
+
data = DataFrame(np.random.default_rng(2).standard_normal((100, 4)))
|
218 |
+
|
219 |
+
result = data.groupby(cats, observed=False).mean()
|
220 |
+
|
221 |
+
expected = data.groupby(np.asarray(cats), observed=False).mean()
|
222 |
+
exp_idx = CategoricalIndex(levels, categories=cats.categories, ordered=True)
|
223 |
+
expected = expected.reindex(exp_idx)
|
224 |
+
|
225 |
+
tm.assert_frame_equal(result, expected)
|
226 |
+
|
227 |
+
grouped = data.groupby(cats, observed=False)
|
228 |
+
desc_result = grouped.describe()
|
229 |
+
|
230 |
+
idx = cats.codes.argsort()
|
231 |
+
ord_labels = np.asarray(cats).take(idx)
|
232 |
+
ord_data = data.take(idx)
|
233 |
+
|
234 |
+
exp_cats = Categorical(
|
235 |
+
ord_labels, ordered=True, categories=["foo", "bar", "baz", "qux"]
|
236 |
+
)
|
237 |
+
expected = ord_data.groupby(exp_cats, sort=False, observed=False).describe()
|
238 |
+
tm.assert_frame_equal(desc_result, expected)
|
239 |
+
|
240 |
+
# GH 10460
|
241 |
+
expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True)
|
242 |
+
exp = CategoricalIndex(expc)
|
243 |
+
tm.assert_index_equal(
|
244 |
+
(desc_result.stack(future_stack=True).index.get_level_values(0)), exp
|
245 |
+
)
|
246 |
+
exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4)
|
247 |
+
tm.assert_index_equal(
|
248 |
+
(desc_result.stack(future_stack=True).index.get_level_values(1)), exp
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
def test_level_get_group(observed):
|
253 |
+
# GH15155
|
254 |
+
df = DataFrame(
|
255 |
+
data=np.arange(2, 22, 2),
|
256 |
+
index=MultiIndex(
|
257 |
+
levels=[CategoricalIndex(["a", "b"]), range(10)],
|
258 |
+
codes=[[0] * 5 + [1] * 5, range(10)],
|
259 |
+
names=["Index1", "Index2"],
|
260 |
+
),
|
261 |
+
)
|
262 |
+
g = df.groupby(level=["Index1"], observed=observed)
|
263 |
+
|
264 |
+
# expected should equal test.loc[["a"]]
|
265 |
+
# GH15166
|
266 |
+
expected = DataFrame(
|
267 |
+
data=np.arange(2, 12, 2),
|
268 |
+
index=MultiIndex(
|
269 |
+
levels=[CategoricalIndex(["a", "b"]), range(5)],
|
270 |
+
codes=[[0] * 5, range(5)],
|
271 |
+
names=["Index1", "Index2"],
|
272 |
+
),
|
273 |
+
)
|
274 |
+
msg = "you will need to pass a length-1 tuple"
|
275 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
276 |
+
# GH#25971 - warn when not passing a length-1 tuple
|
277 |
+
result = g.get_group("a")
|
278 |
+
|
279 |
+
tm.assert_frame_equal(result, expected)
|
280 |
+
|
281 |
+
|
282 |
+
def test_sorting_with_different_categoricals():
|
283 |
+
# GH 24271
|
284 |
+
df = DataFrame(
|
285 |
+
{
|
286 |
+
"group": ["A"] * 6 + ["B"] * 6,
|
287 |
+
"dose": ["high", "med", "low"] * 4,
|
288 |
+
"outcomes": np.arange(12.0),
|
289 |
+
}
|
290 |
+
)
|
291 |
+
|
292 |
+
df.dose = Categorical(df.dose, categories=["low", "med", "high"], ordered=True)
|
293 |
+
|
294 |
+
result = df.groupby("group")["dose"].value_counts()
|
295 |
+
result = result.sort_index(level=0, sort_remaining=True)
|
296 |
+
index = ["low", "med", "high", "low", "med", "high"]
|
297 |
+
index = Categorical(index, categories=["low", "med", "high"], ordered=True)
|
298 |
+
index = [["A", "A", "A", "B", "B", "B"], CategoricalIndex(index)]
|
299 |
+
index = MultiIndex.from_arrays(index, names=["group", "dose"])
|
300 |
+
expected = Series([2] * 6, index=index, name="count")
|
301 |
+
tm.assert_series_equal(result, expected)
|
302 |
+
|
303 |
+
|
304 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
305 |
+
def test_apply(ordered):
|
306 |
+
# GH 10138
|
307 |
+
|
308 |
+
dense = Categorical(list("abc"), ordered=ordered)
|
309 |
+
|
310 |
+
# 'b' is in the categories but not in the list
|
311 |
+
missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered)
|
312 |
+
values = np.arange(len(dense))
|
313 |
+
df = DataFrame({"missing": missing, "dense": dense, "values": values})
|
314 |
+
grouped = df.groupby(["missing", "dense"], observed=True)
|
315 |
+
|
316 |
+
# missing category 'b' should still exist in the output index
|
317 |
+
idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"])
|
318 |
+
expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"])
|
319 |
+
|
320 |
+
result = grouped.apply(lambda x: np.mean(x, axis=0))
|
321 |
+
tm.assert_frame_equal(result, expected)
|
322 |
+
|
323 |
+
result = grouped.mean()
|
324 |
+
tm.assert_frame_equal(result, expected)
|
325 |
+
|
326 |
+
msg = "using DataFrameGroupBy.mean"
|
327 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
328 |
+
# GH#53425
|
329 |
+
result = grouped.agg(np.mean)
|
330 |
+
tm.assert_frame_equal(result, expected)
|
331 |
+
|
332 |
+
# but for transform we should still get back the original index
|
333 |
+
idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"])
|
334 |
+
expected = Series(1, index=idx)
|
335 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
336 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
337 |
+
result = grouped.apply(lambda x: 1)
|
338 |
+
tm.assert_series_equal(result, expected)
|
339 |
+
|
340 |
+
|
341 |
+
def test_observed(observed):
|
342 |
+
# multiple groupers, don't re-expand the output space
|
343 |
+
# of the grouper
|
344 |
+
# gh-14942 (implement)
|
345 |
+
# gh-10132 (back-compat)
|
346 |
+
# gh-8138 (back-compat)
|
347 |
+
# gh-8869
|
348 |
+
|
349 |
+
cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True)
|
350 |
+
cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True)
|
351 |
+
df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})
|
352 |
+
df["C"] = ["foo", "bar"] * 2
|
353 |
+
|
354 |
+
# multiple groupers with a non-cat
|
355 |
+
gb = df.groupby(["A", "B", "C"], observed=observed)
|
356 |
+
exp_index = MultiIndex.from_arrays(
|
357 |
+
[cat1, cat2, ["foo", "bar"] * 2], names=["A", "B", "C"]
|
358 |
+
)
|
359 |
+
expected = DataFrame({"values": Series([1, 2, 3, 4], index=exp_index)}).sort_index()
|
360 |
+
result = gb.sum()
|
361 |
+
if not observed:
|
362 |
+
expected = cartesian_product_for_groupers(
|
363 |
+
expected, [cat1, cat2, ["foo", "bar"]], list("ABC"), fill_value=0
|
364 |
+
)
|
365 |
+
|
366 |
+
tm.assert_frame_equal(result, expected)
|
367 |
+
|
368 |
+
gb = df.groupby(["A", "B"], observed=observed)
|
369 |
+
exp_index = MultiIndex.from_arrays([cat1, cat2], names=["A", "B"])
|
370 |
+
expected = DataFrame(
|
371 |
+
{"values": [1, 2, 3, 4], "C": ["foo", "bar", "foo", "bar"]}, index=exp_index
|
372 |
+
)
|
373 |
+
result = gb.sum()
|
374 |
+
if not observed:
|
375 |
+
expected = cartesian_product_for_groupers(
|
376 |
+
expected, [cat1, cat2], list("AB"), fill_value=0
|
377 |
+
)
|
378 |
+
|
379 |
+
tm.assert_frame_equal(result, expected)
|
380 |
+
|
381 |
+
# https://github.com/pandas-dev/pandas/issues/8138
|
382 |
+
d = {
|
383 |
+
"cat": Categorical(
|
384 |
+
["a", "b", "a", "b"], categories=["a", "b", "c"], ordered=True
|
385 |
+
),
|
386 |
+
"ints": [1, 1, 2, 2],
|
387 |
+
"val": [10, 20, 30, 40],
|
388 |
+
}
|
389 |
+
df = DataFrame(d)
|
390 |
+
|
391 |
+
# Grouping on a single column
|
392 |
+
groups_single_key = df.groupby("cat", observed=observed)
|
393 |
+
result = groups_single_key.mean()
|
394 |
+
|
395 |
+
exp_index = CategoricalIndex(
|
396 |
+
list("ab"), name="cat", categories=list("abc"), ordered=True
|
397 |
+
)
|
398 |
+
expected = DataFrame({"ints": [1.5, 1.5], "val": [20.0, 30]}, index=exp_index)
|
399 |
+
if not observed:
|
400 |
+
index = CategoricalIndex(
|
401 |
+
list("abc"), name="cat", categories=list("abc"), ordered=True
|
402 |
+
)
|
403 |
+
expected = expected.reindex(index)
|
404 |
+
|
405 |
+
tm.assert_frame_equal(result, expected)
|
406 |
+
|
407 |
+
# Grouping on two columns
|
408 |
+
groups_double_key = df.groupby(["cat", "ints"], observed=observed)
|
409 |
+
result = groups_double_key.agg("mean")
|
410 |
+
expected = DataFrame(
|
411 |
+
{
|
412 |
+
"val": [10.0, 30.0, 20.0, 40.0],
|
413 |
+
"cat": Categorical(
|
414 |
+
["a", "a", "b", "b"], categories=["a", "b", "c"], ordered=True
|
415 |
+
),
|
416 |
+
"ints": [1, 2, 1, 2],
|
417 |
+
}
|
418 |
+
).set_index(["cat", "ints"])
|
419 |
+
if not observed:
|
420 |
+
expected = cartesian_product_for_groupers(
|
421 |
+
expected, [df.cat.values, [1, 2]], ["cat", "ints"]
|
422 |
+
)
|
423 |
+
|
424 |
+
tm.assert_frame_equal(result, expected)
|
425 |
+
|
426 |
+
# GH 10132
|
427 |
+
for key in [("a", 1), ("b", 2), ("b", 1), ("a", 2)]:
|
428 |
+
c, i = key
|
429 |
+
result = groups_double_key.get_group(key)
|
430 |
+
expected = df[(df.cat == c) & (df.ints == i)]
|
431 |
+
tm.assert_frame_equal(result, expected)
|
432 |
+
|
433 |
+
# gh-8869
|
434 |
+
# with as_index
|
435 |
+
d = {
|
436 |
+
"foo": [10, 8, 4, 8, 4, 1, 1],
|
437 |
+
"bar": [10, 20, 30, 40, 50, 60, 70],
|
438 |
+
"baz": ["d", "c", "e", "a", "a", "d", "c"],
|
439 |
+
}
|
440 |
+
df = DataFrame(d)
|
441 |
+
cat = pd.cut(df["foo"], np.linspace(0, 10, 3))
|
442 |
+
df["range"] = cat
|
443 |
+
groups = df.groupby(["range", "baz"], as_index=False, observed=observed)
|
444 |
+
result = groups.agg("mean")
|
445 |
+
|
446 |
+
groups2 = df.groupby(["range", "baz"], as_index=True, observed=observed)
|
447 |
+
expected = groups2.agg("mean").reset_index()
|
448 |
+
tm.assert_frame_equal(result, expected)
|
449 |
+
|
450 |
+
|
451 |
+
def test_observed_codes_remap(observed):
|
452 |
+
d = {"C1": [3, 3, 4, 5], "C2": [1, 2, 3, 4], "C3": [10, 100, 200, 34]}
|
453 |
+
df = DataFrame(d)
|
454 |
+
values = pd.cut(df["C1"], [1, 2, 3, 6])
|
455 |
+
values.name = "cat"
|
456 |
+
groups_double_key = df.groupby([values, "C2"], observed=observed)
|
457 |
+
|
458 |
+
idx = MultiIndex.from_arrays([values, [1, 2, 3, 4]], names=["cat", "C2"])
|
459 |
+
expected = DataFrame(
|
460 |
+
{"C1": [3.0, 3.0, 4.0, 5.0], "C3": [10.0, 100.0, 200.0, 34.0]}, index=idx
|
461 |
+
)
|
462 |
+
if not observed:
|
463 |
+
expected = cartesian_product_for_groupers(
|
464 |
+
expected, [values.values, [1, 2, 3, 4]], ["cat", "C2"]
|
465 |
+
)
|
466 |
+
|
467 |
+
result = groups_double_key.agg("mean")
|
468 |
+
tm.assert_frame_equal(result, expected)
|
469 |
+
|
470 |
+
|
471 |
+
def test_observed_perf():
|
472 |
+
# we create a cartesian product, so this is
|
473 |
+
# non-performant if we don't use observed values
|
474 |
+
# gh-14942
|
475 |
+
df = DataFrame(
|
476 |
+
{
|
477 |
+
"cat": np.random.default_rng(2).integers(0, 255, size=30000),
|
478 |
+
"int_id": np.random.default_rng(2).integers(0, 255, size=30000),
|
479 |
+
"other_id": np.random.default_rng(2).integers(0, 10000, size=30000),
|
480 |
+
"foo": 0,
|
481 |
+
}
|
482 |
+
)
|
483 |
+
df["cat"] = df.cat.astype(str).astype("category")
|
484 |
+
|
485 |
+
grouped = df.groupby(["cat", "int_id", "other_id"], observed=True)
|
486 |
+
result = grouped.count()
|
487 |
+
assert result.index.levels[0].nunique() == df.cat.nunique()
|
488 |
+
assert result.index.levels[1].nunique() == df.int_id.nunique()
|
489 |
+
assert result.index.levels[2].nunique() == df.other_id.nunique()
|
490 |
+
|
491 |
+
|
492 |
+
def test_observed_groups(observed):
|
493 |
+
# gh-20583
|
494 |
+
# test that we have the appropriate groups
|
495 |
+
|
496 |
+
cat = Categorical(["a", "c", "a"], categories=["a", "b", "c"])
|
497 |
+
df = DataFrame({"cat": cat, "vals": [1, 2, 3]})
|
498 |
+
g = df.groupby("cat", observed=observed)
|
499 |
+
|
500 |
+
result = g.groups
|
501 |
+
if observed:
|
502 |
+
expected = {"a": Index([0, 2], dtype="int64"), "c": Index([1], dtype="int64")}
|
503 |
+
else:
|
504 |
+
expected = {
|
505 |
+
"a": Index([0, 2], dtype="int64"),
|
506 |
+
"b": Index([], dtype="int64"),
|
507 |
+
"c": Index([1], dtype="int64"),
|
508 |
+
}
|
509 |
+
|
510 |
+
tm.assert_dict_equal(result, expected)
|
511 |
+
|
512 |
+
|
513 |
+
@pytest.mark.parametrize(
|
514 |
+
"keys, expected_values, expected_index_levels",
|
515 |
+
[
|
516 |
+
("a", [15, 9, 0], CategoricalIndex([1, 2, 3], name="a")),
|
517 |
+
(
|
518 |
+
["a", "b"],
|
519 |
+
[7, 8, 0, 0, 0, 9, 0, 0, 0],
|
520 |
+
[CategoricalIndex([1, 2, 3], name="a"), Index([4, 5, 6])],
|
521 |
+
),
|
522 |
+
(
|
523 |
+
["a", "a2"],
|
524 |
+
[15, 0, 0, 0, 9, 0, 0, 0, 0],
|
525 |
+
[
|
526 |
+
CategoricalIndex([1, 2, 3], name="a"),
|
527 |
+
CategoricalIndex([1, 2, 3], name="a"),
|
528 |
+
],
|
529 |
+
),
|
530 |
+
],
|
531 |
+
)
|
532 |
+
@pytest.mark.parametrize("test_series", [True, False])
|
533 |
+
def test_unobserved_in_index(keys, expected_values, expected_index_levels, test_series):
|
534 |
+
# GH#49354 - ensure unobserved cats occur when grouping by index levels
|
535 |
+
df = DataFrame(
|
536 |
+
{
|
537 |
+
"a": Categorical([1, 1, 2], categories=[1, 2, 3]),
|
538 |
+
"a2": Categorical([1, 1, 2], categories=[1, 2, 3]),
|
539 |
+
"b": [4, 5, 6],
|
540 |
+
"c": [7, 8, 9],
|
541 |
+
}
|
542 |
+
).set_index(["a", "a2"])
|
543 |
+
if "b" not in keys:
|
544 |
+
# Only keep b when it is used for grouping for consistent columns in the result
|
545 |
+
df = df.drop(columns="b")
|
546 |
+
|
547 |
+
gb = df.groupby(keys, observed=False)
|
548 |
+
if test_series:
|
549 |
+
gb = gb["c"]
|
550 |
+
result = gb.sum()
|
551 |
+
|
552 |
+
if len(keys) == 1:
|
553 |
+
index = expected_index_levels
|
554 |
+
else:
|
555 |
+
codes = [[0, 0, 0, 1, 1, 1, 2, 2, 2], 3 * [0, 1, 2]]
|
556 |
+
index = MultiIndex(
|
557 |
+
expected_index_levels,
|
558 |
+
codes=codes,
|
559 |
+
names=keys,
|
560 |
+
)
|
561 |
+
expected = DataFrame({"c": expected_values}, index=index)
|
562 |
+
if test_series:
|
563 |
+
expected = expected["c"]
|
564 |
+
tm.assert_equal(result, expected)
|
565 |
+
|
566 |
+
|
567 |
+
def test_observed_groups_with_nan(observed):
|
568 |
+
# GH 24740
|
569 |
+
df = DataFrame(
|
570 |
+
{
|
571 |
+
"cat": Categorical(["a", np.nan, "a"], categories=["a", "b", "d"]),
|
572 |
+
"vals": [1, 2, 3],
|
573 |
+
}
|
574 |
+
)
|
575 |
+
g = df.groupby("cat", observed=observed)
|
576 |
+
result = g.groups
|
577 |
+
if observed:
|
578 |
+
expected = {"a": Index([0, 2], dtype="int64")}
|
579 |
+
else:
|
580 |
+
expected = {
|
581 |
+
"a": Index([0, 2], dtype="int64"),
|
582 |
+
"b": Index([], dtype="int64"),
|
583 |
+
"d": Index([], dtype="int64"),
|
584 |
+
}
|
585 |
+
tm.assert_dict_equal(result, expected)
|
586 |
+
|
587 |
+
|
588 |
+
def test_observed_nth():
|
589 |
+
# GH 26385
|
590 |
+
cat = Categorical(["a", np.nan, np.nan], categories=["a", "b", "c"])
|
591 |
+
ser = Series([1, 2, 3])
|
592 |
+
df = DataFrame({"cat": cat, "ser": ser})
|
593 |
+
|
594 |
+
result = df.groupby("cat", observed=False)["ser"].nth(0)
|
595 |
+
expected = df["ser"].iloc[[0]]
|
596 |
+
tm.assert_series_equal(result, expected)
|
597 |
+
|
598 |
+
|
599 |
+
def test_dataframe_categorical_with_nan(observed):
|
600 |
+
# GH 21151
|
601 |
+
s1 = Categorical([np.nan, "a", np.nan, "a"], categories=["a", "b", "c"])
|
602 |
+
s2 = Series([1, 2, 3, 4])
|
603 |
+
df = DataFrame({"s1": s1, "s2": s2})
|
604 |
+
result = df.groupby("s1", observed=observed).first().reset_index()
|
605 |
+
if observed:
|
606 |
+
expected = DataFrame(
|
607 |
+
{"s1": Categorical(["a"], categories=["a", "b", "c"]), "s2": [2]}
|
608 |
+
)
|
609 |
+
else:
|
610 |
+
expected = DataFrame(
|
611 |
+
{
|
612 |
+
"s1": Categorical(["a", "b", "c"], categories=["a", "b", "c"]),
|
613 |
+
"s2": [2, np.nan, np.nan],
|
614 |
+
}
|
615 |
+
)
|
616 |
+
tm.assert_frame_equal(result, expected)
|
617 |
+
|
618 |
+
|
619 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
620 |
+
@pytest.mark.parametrize("observed", [True, False])
|
621 |
+
@pytest.mark.parametrize("sort", [True, False])
|
622 |
+
def test_dataframe_categorical_ordered_observed_sort(ordered, observed, sort):
|
623 |
+
# GH 25871: Fix groupby sorting on ordered Categoricals
|
624 |
+
# GH 25167: Groupby with observed=True doesn't sort
|
625 |
+
|
626 |
+
# Build a dataframe with cat having one unobserved category ('missing'),
|
627 |
+
# and a Series with identical values
|
628 |
+
label = Categorical(
|
629 |
+
["d", "a", "b", "a", "d", "b"],
|
630 |
+
categories=["a", "b", "missing", "d"],
|
631 |
+
ordered=ordered,
|
632 |
+
)
|
633 |
+
val = Series(["d", "a", "b", "a", "d", "b"])
|
634 |
+
df = DataFrame({"label": label, "val": val})
|
635 |
+
|
636 |
+
# aggregate on the Categorical
|
637 |
+
result = df.groupby("label", observed=observed, sort=sort)["val"].aggregate("first")
|
638 |
+
|
639 |
+
# If ordering works, we expect index labels equal to aggregation results,
|
640 |
+
# except for 'observed=False': label 'missing' has aggregation None
|
641 |
+
label = Series(result.index.array, dtype="object")
|
642 |
+
aggr = Series(result.array)
|
643 |
+
if not observed:
|
644 |
+
aggr[aggr.isna()] = "missing"
|
645 |
+
if not all(label == aggr):
|
646 |
+
msg = (
|
647 |
+
"Labels and aggregation results not consistently sorted\n"
|
648 |
+
f"for (ordered={ordered}, observed={observed}, sort={sort})\n"
|
649 |
+
f"Result:\n{result}"
|
650 |
+
)
|
651 |
+
assert False, msg
|
652 |
+
|
653 |
+
|
654 |
+
def test_datetime():
|
655 |
+
# GH9049: ensure backward compatibility
|
656 |
+
levels = pd.date_range("2014-01-01", periods=4)
|
657 |
+
codes = np.random.default_rng(2).integers(0, 4, size=100)
|
658 |
+
|
659 |
+
cats = Categorical.from_codes(codes, levels, ordered=True)
|
660 |
+
|
661 |
+
data = DataFrame(np.random.default_rng(2).standard_normal((100, 4)))
|
662 |
+
result = data.groupby(cats, observed=False).mean()
|
663 |
+
|
664 |
+
expected = data.groupby(np.asarray(cats), observed=False).mean()
|
665 |
+
expected = expected.reindex(levels)
|
666 |
+
expected.index = CategoricalIndex(
|
667 |
+
expected.index, categories=expected.index, ordered=True
|
668 |
+
)
|
669 |
+
|
670 |
+
tm.assert_frame_equal(result, expected)
|
671 |
+
|
672 |
+
grouped = data.groupby(cats, observed=False)
|
673 |
+
desc_result = grouped.describe()
|
674 |
+
|
675 |
+
idx = cats.codes.argsort()
|
676 |
+
ord_labels = cats.take(idx)
|
677 |
+
ord_data = data.take(idx)
|
678 |
+
expected = ord_data.groupby(ord_labels, observed=False).describe()
|
679 |
+
tm.assert_frame_equal(desc_result, expected)
|
680 |
+
tm.assert_index_equal(desc_result.index, expected.index)
|
681 |
+
tm.assert_index_equal(
|
682 |
+
desc_result.index.get_level_values(0), expected.index.get_level_values(0)
|
683 |
+
)
|
684 |
+
|
685 |
+
# GH 10460
|
686 |
+
expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True)
|
687 |
+
exp = CategoricalIndex(expc)
|
688 |
+
tm.assert_index_equal(
|
689 |
+
(desc_result.stack(future_stack=True).index.get_level_values(0)), exp
|
690 |
+
)
|
691 |
+
exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4)
|
692 |
+
tm.assert_index_equal(
|
693 |
+
(desc_result.stack(future_stack=True).index.get_level_values(1)), exp
|
694 |
+
)
|
695 |
+
|
696 |
+
|
697 |
+
def test_categorical_index():
|
698 |
+
s = np.random.default_rng(2)
|
699 |
+
levels = ["foo", "bar", "baz", "qux"]
|
700 |
+
codes = s.integers(0, 4, size=20)
|
701 |
+
cats = Categorical.from_codes(codes, levels, ordered=True)
|
702 |
+
df = DataFrame(np.repeat(np.arange(20), 4).reshape(-1, 4), columns=list("abcd"))
|
703 |
+
df["cats"] = cats
|
704 |
+
|
705 |
+
# with a cat index
|
706 |
+
result = df.set_index("cats").groupby(level=0, observed=False).sum()
|
707 |
+
expected = df[list("abcd")].groupby(cats.codes, observed=False).sum()
|
708 |
+
expected.index = CategoricalIndex(
|
709 |
+
Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats"
|
710 |
+
)
|
711 |
+
tm.assert_frame_equal(result, expected)
|
712 |
+
|
713 |
+
# with a cat column, should produce a cat index
|
714 |
+
result = df.groupby("cats", observed=False).sum()
|
715 |
+
expected = df[list("abcd")].groupby(cats.codes, observed=False).sum()
|
716 |
+
expected.index = CategoricalIndex(
|
717 |
+
Categorical.from_codes([0, 1, 2, 3], levels, ordered=True), name="cats"
|
718 |
+
)
|
719 |
+
tm.assert_frame_equal(result, expected)
|
720 |
+
|
721 |
+
|
722 |
+
def test_describe_categorical_columns():
|
723 |
+
# GH 11558
|
724 |
+
cats = CategoricalIndex(
|
725 |
+
["qux", "foo", "baz", "bar"],
|
726 |
+
categories=["foo", "bar", "baz", "qux"],
|
727 |
+
ordered=True,
|
728 |
+
)
|
729 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((20, 4)), columns=cats)
|
730 |
+
result = df.groupby([1, 2, 3, 4] * 5).describe()
|
731 |
+
|
732 |
+
tm.assert_index_equal(result.stack(future_stack=True).columns, cats)
|
733 |
+
tm.assert_categorical_equal(
|
734 |
+
result.stack(future_stack=True).columns.values, cats.values
|
735 |
+
)
|
736 |
+
|
737 |
+
|
738 |
+
def test_unstack_categorical():
|
739 |
+
# GH11558 (example is taken from the original issue)
|
740 |
+
df = DataFrame(
|
741 |
+
{"a": range(10), "medium": ["A", "B"] * 5, "artist": list("XYXXY") * 2}
|
742 |
+
)
|
743 |
+
df["medium"] = df["medium"].astype("category")
|
744 |
+
|
745 |
+
gcat = df.groupby(["artist", "medium"], observed=False)["a"].count().unstack()
|
746 |
+
result = gcat.describe()
|
747 |
+
|
748 |
+
exp_columns = CategoricalIndex(["A", "B"], ordered=False, name="medium")
|
749 |
+
tm.assert_index_equal(result.columns, exp_columns)
|
750 |
+
tm.assert_categorical_equal(result.columns.values, exp_columns.values)
|
751 |
+
|
752 |
+
result = gcat["A"] + gcat["B"]
|
753 |
+
expected = Series([6, 4], index=Index(["X", "Y"], name="artist"))
|
754 |
+
tm.assert_series_equal(result, expected)
|
755 |
+
|
756 |
+
|
757 |
+
def test_bins_unequal_len():
|
758 |
+
# GH3011
|
759 |
+
series = Series([np.nan, np.nan, 1, 1, 2, 2, 3, 3, 4, 4])
|
760 |
+
bins = pd.cut(series.dropna().values, 4)
|
761 |
+
|
762 |
+
# len(bins) != len(series) here
|
763 |
+
with pytest.raises(ValueError, match="Grouper and axis must be same length"):
|
764 |
+
series.groupby(bins).mean()
|
765 |
+
|
766 |
+
|
767 |
+
@pytest.mark.parametrize(
|
768 |
+
["series", "data"],
|
769 |
+
[
|
770 |
+
# Group a series with length and index equal to those of the grouper.
|
771 |
+
(Series(range(4)), {"A": [0, 3], "B": [1, 2]}),
|
772 |
+
# Group a series with length equal to that of the grouper and index unequal to
|
773 |
+
# that of the grouper.
|
774 |
+
(Series(range(4)).rename(lambda idx: idx + 1), {"A": [2], "B": [0, 1]}),
|
775 |
+
# GH44179: Group a series with length unequal to that of the grouper.
|
776 |
+
(Series(range(7)), {"A": [0, 3], "B": [1, 2]}),
|
777 |
+
],
|
778 |
+
)
|
779 |
+
def test_categorical_series(series, data):
|
780 |
+
# Group the given series by a series with categorical data type such that group A
|
781 |
+
# takes indices 0 and 3 and group B indices 1 and 2, obtaining the values mapped in
|
782 |
+
# the given data.
|
783 |
+
groupby = series.groupby(Series(list("ABBA"), dtype="category"), observed=False)
|
784 |
+
result = groupby.aggregate(list)
|
785 |
+
expected = Series(data, index=CategoricalIndex(data.keys()))
|
786 |
+
tm.assert_series_equal(result, expected)
|
787 |
+
|
788 |
+
|
789 |
+
def test_as_index():
|
790 |
+
# GH13204
|
791 |
+
df = DataFrame(
|
792 |
+
{
|
793 |
+
"cat": Categorical([1, 2, 2], [1, 2, 3]),
|
794 |
+
"A": [10, 11, 11],
|
795 |
+
"B": [101, 102, 103],
|
796 |
+
}
|
797 |
+
)
|
798 |
+
result = df.groupby(["cat", "A"], as_index=False, observed=True).sum()
|
799 |
+
expected = DataFrame(
|
800 |
+
{
|
801 |
+
"cat": Categorical([1, 2], categories=df.cat.cat.categories),
|
802 |
+
"A": [10, 11],
|
803 |
+
"B": [101, 205],
|
804 |
+
},
|
805 |
+
columns=["cat", "A", "B"],
|
806 |
+
)
|
807 |
+
tm.assert_frame_equal(result, expected)
|
808 |
+
|
809 |
+
# function grouper
|
810 |
+
f = lambda r: df.loc[r, "A"]
|
811 |
+
msg = "A grouping .* was excluded from the result"
|
812 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
813 |
+
result = df.groupby(["cat", f], as_index=False, observed=True).sum()
|
814 |
+
expected = DataFrame(
|
815 |
+
{
|
816 |
+
"cat": Categorical([1, 2], categories=df.cat.cat.categories),
|
817 |
+
"A": [10, 22],
|
818 |
+
"B": [101, 205],
|
819 |
+
},
|
820 |
+
columns=["cat", "A", "B"],
|
821 |
+
)
|
822 |
+
tm.assert_frame_equal(result, expected)
|
823 |
+
|
824 |
+
# another not in-axis grouper (conflicting names in index)
|
825 |
+
s = Series(["a", "b", "b"], name="cat")
|
826 |
+
msg = "A grouping .* was excluded from the result"
|
827 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
828 |
+
result = df.groupby(["cat", s], as_index=False, observed=True).sum()
|
829 |
+
tm.assert_frame_equal(result, expected)
|
830 |
+
|
831 |
+
# is original index dropped?
|
832 |
+
group_columns = ["cat", "A"]
|
833 |
+
expected = DataFrame(
|
834 |
+
{
|
835 |
+
"cat": Categorical([1, 2], categories=df.cat.cat.categories),
|
836 |
+
"A": [10, 11],
|
837 |
+
"B": [101, 205],
|
838 |
+
},
|
839 |
+
columns=["cat", "A", "B"],
|
840 |
+
)
|
841 |
+
|
842 |
+
for name in [None, "X", "B"]:
|
843 |
+
df.index = Index(list("abc"), name=name)
|
844 |
+
result = df.groupby(group_columns, as_index=False, observed=True).sum()
|
845 |
+
|
846 |
+
tm.assert_frame_equal(result, expected)
|
847 |
+
|
848 |
+
|
849 |
+
def test_preserve_categories():
|
850 |
+
# GH-13179
|
851 |
+
categories = list("abc")
|
852 |
+
|
853 |
+
# ordered=True
|
854 |
+
df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=True)})
|
855 |
+
sort_index = CategoricalIndex(categories, categories, ordered=True, name="A")
|
856 |
+
nosort_index = CategoricalIndex(list("bac"), categories, ordered=True, name="A")
|
857 |
+
tm.assert_index_equal(
|
858 |
+
df.groupby("A", sort=True, observed=False).first().index, sort_index
|
859 |
+
)
|
860 |
+
# GH#42482 - don't sort result when sort=False, even when ordered=True
|
861 |
+
tm.assert_index_equal(
|
862 |
+
df.groupby("A", sort=False, observed=False).first().index, nosort_index
|
863 |
+
)
|
864 |
+
|
865 |
+
# ordered=False
|
866 |
+
df = DataFrame({"A": Categorical(list("ba"), categories=categories, ordered=False)})
|
867 |
+
sort_index = CategoricalIndex(categories, categories, ordered=False, name="A")
|
868 |
+
# GH#48749 - don't change order of categories
|
869 |
+
# GH#42482 - don't sort result when sort=False, even when ordered=True
|
870 |
+
nosort_index = CategoricalIndex(list("bac"), list("abc"), ordered=False, name="A")
|
871 |
+
tm.assert_index_equal(
|
872 |
+
df.groupby("A", sort=True, observed=False).first().index, sort_index
|
873 |
+
)
|
874 |
+
tm.assert_index_equal(
|
875 |
+
df.groupby("A", sort=False, observed=False).first().index, nosort_index
|
876 |
+
)
|
877 |
+
|
878 |
+
|
879 |
+
def test_preserve_categorical_dtype():
|
880 |
+
# GH13743, GH13854
|
881 |
+
df = DataFrame(
|
882 |
+
{
|
883 |
+
"A": [1, 2, 1, 1, 2],
|
884 |
+
"B": [10, 16, 22, 28, 34],
|
885 |
+
"C1": Categorical(list("abaab"), categories=list("bac"), ordered=False),
|
886 |
+
"C2": Categorical(list("abaab"), categories=list("bac"), ordered=True),
|
887 |
+
}
|
888 |
+
)
|
889 |
+
# single grouper
|
890 |
+
exp_full = DataFrame(
|
891 |
+
{
|
892 |
+
"A": [2.0, 1.0, np.nan],
|
893 |
+
"B": [25.0, 20.0, np.nan],
|
894 |
+
"C1": Categorical(list("bac"), categories=list("bac"), ordered=False),
|
895 |
+
"C2": Categorical(list("bac"), categories=list("bac"), ordered=True),
|
896 |
+
}
|
897 |
+
)
|
898 |
+
for col in ["C1", "C2"]:
|
899 |
+
result1 = df.groupby(by=col, as_index=False, observed=False).mean(
|
900 |
+
numeric_only=True
|
901 |
+
)
|
902 |
+
result2 = (
|
903 |
+
df.groupby(by=col, as_index=True, observed=False)
|
904 |
+
.mean(numeric_only=True)
|
905 |
+
.reset_index()
|
906 |
+
)
|
907 |
+
expected = exp_full.reindex(columns=result1.columns)
|
908 |
+
tm.assert_frame_equal(result1, expected)
|
909 |
+
tm.assert_frame_equal(result2, expected)
|
910 |
+
|
911 |
+
|
912 |
+
@pytest.mark.parametrize(
|
913 |
+
"func, values",
|
914 |
+
[
|
915 |
+
("first", ["second", "first"]),
|
916 |
+
("last", ["fourth", "third"]),
|
917 |
+
("min", ["fourth", "first"]),
|
918 |
+
("max", ["second", "third"]),
|
919 |
+
],
|
920 |
+
)
|
921 |
+
def test_preserve_on_ordered_ops(func, values):
|
922 |
+
# gh-18502
|
923 |
+
# preserve the categoricals on ops
|
924 |
+
c = Categorical(["first", "second", "third", "fourth"], ordered=True)
|
925 |
+
df = DataFrame({"payload": [-1, -2, -1, -2], "col": c})
|
926 |
+
g = df.groupby("payload")
|
927 |
+
result = getattr(g, func)()
|
928 |
+
expected = DataFrame(
|
929 |
+
{"payload": [-2, -1], "col": Series(values, dtype=c.dtype)}
|
930 |
+
).set_index("payload")
|
931 |
+
tm.assert_frame_equal(result, expected)
|
932 |
+
|
933 |
+
# we should also preserve categorical for SeriesGroupBy
|
934 |
+
sgb = df.groupby("payload")["col"]
|
935 |
+
result = getattr(sgb, func)()
|
936 |
+
expected = expected["col"]
|
937 |
+
tm.assert_series_equal(result, expected)
|
938 |
+
|
939 |
+
|
940 |
+
def test_categorical_no_compress():
|
941 |
+
data = Series(np.random.default_rng(2).standard_normal(9))
|
942 |
+
|
943 |
+
codes = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])
|
944 |
+
cats = Categorical.from_codes(codes, [0, 1, 2], ordered=True)
|
945 |
+
|
946 |
+
result = data.groupby(cats, observed=False).mean()
|
947 |
+
exp = data.groupby(codes, observed=False).mean()
|
948 |
+
|
949 |
+
exp.index = CategoricalIndex(
|
950 |
+
exp.index, categories=cats.categories, ordered=cats.ordered
|
951 |
+
)
|
952 |
+
tm.assert_series_equal(result, exp)
|
953 |
+
|
954 |
+
codes = np.array([0, 0, 0, 1, 1, 1, 3, 3, 3])
|
955 |
+
cats = Categorical.from_codes(codes, [0, 1, 2, 3], ordered=True)
|
956 |
+
|
957 |
+
result = data.groupby(cats, observed=False).mean()
|
958 |
+
exp = data.groupby(codes, observed=False).mean().reindex(cats.categories)
|
959 |
+
exp.index = CategoricalIndex(
|
960 |
+
exp.index, categories=cats.categories, ordered=cats.ordered
|
961 |
+
)
|
962 |
+
tm.assert_series_equal(result, exp)
|
963 |
+
|
964 |
+
cats = Categorical(
|
965 |
+
["a", "a", "a", "b", "b", "b", "c", "c", "c"],
|
966 |
+
categories=["a", "b", "c", "d"],
|
967 |
+
ordered=True,
|
968 |
+
)
|
969 |
+
data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats})
|
970 |
+
|
971 |
+
result = data.groupby("b", observed=False).mean()
|
972 |
+
result = result["a"].values
|
973 |
+
exp = np.array([1, 2, 4, np.nan])
|
974 |
+
tm.assert_numpy_array_equal(result, exp)
|
975 |
+
|
976 |
+
|
977 |
+
def test_groupby_empty_with_category():
|
978 |
+
# GH-9614
|
979 |
+
# test fix for when group by on None resulted in
|
980 |
+
# coercion of dtype categorical -> float
|
981 |
+
df = DataFrame({"A": [None] * 3, "B": Categorical(["train", "train", "test"])})
|
982 |
+
result = df.groupby("A").first()["B"]
|
983 |
+
expected = Series(
|
984 |
+
Categorical([], categories=["test", "train"]),
|
985 |
+
index=Series([], dtype="object", name="A"),
|
986 |
+
name="B",
|
987 |
+
)
|
988 |
+
tm.assert_series_equal(result, expected)
|
989 |
+
|
990 |
+
|
991 |
+
def test_sort():
|
992 |
+
# https://stackoverflow.com/questions/23814368/sorting-pandas-
|
993 |
+
# categorical-labels-after-groupby
|
994 |
+
# This should result in a properly sorted Series so that the plot
|
995 |
+
# has a sorted x axis
|
996 |
+
# self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar')
|
997 |
+
|
998 |
+
df = DataFrame({"value": np.random.default_rng(2).integers(0, 10000, 100)})
|
999 |
+
labels = [f"{i} - {i+499}" for i in range(0, 10000, 500)]
|
1000 |
+
cat_labels = Categorical(labels, labels)
|
1001 |
+
|
1002 |
+
df = df.sort_values(by=["value"], ascending=True)
|
1003 |
+
df["value_group"] = pd.cut(
|
1004 |
+
df.value, range(0, 10500, 500), right=False, labels=cat_labels
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
res = df.groupby(["value_group"], observed=False)["value_group"].count()
|
1008 |
+
exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))]
|
1009 |
+
exp.index = CategoricalIndex(exp.index, name=exp.index.name)
|
1010 |
+
tm.assert_series_equal(res, exp)
|
1011 |
+
|
1012 |
+
|
1013 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
1014 |
+
def test_sort2(sort, ordered):
|
1015 |
+
# dataframe groupby sort was being ignored # GH 8868
|
1016 |
+
# GH#48749 - don't change order of categories
|
1017 |
+
# GH#42482 - don't sort result when sort=False, even when ordered=True
|
1018 |
+
df = DataFrame(
|
1019 |
+
[
|
1020 |
+
["(7.5, 10]", 10, 10],
|
1021 |
+
["(7.5, 10]", 8, 20],
|
1022 |
+
["(2.5, 5]", 5, 30],
|
1023 |
+
["(5, 7.5]", 6, 40],
|
1024 |
+
["(2.5, 5]", 4, 50],
|
1025 |
+
["(0, 2.5]", 1, 60],
|
1026 |
+
["(5, 7.5]", 7, 70],
|
1027 |
+
],
|
1028 |
+
columns=["range", "foo", "bar"],
|
1029 |
+
)
|
1030 |
+
df["range"] = Categorical(df["range"], ordered=ordered)
|
1031 |
+
result = df.groupby("range", sort=sort, observed=False).first()
|
1032 |
+
|
1033 |
+
if sort:
|
1034 |
+
data_values = [[1, 60], [5, 30], [6, 40], [10, 10]]
|
1035 |
+
index_values = ["(0, 2.5]", "(2.5, 5]", "(5, 7.5]", "(7.5, 10]"]
|
1036 |
+
else:
|
1037 |
+
data_values = [[10, 10], [5, 30], [6, 40], [1, 60]]
|
1038 |
+
index_values = ["(7.5, 10]", "(2.5, 5]", "(5, 7.5]", "(0, 2.5]"]
|
1039 |
+
expected = DataFrame(
|
1040 |
+
data_values,
|
1041 |
+
columns=["foo", "bar"],
|
1042 |
+
index=CategoricalIndex(index_values, name="range", ordered=ordered),
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
tm.assert_frame_equal(result, expected)
|
1046 |
+
|
1047 |
+
|
1048 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
1049 |
+
def test_sort_datetimelike(sort, ordered):
|
1050 |
+
# GH10505
|
1051 |
+
# GH#42482 - don't sort result when sort=False, even when ordered=True
|
1052 |
+
|
1053 |
+
# use same data as test_groupby_sort_categorical, which category is
|
1054 |
+
# corresponding to datetime.month
|
1055 |
+
df = DataFrame(
|
1056 |
+
{
|
1057 |
+
"dt": [
|
1058 |
+
datetime(2011, 7, 1),
|
1059 |
+
datetime(2011, 7, 1),
|
1060 |
+
datetime(2011, 2, 1),
|
1061 |
+
datetime(2011, 5, 1),
|
1062 |
+
datetime(2011, 2, 1),
|
1063 |
+
datetime(2011, 1, 1),
|
1064 |
+
datetime(2011, 5, 1),
|
1065 |
+
],
|
1066 |
+
"foo": [10, 8, 5, 6, 4, 1, 7],
|
1067 |
+
"bar": [10, 20, 30, 40, 50, 60, 70],
|
1068 |
+
},
|
1069 |
+
columns=["dt", "foo", "bar"],
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
# ordered=True
|
1073 |
+
df["dt"] = Categorical(df["dt"], ordered=ordered)
|
1074 |
+
if sort:
|
1075 |
+
data_values = [[1, 60], [5, 30], [6, 40], [10, 10]]
|
1076 |
+
index_values = [
|
1077 |
+
datetime(2011, 1, 1),
|
1078 |
+
datetime(2011, 2, 1),
|
1079 |
+
datetime(2011, 5, 1),
|
1080 |
+
datetime(2011, 7, 1),
|
1081 |
+
]
|
1082 |
+
else:
|
1083 |
+
data_values = [[10, 10], [5, 30], [6, 40], [1, 60]]
|
1084 |
+
index_values = [
|
1085 |
+
datetime(2011, 7, 1),
|
1086 |
+
datetime(2011, 2, 1),
|
1087 |
+
datetime(2011, 5, 1),
|
1088 |
+
datetime(2011, 1, 1),
|
1089 |
+
]
|
1090 |
+
expected = DataFrame(
|
1091 |
+
data_values,
|
1092 |
+
columns=["foo", "bar"],
|
1093 |
+
index=CategoricalIndex(index_values, name="dt", ordered=ordered),
|
1094 |
+
)
|
1095 |
+
result = df.groupby("dt", sort=sort, observed=False).first()
|
1096 |
+
tm.assert_frame_equal(result, expected)
|
1097 |
+
|
1098 |
+
|
1099 |
+
def test_empty_sum():
|
1100 |
+
# https://github.com/pandas-dev/pandas/issues/18678
|
1101 |
+
df = DataFrame(
|
1102 |
+
{"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"]), "B": [1, 2, 1]}
|
1103 |
+
)
|
1104 |
+
expected_idx = CategoricalIndex(["a", "b", "c"], name="A")
|
1105 |
+
|
1106 |
+
# 0 by default
|
1107 |
+
result = df.groupby("A", observed=False).B.sum()
|
1108 |
+
expected = Series([3, 1, 0], expected_idx, name="B")
|
1109 |
+
tm.assert_series_equal(result, expected)
|
1110 |
+
|
1111 |
+
# min_count=0
|
1112 |
+
result = df.groupby("A", observed=False).B.sum(min_count=0)
|
1113 |
+
expected = Series([3, 1, 0], expected_idx, name="B")
|
1114 |
+
tm.assert_series_equal(result, expected)
|
1115 |
+
|
1116 |
+
# min_count=1
|
1117 |
+
result = df.groupby("A", observed=False).B.sum(min_count=1)
|
1118 |
+
expected = Series([3, 1, np.nan], expected_idx, name="B")
|
1119 |
+
tm.assert_series_equal(result, expected)
|
1120 |
+
|
1121 |
+
# min_count>1
|
1122 |
+
result = df.groupby("A", observed=False).B.sum(min_count=2)
|
1123 |
+
expected = Series([3, np.nan, np.nan], expected_idx, name="B")
|
1124 |
+
tm.assert_series_equal(result, expected)
|
1125 |
+
|
1126 |
+
|
1127 |
+
def test_empty_prod():
|
1128 |
+
# https://github.com/pandas-dev/pandas/issues/18678
|
1129 |
+
df = DataFrame(
|
1130 |
+
{"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"]), "B": [1, 2, 1]}
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
expected_idx = CategoricalIndex(["a", "b", "c"], name="A")
|
1134 |
+
|
1135 |
+
# 1 by default
|
1136 |
+
result = df.groupby("A", observed=False).B.prod()
|
1137 |
+
expected = Series([2, 1, 1], expected_idx, name="B")
|
1138 |
+
tm.assert_series_equal(result, expected)
|
1139 |
+
|
1140 |
+
# min_count=0
|
1141 |
+
result = df.groupby("A", observed=False).B.prod(min_count=0)
|
1142 |
+
expected = Series([2, 1, 1], expected_idx, name="B")
|
1143 |
+
tm.assert_series_equal(result, expected)
|
1144 |
+
|
1145 |
+
# min_count=1
|
1146 |
+
result = df.groupby("A", observed=False).B.prod(min_count=1)
|
1147 |
+
expected = Series([2, 1, np.nan], expected_idx, name="B")
|
1148 |
+
tm.assert_series_equal(result, expected)
|
1149 |
+
|
1150 |
+
|
1151 |
+
def test_groupby_multiindex_categorical_datetime():
|
1152 |
+
# https://github.com/pandas-dev/pandas/issues/21390
|
1153 |
+
|
1154 |
+
df = DataFrame(
|
1155 |
+
{
|
1156 |
+
"key1": Categorical(list("abcbabcba")),
|
1157 |
+
"key2": Categorical(
|
1158 |
+
list(pd.date_range("2018-06-01 00", freq="1min", periods=3)) * 3
|
1159 |
+
),
|
1160 |
+
"values": np.arange(9),
|
1161 |
+
}
|
1162 |
+
)
|
1163 |
+
result = df.groupby(["key1", "key2"], observed=False).mean()
|
1164 |
+
|
1165 |
+
idx = MultiIndex.from_product(
|
1166 |
+
[
|
1167 |
+
Categorical(["a", "b", "c"]),
|
1168 |
+
Categorical(pd.date_range("2018-06-01 00", freq="1min", periods=3)),
|
1169 |
+
],
|
1170 |
+
names=["key1", "key2"],
|
1171 |
+
)
|
1172 |
+
expected = DataFrame({"values": [0, 4, 8, 3, 4, 5, 6, np.nan, 2]}, index=idx)
|
1173 |
+
tm.assert_frame_equal(result, expected)
|
1174 |
+
|
1175 |
+
|
1176 |
+
@pytest.mark.parametrize(
|
1177 |
+
"as_index, expected",
|
1178 |
+
[
|
1179 |
+
(
|
1180 |
+
True,
|
1181 |
+
Series(
|
1182 |
+
index=MultiIndex.from_arrays(
|
1183 |
+
[Series([1, 1, 2], dtype="category"), [1, 2, 2]], names=["a", "b"]
|
1184 |
+
),
|
1185 |
+
data=[1, 2, 3],
|
1186 |
+
name="x",
|
1187 |
+
),
|
1188 |
+
),
|
1189 |
+
(
|
1190 |
+
False,
|
1191 |
+
DataFrame(
|
1192 |
+
{
|
1193 |
+
"a": Series([1, 1, 2], dtype="category"),
|
1194 |
+
"b": [1, 2, 2],
|
1195 |
+
"x": [1, 2, 3],
|
1196 |
+
}
|
1197 |
+
),
|
1198 |
+
),
|
1199 |
+
],
|
1200 |
+
)
|
1201 |
+
def test_groupby_agg_observed_true_single_column(as_index, expected):
|
1202 |
+
# GH-23970
|
1203 |
+
df = DataFrame(
|
1204 |
+
{"a": Series([1, 1, 2], dtype="category"), "b": [1, 2, 2], "x": [1, 2, 3]}
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
result = df.groupby(["a", "b"], as_index=as_index, observed=True)["x"].sum()
|
1208 |
+
|
1209 |
+
tm.assert_equal(result, expected)
|
1210 |
+
|
1211 |
+
|
1212 |
+
@pytest.mark.parametrize("fill_value", [None, np.nan, pd.NaT])
|
1213 |
+
def test_shift(fill_value):
|
1214 |
+
ct = Categorical(
|
1215 |
+
["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False
|
1216 |
+
)
|
1217 |
+
expected = Categorical(
|
1218 |
+
[None, "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False
|
1219 |
+
)
|
1220 |
+
res = ct.shift(1, fill_value=fill_value)
|
1221 |
+
tm.assert_equal(res, expected)
|
1222 |
+
|
1223 |
+
|
1224 |
+
@pytest.fixture
|
1225 |
+
def df_cat(df):
|
1226 |
+
"""
|
1227 |
+
DataFrame with multiple categorical columns and a column of integers.
|
1228 |
+
Shortened so as not to contain all possible combinations of categories.
|
1229 |
+
Useful for testing `observed` kwarg functionality on GroupBy objects.
|
1230 |
+
|
1231 |
+
Parameters
|
1232 |
+
----------
|
1233 |
+
df: DataFrame
|
1234 |
+
Non-categorical, longer DataFrame from another fixture, used to derive
|
1235 |
+
this one
|
1236 |
+
|
1237 |
+
Returns
|
1238 |
+
-------
|
1239 |
+
df_cat: DataFrame
|
1240 |
+
"""
|
1241 |
+
df_cat = df.copy()[:4] # leave out some groups
|
1242 |
+
df_cat["A"] = df_cat["A"].astype("category")
|
1243 |
+
df_cat["B"] = df_cat["B"].astype("category")
|
1244 |
+
df_cat["C"] = Series([1, 2, 3, 4])
|
1245 |
+
df_cat = df_cat.drop(["D"], axis=1)
|
1246 |
+
return df_cat
|
1247 |
+
|
1248 |
+
|
1249 |
+
@pytest.mark.parametrize("operation", ["agg", "apply"])
|
1250 |
+
def test_seriesgroupby_observed_true(df_cat, operation):
|
1251 |
+
# GH#24880
|
1252 |
+
# GH#49223 - order of results was wrong when grouping by index levels
|
1253 |
+
lev_a = Index(["bar", "bar", "foo", "foo"], dtype=df_cat["A"].dtype, name="A")
|
1254 |
+
lev_b = Index(["one", "three", "one", "two"], dtype=df_cat["B"].dtype, name="B")
|
1255 |
+
index = MultiIndex.from_arrays([lev_a, lev_b])
|
1256 |
+
expected = Series(data=[2, 4, 1, 3], index=index, name="C").sort_index()
|
1257 |
+
|
1258 |
+
grouped = df_cat.groupby(["A", "B"], observed=True)["C"]
|
1259 |
+
msg = "using np.sum" if operation == "apply" else "using SeriesGroupBy.sum"
|
1260 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1261 |
+
# GH#53425
|
1262 |
+
result = getattr(grouped, operation)(sum)
|
1263 |
+
tm.assert_series_equal(result, expected)
|
1264 |
+
|
1265 |
+
|
1266 |
+
@pytest.mark.parametrize("operation", ["agg", "apply"])
|
1267 |
+
@pytest.mark.parametrize("observed", [False, None])
|
1268 |
+
def test_seriesgroupby_observed_false_or_none(df_cat, observed, operation):
|
1269 |
+
# GH 24880
|
1270 |
+
# GH#49223 - order of results was wrong when grouping by index levels
|
1271 |
+
index, _ = MultiIndex.from_product(
|
1272 |
+
[
|
1273 |
+
CategoricalIndex(["bar", "foo"], ordered=False),
|
1274 |
+
CategoricalIndex(["one", "three", "two"], ordered=False),
|
1275 |
+
],
|
1276 |
+
names=["A", "B"],
|
1277 |
+
).sortlevel()
|
1278 |
+
|
1279 |
+
expected = Series(data=[2, 4, np.nan, 1, np.nan, 3], index=index, name="C")
|
1280 |
+
if operation == "agg":
|
1281 |
+
msg = "The 'downcast' keyword in fillna is deprecated"
|
1282 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1283 |
+
expected = expected.fillna(0, downcast="infer")
|
1284 |
+
grouped = df_cat.groupby(["A", "B"], observed=observed)["C"]
|
1285 |
+
msg = "using SeriesGroupBy.sum" if operation == "agg" else "using np.sum"
|
1286 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1287 |
+
# GH#53425
|
1288 |
+
result = getattr(grouped, operation)(sum)
|
1289 |
+
tm.assert_series_equal(result, expected)
|
1290 |
+
|
1291 |
+
|
1292 |
+
@pytest.mark.parametrize(
|
1293 |
+
"observed, index, data",
|
1294 |
+
[
|
1295 |
+
(
|
1296 |
+
True,
|
1297 |
+
MultiIndex.from_arrays(
|
1298 |
+
[
|
1299 |
+
Index(["bar"] * 4 + ["foo"] * 4, dtype="category", name="A"),
|
1300 |
+
Index(
|
1301 |
+
["one", "one", "three", "three", "one", "one", "two", "two"],
|
1302 |
+
dtype="category",
|
1303 |
+
name="B",
|
1304 |
+
),
|
1305 |
+
Index(["min", "max"] * 4),
|
1306 |
+
]
|
1307 |
+
),
|
1308 |
+
[2, 2, 4, 4, 1, 1, 3, 3],
|
1309 |
+
),
|
1310 |
+
(
|
1311 |
+
False,
|
1312 |
+
MultiIndex.from_product(
|
1313 |
+
[
|
1314 |
+
CategoricalIndex(["bar", "foo"], ordered=False),
|
1315 |
+
CategoricalIndex(["one", "three", "two"], ordered=False),
|
1316 |
+
Index(["min", "max"]),
|
1317 |
+
],
|
1318 |
+
names=["A", "B", None],
|
1319 |
+
),
|
1320 |
+
[2, 2, 4, 4, np.nan, np.nan, 1, 1, np.nan, np.nan, 3, 3],
|
1321 |
+
),
|
1322 |
+
(
|
1323 |
+
None,
|
1324 |
+
MultiIndex.from_product(
|
1325 |
+
[
|
1326 |
+
CategoricalIndex(["bar", "foo"], ordered=False),
|
1327 |
+
CategoricalIndex(["one", "three", "two"], ordered=False),
|
1328 |
+
Index(["min", "max"]),
|
1329 |
+
],
|
1330 |
+
names=["A", "B", None],
|
1331 |
+
),
|
1332 |
+
[2, 2, 4, 4, np.nan, np.nan, 1, 1, np.nan, np.nan, 3, 3],
|
1333 |
+
),
|
1334 |
+
],
|
1335 |
+
)
|
1336 |
+
def test_seriesgroupby_observed_apply_dict(df_cat, observed, index, data):
|
1337 |
+
# GH 24880
|
1338 |
+
expected = Series(data=data, index=index, name="C")
|
1339 |
+
result = df_cat.groupby(["A", "B"], observed=observed)["C"].apply(
|
1340 |
+
lambda x: {"min": x.min(), "max": x.max()}
|
1341 |
+
)
|
1342 |
+
tm.assert_series_equal(result, expected)
|
1343 |
+
|
1344 |
+
|
1345 |
+
def test_groupby_categorical_series_dataframe_consistent(df_cat):
|
1346 |
+
# GH 20416
|
1347 |
+
expected = df_cat.groupby(["A", "B"], observed=False)["C"].mean()
|
1348 |
+
result = df_cat.groupby(["A", "B"], observed=False).mean()["C"]
|
1349 |
+
tm.assert_series_equal(result, expected)
|
1350 |
+
|
1351 |
+
|
1352 |
+
@pytest.mark.parametrize("code", [([1, 0, 0]), ([0, 0, 0])])
|
1353 |
+
def test_groupby_categorical_axis_1(code):
|
1354 |
+
# GH 13420
|
1355 |
+
df = DataFrame({"a": [1, 2, 3, 4], "b": [-1, -2, -3, -4], "c": [5, 6, 7, 8]})
|
1356 |
+
cat = Categorical.from_codes(code, categories=list("abc"))
|
1357 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
1358 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1359 |
+
gb = df.groupby(cat, axis=1, observed=False)
|
1360 |
+
result = gb.mean()
|
1361 |
+
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
1362 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1363 |
+
gb2 = df.T.groupby(cat, axis=0, observed=False)
|
1364 |
+
expected = gb2.mean().T
|
1365 |
+
tm.assert_frame_equal(result, expected)
|
1366 |
+
|
1367 |
+
|
1368 |
+
def test_groupby_cat_preserves_structure(observed, ordered):
|
1369 |
+
# GH 28787
|
1370 |
+
df = DataFrame(
|
1371 |
+
{"Name": Categorical(["Bob", "Greg"], ordered=ordered), "Item": [1, 2]},
|
1372 |
+
columns=["Name", "Item"],
|
1373 |
+
)
|
1374 |
+
expected = df.copy()
|
1375 |
+
|
1376 |
+
result = (
|
1377 |
+
df.groupby("Name", observed=observed)
|
1378 |
+
.agg(DataFrame.sum, skipna=True)
|
1379 |
+
.reset_index()
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
tm.assert_frame_equal(result, expected)
|
1383 |
+
|
1384 |
+
|
1385 |
+
def test_get_nonexistent_category():
|
1386 |
+
# Accessing a Category that is not in the dataframe
|
1387 |
+
df = DataFrame({"var": ["a", "a", "b", "b"], "val": range(4)})
|
1388 |
+
with pytest.raises(KeyError, match="'vau'"):
|
1389 |
+
df.groupby("var").apply(
|
1390 |
+
lambda rows: DataFrame(
|
1391 |
+
{"var": [rows.iloc[-1]["var"]], "val": [rows.iloc[-1]["vau"]]}
|
1392 |
+
)
|
1393 |
+
)
|
1394 |
+
|
1395 |
+
|
1396 |
+
def test_series_groupby_on_2_categoricals_unobserved(reduction_func, observed):
|
1397 |
+
# GH 17605
|
1398 |
+
if reduction_func == "ngroup":
|
1399 |
+
pytest.skip("ngroup is not truly a reduction")
|
1400 |
+
|
1401 |
+
df = DataFrame(
|
1402 |
+
{
|
1403 |
+
"cat_1": Categorical(list("AABB"), categories=list("ABCD")),
|
1404 |
+
"cat_2": Categorical(list("AB") * 2, categories=list("ABCD")),
|
1405 |
+
"value": [0.1] * 4,
|
1406 |
+
}
|
1407 |
+
)
|
1408 |
+
args = get_groupby_method_args(reduction_func, df)
|
1409 |
+
|
1410 |
+
expected_length = 4 if observed else 16
|
1411 |
+
|
1412 |
+
series_groupby = df.groupby(["cat_1", "cat_2"], observed=observed)["value"]
|
1413 |
+
|
1414 |
+
if reduction_func == "corrwith":
|
1415 |
+
# TODO: implemented SeriesGroupBy.corrwith. See GH 32293
|
1416 |
+
assert not hasattr(series_groupby, reduction_func)
|
1417 |
+
return
|
1418 |
+
|
1419 |
+
agg = getattr(series_groupby, reduction_func)
|
1420 |
+
|
1421 |
+
if not observed and reduction_func in ["idxmin", "idxmax"]:
|
1422 |
+
# idxmin and idxmax are designed to fail on empty inputs
|
1423 |
+
with pytest.raises(
|
1424 |
+
ValueError, match="empty group due to unobserved categories"
|
1425 |
+
):
|
1426 |
+
agg(*args)
|
1427 |
+
return
|
1428 |
+
|
1429 |
+
result = agg(*args)
|
1430 |
+
|
1431 |
+
assert len(result) == expected_length
|
1432 |
+
|
1433 |
+
|
1434 |
+
def test_series_groupby_on_2_categoricals_unobserved_zeroes_or_nans(
|
1435 |
+
reduction_func, request
|
1436 |
+
):
|
1437 |
+
# GH 17605
|
1438 |
+
# Tests whether the unobserved categories in the result contain 0 or NaN
|
1439 |
+
|
1440 |
+
if reduction_func == "ngroup":
|
1441 |
+
pytest.skip("ngroup is not truly a reduction")
|
1442 |
+
|
1443 |
+
if reduction_func == "corrwith": # GH 32293
|
1444 |
+
mark = pytest.mark.xfail(
|
1445 |
+
reason="TODO: implemented SeriesGroupBy.corrwith. See GH 32293"
|
1446 |
+
)
|
1447 |
+
request.applymarker(mark)
|
1448 |
+
|
1449 |
+
df = DataFrame(
|
1450 |
+
{
|
1451 |
+
"cat_1": Categorical(list("AABB"), categories=list("ABC")),
|
1452 |
+
"cat_2": Categorical(list("AB") * 2, categories=list("ABC")),
|
1453 |
+
"value": [0.1] * 4,
|
1454 |
+
}
|
1455 |
+
)
|
1456 |
+
unobserved = [tuple("AC"), tuple("BC"), tuple("CA"), tuple("CB"), tuple("CC")]
|
1457 |
+
args = get_groupby_method_args(reduction_func, df)
|
1458 |
+
|
1459 |
+
series_groupby = df.groupby(["cat_1", "cat_2"], observed=False)["value"]
|
1460 |
+
agg = getattr(series_groupby, reduction_func)
|
1461 |
+
|
1462 |
+
if reduction_func in ["idxmin", "idxmax"]:
|
1463 |
+
# idxmin and idxmax are designed to fail on empty inputs
|
1464 |
+
with pytest.raises(
|
1465 |
+
ValueError, match="empty group due to unobserved categories"
|
1466 |
+
):
|
1467 |
+
agg(*args)
|
1468 |
+
return
|
1469 |
+
|
1470 |
+
result = agg(*args)
|
1471 |
+
|
1472 |
+
zero_or_nan = _results_for_groupbys_with_missing_categories[reduction_func]
|
1473 |
+
|
1474 |
+
for idx in unobserved:
|
1475 |
+
val = result.loc[idx]
|
1476 |
+
assert (pd.isna(zero_or_nan) and pd.isna(val)) or (val == zero_or_nan)
|
1477 |
+
|
1478 |
+
# If we expect unobserved values to be zero, we also expect the dtype to be int.
|
1479 |
+
# Except for .sum(). If the observed categories sum to dtype=float (i.e. their
|
1480 |
+
# sums have decimals), then the zeros for the missing categories should also be
|
1481 |
+
# floats.
|
1482 |
+
if zero_or_nan == 0 and reduction_func != "sum":
|
1483 |
+
assert np.issubdtype(result.dtype, np.integer)
|
1484 |
+
|
1485 |
+
|
1486 |
+
def test_dataframe_groupby_on_2_categoricals_when_observed_is_true(reduction_func):
|
1487 |
+
# GH 23865
|
1488 |
+
# GH 27075
|
1489 |
+
# Ensure that df.groupby, when 'by' is two Categorical variables,
|
1490 |
+
# does not return the categories that are not in df when observed=True
|
1491 |
+
if reduction_func == "ngroup":
|
1492 |
+
pytest.skip("ngroup does not return the Categories on the index")
|
1493 |
+
|
1494 |
+
df = DataFrame(
|
1495 |
+
{
|
1496 |
+
"cat_1": Categorical(list("AABB"), categories=list("ABC")),
|
1497 |
+
"cat_2": Categorical(list("1111"), categories=list("12")),
|
1498 |
+
"value": [0.1, 0.1, 0.1, 0.1],
|
1499 |
+
}
|
1500 |
+
)
|
1501 |
+
unobserved_cats = [("A", "2"), ("B", "2"), ("C", "1"), ("C", "2")]
|
1502 |
+
|
1503 |
+
df_grp = df.groupby(["cat_1", "cat_2"], observed=True)
|
1504 |
+
|
1505 |
+
args = get_groupby_method_args(reduction_func, df)
|
1506 |
+
res = getattr(df_grp, reduction_func)(*args)
|
1507 |
+
|
1508 |
+
for cat in unobserved_cats:
|
1509 |
+
assert cat not in res.index
|
1510 |
+
|
1511 |
+
|
1512 |
+
@pytest.mark.parametrize("observed", [False, None])
|
1513 |
+
def test_dataframe_groupby_on_2_categoricals_when_observed_is_false(
|
1514 |
+
reduction_func, observed
|
1515 |
+
):
|
1516 |
+
# GH 23865
|
1517 |
+
# GH 27075
|
1518 |
+
# Ensure that df.groupby, when 'by' is two Categorical variables,
|
1519 |
+
# returns the categories that are not in df when observed=False/None
|
1520 |
+
|
1521 |
+
if reduction_func == "ngroup":
|
1522 |
+
pytest.skip("ngroup does not return the Categories on the index")
|
1523 |
+
|
1524 |
+
df = DataFrame(
|
1525 |
+
{
|
1526 |
+
"cat_1": Categorical(list("AABB"), categories=list("ABC")),
|
1527 |
+
"cat_2": Categorical(list("1111"), categories=list("12")),
|
1528 |
+
"value": [0.1, 0.1, 0.1, 0.1],
|
1529 |
+
}
|
1530 |
+
)
|
1531 |
+
unobserved_cats = [("A", "2"), ("B", "2"), ("C", "1"), ("C", "2")]
|
1532 |
+
|
1533 |
+
df_grp = df.groupby(["cat_1", "cat_2"], observed=observed)
|
1534 |
+
|
1535 |
+
args = get_groupby_method_args(reduction_func, df)
|
1536 |
+
|
1537 |
+
if not observed and reduction_func in ["idxmin", "idxmax"]:
|
1538 |
+
# idxmin and idxmax are designed to fail on empty inputs
|
1539 |
+
with pytest.raises(
|
1540 |
+
ValueError, match="empty group due to unobserved categories"
|
1541 |
+
):
|
1542 |
+
getattr(df_grp, reduction_func)(*args)
|
1543 |
+
return
|
1544 |
+
|
1545 |
+
res = getattr(df_grp, reduction_func)(*args)
|
1546 |
+
|
1547 |
+
expected = _results_for_groupbys_with_missing_categories[reduction_func]
|
1548 |
+
|
1549 |
+
if expected is np.nan:
|
1550 |
+
assert res.loc[unobserved_cats].isnull().all().all()
|
1551 |
+
else:
|
1552 |
+
assert (res.loc[unobserved_cats] == expected).all().all()
|
1553 |
+
|
1554 |
+
|
1555 |
+
def test_series_groupby_categorical_aggregation_getitem():
|
1556 |
+
# GH 8870
|
1557 |
+
d = {"foo": [10, 8, 4, 1], "bar": [10, 20, 30, 40], "baz": ["d", "c", "d", "c"]}
|
1558 |
+
df = DataFrame(d)
|
1559 |
+
cat = pd.cut(df["foo"], np.linspace(0, 20, 5))
|
1560 |
+
df["range"] = cat
|
1561 |
+
groups = df.groupby(["range", "baz"], as_index=True, sort=True, observed=False)
|
1562 |
+
result = groups["foo"].agg("mean")
|
1563 |
+
expected = groups.agg("mean")["foo"]
|
1564 |
+
tm.assert_series_equal(result, expected)
|
1565 |
+
|
1566 |
+
|
1567 |
+
@pytest.mark.parametrize(
|
1568 |
+
"func, expected_values",
|
1569 |
+
[(Series.nunique, [1, 1, 2]), (Series.count, [1, 2, 2])],
|
1570 |
+
)
|
1571 |
+
def test_groupby_agg_categorical_columns(func, expected_values):
|
1572 |
+
# 31256
|
1573 |
+
df = DataFrame(
|
1574 |
+
{
|
1575 |
+
"id": [0, 1, 2, 3, 4],
|
1576 |
+
"groups": [0, 1, 1, 2, 2],
|
1577 |
+
"value": Categorical([0, 0, 0, 0, 1]),
|
1578 |
+
}
|
1579 |
+
).set_index("id")
|
1580 |
+
result = df.groupby("groups").agg(func)
|
1581 |
+
|
1582 |
+
expected = DataFrame(
|
1583 |
+
{"value": expected_values}, index=Index([0, 1, 2], name="groups")
|
1584 |
+
)
|
1585 |
+
tm.assert_frame_equal(result, expected)
|
1586 |
+
|
1587 |
+
|
1588 |
+
def test_groupby_agg_non_numeric():
|
1589 |
+
df = DataFrame({"A": Categorical(["a", "a", "b"], categories=["a", "b", "c"])})
|
1590 |
+
expected = DataFrame({"A": [2, 1]}, index=np.array([1, 2]))
|
1591 |
+
|
1592 |
+
result = df.groupby([1, 2, 1]).agg(Series.nunique)
|
1593 |
+
tm.assert_frame_equal(result, expected)
|
1594 |
+
|
1595 |
+
result = df.groupby([1, 2, 1]).nunique()
|
1596 |
+
tm.assert_frame_equal(result, expected)
|
1597 |
+
|
1598 |
+
|
1599 |
+
@pytest.mark.parametrize("func", ["first", "last"])
|
1600 |
+
def test_groupby_first_returned_categorical_instead_of_dataframe(func):
|
1601 |
+
# GH 28641: groupby drops index, when grouping over categorical column with
|
1602 |
+
# first/last. Renamed Categorical instead of DataFrame previously.
|
1603 |
+
df = DataFrame({"A": [1997], "B": Series(["b"], dtype="category").cat.as_ordered()})
|
1604 |
+
df_grouped = df.groupby("A")["B"]
|
1605 |
+
result = getattr(df_grouped, func)()
|
1606 |
+
|
1607 |
+
# ordered categorical dtype should be preserved
|
1608 |
+
expected = Series(
|
1609 |
+
["b"], index=Index([1997], name="A"), name="B", dtype=df["B"].dtype
|
1610 |
+
)
|
1611 |
+
tm.assert_series_equal(result, expected)
|
1612 |
+
|
1613 |
+
|
1614 |
+
def test_read_only_category_no_sort():
|
1615 |
+
# GH33410
|
1616 |
+
cats = np.array([1, 2])
|
1617 |
+
cats.flags.writeable = False
|
1618 |
+
df = DataFrame(
|
1619 |
+
{"a": [1, 3, 5, 7], "b": Categorical([1, 1, 2, 2], categories=Index(cats))}
|
1620 |
+
)
|
1621 |
+
expected = DataFrame(data={"a": [2.0, 6.0]}, index=CategoricalIndex(cats, name="b"))
|
1622 |
+
result = df.groupby("b", sort=False, observed=False).mean()
|
1623 |
+
tm.assert_frame_equal(result, expected)
|
1624 |
+
|
1625 |
+
|
1626 |
+
def test_sorted_missing_category_values():
|
1627 |
+
# GH 28597
|
1628 |
+
df = DataFrame(
|
1629 |
+
{
|
1630 |
+
"foo": [
|
1631 |
+
"small",
|
1632 |
+
"large",
|
1633 |
+
"large",
|
1634 |
+
"large",
|
1635 |
+
"medium",
|
1636 |
+
"large",
|
1637 |
+
"large",
|
1638 |
+
"medium",
|
1639 |
+
],
|
1640 |
+
"bar": ["C", "A", "A", "C", "A", "C", "A", "C"],
|
1641 |
+
}
|
1642 |
+
)
|
1643 |
+
df["foo"] = (
|
1644 |
+
df["foo"]
|
1645 |
+
.astype("category")
|
1646 |
+
.cat.set_categories(["tiny", "small", "medium", "large"], ordered=True)
|
1647 |
+
)
|
1648 |
+
|
1649 |
+
expected = DataFrame(
|
1650 |
+
{
|
1651 |
+
"tiny": {"A": 0, "C": 0},
|
1652 |
+
"small": {"A": 0, "C": 1},
|
1653 |
+
"medium": {"A": 1, "C": 1},
|
1654 |
+
"large": {"A": 3, "C": 2},
|
1655 |
+
}
|
1656 |
+
)
|
1657 |
+
expected = expected.rename_axis("bar", axis="index")
|
1658 |
+
expected.columns = CategoricalIndex(
|
1659 |
+
["tiny", "small", "medium", "large"],
|
1660 |
+
categories=["tiny", "small", "medium", "large"],
|
1661 |
+
ordered=True,
|
1662 |
+
name="foo",
|
1663 |
+
dtype="category",
|
1664 |
+
)
|
1665 |
+
|
1666 |
+
result = df.groupby(["bar", "foo"], observed=False).size().unstack()
|
1667 |
+
|
1668 |
+
tm.assert_frame_equal(result, expected)
|
1669 |
+
|
1670 |
+
|
1671 |
+
def test_agg_cython_category_not_implemented_fallback():
|
1672 |
+
# https://github.com/pandas-dev/pandas/issues/31450
|
1673 |
+
df = DataFrame({"col_num": [1, 1, 2, 3]})
|
1674 |
+
df["col_cat"] = df["col_num"].astype("category")
|
1675 |
+
|
1676 |
+
result = df.groupby("col_num").col_cat.first()
|
1677 |
+
|
1678 |
+
# ordered categorical dtype should definitely be preserved;
|
1679 |
+
# this is unordered, so is less-clear case (if anything, it should raise)
|
1680 |
+
expected = Series(
|
1681 |
+
[1, 2, 3],
|
1682 |
+
index=Index([1, 2, 3], name="col_num"),
|
1683 |
+
name="col_cat",
|
1684 |
+
dtype=df["col_cat"].dtype,
|
1685 |
+
)
|
1686 |
+
tm.assert_series_equal(result, expected)
|
1687 |
+
|
1688 |
+
result = df.groupby("col_num").agg({"col_cat": "first"})
|
1689 |
+
expected = expected.to_frame()
|
1690 |
+
tm.assert_frame_equal(result, expected)
|
1691 |
+
|
1692 |
+
|
1693 |
+
def test_aggregate_categorical_with_isnan():
|
1694 |
+
# GH 29837
|
1695 |
+
df = DataFrame(
|
1696 |
+
{
|
1697 |
+
"A": [1, 1, 1, 1],
|
1698 |
+
"B": [1, 2, 1, 2],
|
1699 |
+
"numerical_col": [0.1, 0.2, np.nan, 0.3],
|
1700 |
+
"object_col": ["foo", "bar", "foo", "fee"],
|
1701 |
+
"categorical_col": ["foo", "bar", "foo", "fee"],
|
1702 |
+
}
|
1703 |
+
)
|
1704 |
+
|
1705 |
+
df = df.astype({"categorical_col": "category"})
|
1706 |
+
|
1707 |
+
result = df.groupby(["A", "B"]).agg(lambda df: df.isna().sum())
|
1708 |
+
index = MultiIndex.from_arrays([[1, 1], [1, 2]], names=("A", "B"))
|
1709 |
+
expected = DataFrame(
|
1710 |
+
data={
|
1711 |
+
"numerical_col": [1, 0],
|
1712 |
+
"object_col": [0, 0],
|
1713 |
+
"categorical_col": [0, 0],
|
1714 |
+
},
|
1715 |
+
index=index,
|
1716 |
+
)
|
1717 |
+
tm.assert_frame_equal(result, expected)
|
1718 |
+
|
1719 |
+
|
1720 |
+
def test_categorical_transform():
|
1721 |
+
# GH 29037
|
1722 |
+
df = DataFrame(
|
1723 |
+
{
|
1724 |
+
"package_id": [1, 1, 1, 2, 2, 3],
|
1725 |
+
"status": [
|
1726 |
+
"Waiting",
|
1727 |
+
"OnTheWay",
|
1728 |
+
"Delivered",
|
1729 |
+
"Waiting",
|
1730 |
+
"OnTheWay",
|
1731 |
+
"Waiting",
|
1732 |
+
],
|
1733 |
+
}
|
1734 |
+
)
|
1735 |
+
|
1736 |
+
delivery_status_type = pd.CategoricalDtype(
|
1737 |
+
categories=["Waiting", "OnTheWay", "Delivered"], ordered=True
|
1738 |
+
)
|
1739 |
+
df["status"] = df["status"].astype(delivery_status_type)
|
1740 |
+
msg = "using SeriesGroupBy.max"
|
1741 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1742 |
+
# GH#53425
|
1743 |
+
df["last_status"] = df.groupby("package_id")["status"].transform(max)
|
1744 |
+
result = df.copy()
|
1745 |
+
|
1746 |
+
expected = DataFrame(
|
1747 |
+
{
|
1748 |
+
"package_id": [1, 1, 1, 2, 2, 3],
|
1749 |
+
"status": [
|
1750 |
+
"Waiting",
|
1751 |
+
"OnTheWay",
|
1752 |
+
"Delivered",
|
1753 |
+
"Waiting",
|
1754 |
+
"OnTheWay",
|
1755 |
+
"Waiting",
|
1756 |
+
],
|
1757 |
+
"last_status": [
|
1758 |
+
"Delivered",
|
1759 |
+
"Delivered",
|
1760 |
+
"Delivered",
|
1761 |
+
"OnTheWay",
|
1762 |
+
"OnTheWay",
|
1763 |
+
"Waiting",
|
1764 |
+
],
|
1765 |
+
}
|
1766 |
+
)
|
1767 |
+
|
1768 |
+
expected["status"] = expected["status"].astype(delivery_status_type)
|
1769 |
+
|
1770 |
+
# .transform(max) should preserve ordered categoricals
|
1771 |
+
expected["last_status"] = expected["last_status"].astype(delivery_status_type)
|
1772 |
+
|
1773 |
+
tm.assert_frame_equal(result, expected)
|
1774 |
+
|
1775 |
+
|
1776 |
+
@pytest.mark.parametrize("func", ["first", "last"])
|
1777 |
+
def test_series_groupby_first_on_categorical_col_grouped_on_2_categoricals(
|
1778 |
+
func: str, observed: bool
|
1779 |
+
):
|
1780 |
+
# GH 34951
|
1781 |
+
cat = Categorical([0, 0, 1, 1])
|
1782 |
+
val = [0, 1, 1, 0]
|
1783 |
+
df = DataFrame({"a": cat, "b": cat, "c": val})
|
1784 |
+
|
1785 |
+
cat2 = Categorical([0, 1])
|
1786 |
+
idx = MultiIndex.from_product([cat2, cat2], names=["a", "b"])
|
1787 |
+
expected_dict = {
|
1788 |
+
"first": Series([0, np.nan, np.nan, 1], idx, name="c"),
|
1789 |
+
"last": Series([1, np.nan, np.nan, 0], idx, name="c"),
|
1790 |
+
}
|
1791 |
+
|
1792 |
+
expected = expected_dict[func]
|
1793 |
+
if observed:
|
1794 |
+
expected = expected.dropna().astype(np.int64)
|
1795 |
+
|
1796 |
+
srs_grp = df.groupby(["a", "b"], observed=observed)["c"]
|
1797 |
+
result = getattr(srs_grp, func)()
|
1798 |
+
tm.assert_series_equal(result, expected)
|
1799 |
+
|
1800 |
+
|
1801 |
+
@pytest.mark.parametrize("func", ["first", "last"])
|
1802 |
+
def test_df_groupby_first_on_categorical_col_grouped_on_2_categoricals(
|
1803 |
+
func: str, observed: bool
|
1804 |
+
):
|
1805 |
+
# GH 34951
|
1806 |
+
cat = Categorical([0, 0, 1, 1])
|
1807 |
+
val = [0, 1, 1, 0]
|
1808 |
+
df = DataFrame({"a": cat, "b": cat, "c": val})
|
1809 |
+
|
1810 |
+
cat2 = Categorical([0, 1])
|
1811 |
+
idx = MultiIndex.from_product([cat2, cat2], names=["a", "b"])
|
1812 |
+
expected_dict = {
|
1813 |
+
"first": Series([0, np.nan, np.nan, 1], idx, name="c"),
|
1814 |
+
"last": Series([1, np.nan, np.nan, 0], idx, name="c"),
|
1815 |
+
}
|
1816 |
+
|
1817 |
+
expected = expected_dict[func].to_frame()
|
1818 |
+
if observed:
|
1819 |
+
expected = expected.dropna().astype(np.int64)
|
1820 |
+
|
1821 |
+
df_grp = df.groupby(["a", "b"], observed=observed)
|
1822 |
+
result = getattr(df_grp, func)()
|
1823 |
+
tm.assert_frame_equal(result, expected)
|
1824 |
+
|
1825 |
+
|
1826 |
+
def test_groupby_categorical_indices_unused_categories():
|
1827 |
+
# GH#38642
|
1828 |
+
df = DataFrame(
|
1829 |
+
{
|
1830 |
+
"key": Categorical(["b", "b", "a"], categories=["a", "b", "c"]),
|
1831 |
+
"col": range(3),
|
1832 |
+
}
|
1833 |
+
)
|
1834 |
+
grouped = df.groupby("key", sort=False, observed=False)
|
1835 |
+
result = grouped.indices
|
1836 |
+
expected = {
|
1837 |
+
"b": np.array([0, 1], dtype="intp"),
|
1838 |
+
"a": np.array([2], dtype="intp"),
|
1839 |
+
"c": np.array([], dtype="intp"),
|
1840 |
+
}
|
1841 |
+
assert result.keys() == expected.keys()
|
1842 |
+
for key in result.keys():
|
1843 |
+
tm.assert_numpy_array_equal(result[key], expected[key])
|
1844 |
+
|
1845 |
+
|
1846 |
+
@pytest.mark.parametrize("func", ["first", "last"])
|
1847 |
+
def test_groupby_last_first_preserve_categoricaldtype(func):
|
1848 |
+
# GH#33090
|
1849 |
+
df = DataFrame({"a": [1, 2, 3]})
|
1850 |
+
df["b"] = df["a"].astype("category")
|
1851 |
+
result = getattr(df.groupby("a")["b"], func)()
|
1852 |
+
expected = Series(
|
1853 |
+
Categorical([1, 2, 3]), name="b", index=Index([1, 2, 3], name="a")
|
1854 |
+
)
|
1855 |
+
tm.assert_series_equal(expected, result)
|
1856 |
+
|
1857 |
+
|
1858 |
+
def test_groupby_categorical_observed_nunique():
|
1859 |
+
# GH#45128
|
1860 |
+
df = DataFrame({"a": [1, 2], "b": [1, 2], "c": [10, 11]})
|
1861 |
+
df = df.astype(dtype={"a": "category", "b": "category"})
|
1862 |
+
result = df.groupby(["a", "b"], observed=True).nunique()["c"]
|
1863 |
+
expected = Series(
|
1864 |
+
[1, 1],
|
1865 |
+
index=MultiIndex.from_arrays(
|
1866 |
+
[CategoricalIndex([1, 2], name="a"), CategoricalIndex([1, 2], name="b")]
|
1867 |
+
),
|
1868 |
+
name="c",
|
1869 |
+
)
|
1870 |
+
tm.assert_series_equal(result, expected)
|
1871 |
+
|
1872 |
+
|
1873 |
+
def test_groupby_categorical_aggregate_functions():
|
1874 |
+
# GH#37275
|
1875 |
+
dtype = pd.CategoricalDtype(categories=["small", "big"], ordered=True)
|
1876 |
+
df = DataFrame(
|
1877 |
+
[[1, "small"], [1, "big"], [2, "small"]], columns=["grp", "description"]
|
1878 |
+
).astype({"description": dtype})
|
1879 |
+
|
1880 |
+
result = df.groupby("grp")["description"].max()
|
1881 |
+
expected = Series(
|
1882 |
+
["big", "small"],
|
1883 |
+
index=Index([1, 2], name="grp"),
|
1884 |
+
name="description",
|
1885 |
+
dtype=pd.CategoricalDtype(categories=["small", "big"], ordered=True),
|
1886 |
+
)
|
1887 |
+
|
1888 |
+
tm.assert_series_equal(result, expected)
|
1889 |
+
|
1890 |
+
|
1891 |
+
def test_groupby_categorical_dropna(observed, dropna):
|
1892 |
+
# GH#48645 - dropna should have no impact on the result when there are no NA values
|
1893 |
+
cat = Categorical([1, 2], categories=[1, 2, 3])
|
1894 |
+
df = DataFrame({"x": Categorical([1, 2], categories=[1, 2, 3]), "y": [3, 4]})
|
1895 |
+
gb = df.groupby("x", observed=observed, dropna=dropna)
|
1896 |
+
result = gb.sum()
|
1897 |
+
|
1898 |
+
if observed:
|
1899 |
+
expected = DataFrame({"y": [3, 4]}, index=cat)
|
1900 |
+
else:
|
1901 |
+
index = CategoricalIndex([1, 2, 3], [1, 2, 3])
|
1902 |
+
expected = DataFrame({"y": [3, 4, 0]}, index=index)
|
1903 |
+
expected.index.name = "x"
|
1904 |
+
|
1905 |
+
tm.assert_frame_equal(result, expected)
|
1906 |
+
|
1907 |
+
|
1908 |
+
@pytest.mark.parametrize("index_kind", ["range", "single", "multi"])
|
1909 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
1910 |
+
def test_category_order_reducer(
|
1911 |
+
request, as_index, sort, observed, reduction_func, index_kind, ordered
|
1912 |
+
):
|
1913 |
+
# GH#48749
|
1914 |
+
if reduction_func == "corrwith" and not as_index:
|
1915 |
+
msg = "GH#49950 - corrwith with as_index=False may not have grouping column"
|
1916 |
+
request.applymarker(pytest.mark.xfail(reason=msg))
|
1917 |
+
elif index_kind != "range" and not as_index:
|
1918 |
+
pytest.skip(reason="Result doesn't have categories, nothing to test")
|
1919 |
+
df = DataFrame(
|
1920 |
+
{
|
1921 |
+
"a": Categorical([2, 1, 2, 3], categories=[1, 4, 3, 2], ordered=ordered),
|
1922 |
+
"b": range(4),
|
1923 |
+
}
|
1924 |
+
)
|
1925 |
+
if index_kind == "range":
|
1926 |
+
keys = ["a"]
|
1927 |
+
elif index_kind == "single":
|
1928 |
+
keys = ["a"]
|
1929 |
+
df = df.set_index(keys)
|
1930 |
+
elif index_kind == "multi":
|
1931 |
+
keys = ["a", "a2"]
|
1932 |
+
df["a2"] = df["a"]
|
1933 |
+
df = df.set_index(keys)
|
1934 |
+
args = get_groupby_method_args(reduction_func, df)
|
1935 |
+
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed)
|
1936 |
+
|
1937 |
+
if not observed and reduction_func in ["idxmin", "idxmax"]:
|
1938 |
+
# idxmin and idxmax are designed to fail on empty inputs
|
1939 |
+
with pytest.raises(
|
1940 |
+
ValueError, match="empty group due to unobserved categories"
|
1941 |
+
):
|
1942 |
+
getattr(gb, reduction_func)(*args)
|
1943 |
+
return
|
1944 |
+
|
1945 |
+
op_result = getattr(gb, reduction_func)(*args)
|
1946 |
+
if as_index:
|
1947 |
+
result = op_result.index.get_level_values("a").categories
|
1948 |
+
else:
|
1949 |
+
result = op_result["a"].cat.categories
|
1950 |
+
expected = Index([1, 4, 3, 2])
|
1951 |
+
tm.assert_index_equal(result, expected)
|
1952 |
+
|
1953 |
+
if index_kind == "multi":
|
1954 |
+
result = op_result.index.get_level_values("a2").categories
|
1955 |
+
tm.assert_index_equal(result, expected)
|
1956 |
+
|
1957 |
+
|
1958 |
+
@pytest.mark.parametrize("index_kind", ["single", "multi"])
|
1959 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
1960 |
+
def test_category_order_transformer(
|
1961 |
+
as_index, sort, observed, transformation_func, index_kind, ordered
|
1962 |
+
):
|
1963 |
+
# GH#48749
|
1964 |
+
df = DataFrame(
|
1965 |
+
{
|
1966 |
+
"a": Categorical([2, 1, 2, 3], categories=[1, 4, 3, 2], ordered=ordered),
|
1967 |
+
"b": range(4),
|
1968 |
+
}
|
1969 |
+
)
|
1970 |
+
if index_kind == "single":
|
1971 |
+
keys = ["a"]
|
1972 |
+
df = df.set_index(keys)
|
1973 |
+
elif index_kind == "multi":
|
1974 |
+
keys = ["a", "a2"]
|
1975 |
+
df["a2"] = df["a"]
|
1976 |
+
df = df.set_index(keys)
|
1977 |
+
args = get_groupby_method_args(transformation_func, df)
|
1978 |
+
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed)
|
1979 |
+
warn = FutureWarning if transformation_func == "fillna" else None
|
1980 |
+
msg = "DataFrameGroupBy.fillna is deprecated"
|
1981 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1982 |
+
op_result = getattr(gb, transformation_func)(*args)
|
1983 |
+
result = op_result.index.get_level_values("a").categories
|
1984 |
+
expected = Index([1, 4, 3, 2])
|
1985 |
+
tm.assert_index_equal(result, expected)
|
1986 |
+
|
1987 |
+
if index_kind == "multi":
|
1988 |
+
result = op_result.index.get_level_values("a2").categories
|
1989 |
+
tm.assert_index_equal(result, expected)
|
1990 |
+
|
1991 |
+
|
1992 |
+
@pytest.mark.parametrize("index_kind", ["range", "single", "multi"])
|
1993 |
+
@pytest.mark.parametrize("method", ["head", "tail"])
|
1994 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
1995 |
+
def test_category_order_head_tail(
|
1996 |
+
as_index, sort, observed, method, index_kind, ordered
|
1997 |
+
):
|
1998 |
+
# GH#48749
|
1999 |
+
df = DataFrame(
|
2000 |
+
{
|
2001 |
+
"a": Categorical([2, 1, 2, 3], categories=[1, 4, 3, 2], ordered=ordered),
|
2002 |
+
"b": range(4),
|
2003 |
+
}
|
2004 |
+
)
|
2005 |
+
if index_kind == "range":
|
2006 |
+
keys = ["a"]
|
2007 |
+
elif index_kind == "single":
|
2008 |
+
keys = ["a"]
|
2009 |
+
df = df.set_index(keys)
|
2010 |
+
elif index_kind == "multi":
|
2011 |
+
keys = ["a", "a2"]
|
2012 |
+
df["a2"] = df["a"]
|
2013 |
+
df = df.set_index(keys)
|
2014 |
+
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed)
|
2015 |
+
op_result = getattr(gb, method)()
|
2016 |
+
if index_kind == "range":
|
2017 |
+
result = op_result["a"].cat.categories
|
2018 |
+
else:
|
2019 |
+
result = op_result.index.get_level_values("a").categories
|
2020 |
+
expected = Index([1, 4, 3, 2])
|
2021 |
+
tm.assert_index_equal(result, expected)
|
2022 |
+
|
2023 |
+
if index_kind == "multi":
|
2024 |
+
result = op_result.index.get_level_values("a2").categories
|
2025 |
+
tm.assert_index_equal(result, expected)
|
2026 |
+
|
2027 |
+
|
2028 |
+
@pytest.mark.parametrize("index_kind", ["range", "single", "multi"])
|
2029 |
+
@pytest.mark.parametrize("method", ["apply", "agg", "transform"])
|
2030 |
+
@pytest.mark.parametrize("ordered", [True, False])
|
2031 |
+
def test_category_order_apply(as_index, sort, observed, method, index_kind, ordered):
|
2032 |
+
# GH#48749
|
2033 |
+
if (method == "transform" and index_kind == "range") or (
|
2034 |
+
not as_index and index_kind != "range"
|
2035 |
+
):
|
2036 |
+
pytest.skip("No categories in result, nothing to test")
|
2037 |
+
df = DataFrame(
|
2038 |
+
{
|
2039 |
+
"a": Categorical([2, 1, 2, 3], categories=[1, 4, 3, 2], ordered=ordered),
|
2040 |
+
"b": range(4),
|
2041 |
+
}
|
2042 |
+
)
|
2043 |
+
if index_kind == "range":
|
2044 |
+
keys = ["a"]
|
2045 |
+
elif index_kind == "single":
|
2046 |
+
keys = ["a"]
|
2047 |
+
df = df.set_index(keys)
|
2048 |
+
elif index_kind == "multi":
|
2049 |
+
keys = ["a", "a2"]
|
2050 |
+
df["a2"] = df["a"]
|
2051 |
+
df = df.set_index(keys)
|
2052 |
+
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed)
|
2053 |
+
warn = DeprecationWarning if method == "apply" and index_kind == "range" else None
|
2054 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
2055 |
+
with tm.assert_produces_warning(warn, match=msg):
|
2056 |
+
op_result = getattr(gb, method)(lambda x: x.sum(numeric_only=True))
|
2057 |
+
if (method == "transform" or not as_index) and index_kind == "range":
|
2058 |
+
result = op_result["a"].cat.categories
|
2059 |
+
else:
|
2060 |
+
result = op_result.index.get_level_values("a").categories
|
2061 |
+
expected = Index([1, 4, 3, 2])
|
2062 |
+
tm.assert_index_equal(result, expected)
|
2063 |
+
|
2064 |
+
if index_kind == "multi":
|
2065 |
+
result = op_result.index.get_level_values("a2").categories
|
2066 |
+
tm.assert_index_equal(result, expected)
|
2067 |
+
|
2068 |
+
|
2069 |
+
@pytest.mark.parametrize("index_kind", ["range", "single", "multi"])
|
2070 |
+
def test_many_categories(as_index, sort, index_kind, ordered):
|
2071 |
+
# GH#48749 - Test when the grouper has many categories
|
2072 |
+
if index_kind != "range" and not as_index:
|
2073 |
+
pytest.skip(reason="Result doesn't have categories, nothing to test")
|
2074 |
+
categories = np.arange(9999, -1, -1)
|
2075 |
+
grouper = Categorical([2, 1, 2, 3], categories=categories, ordered=ordered)
|
2076 |
+
df = DataFrame({"a": grouper, "b": range(4)})
|
2077 |
+
if index_kind == "range":
|
2078 |
+
keys = ["a"]
|
2079 |
+
elif index_kind == "single":
|
2080 |
+
keys = ["a"]
|
2081 |
+
df = df.set_index(keys)
|
2082 |
+
elif index_kind == "multi":
|
2083 |
+
keys = ["a", "a2"]
|
2084 |
+
df["a2"] = df["a"]
|
2085 |
+
df = df.set_index(keys)
|
2086 |
+
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=True)
|
2087 |
+
result = gb.sum()
|
2088 |
+
|
2089 |
+
# Test is setup so that data and index are the same values
|
2090 |
+
data = [3, 2, 1] if sort else [2, 1, 3]
|
2091 |
+
|
2092 |
+
index = CategoricalIndex(
|
2093 |
+
data, categories=grouper.categories, ordered=ordered, name="a"
|
2094 |
+
)
|
2095 |
+
if as_index:
|
2096 |
+
expected = DataFrame({"b": data})
|
2097 |
+
if index_kind == "multi":
|
2098 |
+
expected.index = MultiIndex.from_frame(DataFrame({"a": index, "a2": index}))
|
2099 |
+
else:
|
2100 |
+
expected.index = index
|
2101 |
+
elif index_kind == "multi":
|
2102 |
+
expected = DataFrame({"a": Series(index), "a2": Series(index), "b": data})
|
2103 |
+
else:
|
2104 |
+
expected = DataFrame({"a": Series(index), "b": data})
|
2105 |
+
|
2106 |
+
tm.assert_frame_equal(result, expected)
|
2107 |
+
|
2108 |
+
|
2109 |
+
@pytest.mark.parametrize("cat_columns", ["a", "b", ["a", "b"]])
|
2110 |
+
@pytest.mark.parametrize("keys", ["a", "b", ["a", "b"]])
|
2111 |
+
def test_groupby_default_depr(cat_columns, keys):
|
2112 |
+
# GH#43999
|
2113 |
+
df = DataFrame({"a": [1, 1, 2, 3], "b": [4, 5, 6, 7]})
|
2114 |
+
df[cat_columns] = df[cat_columns].astype("category")
|
2115 |
+
msg = "The default of observed=False is deprecated"
|
2116 |
+
klass = FutureWarning if set(cat_columns) & set(keys) else None
|
2117 |
+
with tm.assert_produces_warning(klass, match=msg):
|
2118 |
+
df.groupby(keys)
|
2119 |
+
|
2120 |
+
|
2121 |
+
@pytest.mark.parametrize("test_series", [True, False])
|
2122 |
+
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]])
|
2123 |
+
def test_agg_list(request, as_index, observed, reduction_func, test_series, keys):
|
2124 |
+
# GH#52760
|
2125 |
+
if test_series and reduction_func == "corrwith":
|
2126 |
+
assert not hasattr(SeriesGroupBy, "corrwith")
|
2127 |
+
pytest.skip("corrwith not implemented for SeriesGroupBy")
|
2128 |
+
elif reduction_func == "corrwith":
|
2129 |
+
msg = "GH#32293: attempts to call SeriesGroupBy.corrwith"
|
2130 |
+
request.applymarker(pytest.mark.xfail(reason=msg))
|
2131 |
+
elif (
|
2132 |
+
reduction_func == "nunique"
|
2133 |
+
and not test_series
|
2134 |
+
and len(keys) != 1
|
2135 |
+
and not observed
|
2136 |
+
and not as_index
|
2137 |
+
):
|
2138 |
+
msg = "GH#52848 - raises a ValueError"
|
2139 |
+
request.applymarker(pytest.mark.xfail(reason=msg))
|
2140 |
+
|
2141 |
+
df = DataFrame({"a1": [0, 0, 1], "a2": [2, 3, 3], "b": [4, 5, 6]})
|
2142 |
+
df = df.astype({"a1": "category", "a2": "category"})
|
2143 |
+
if "a2" not in keys:
|
2144 |
+
df = df.drop(columns="a2")
|
2145 |
+
gb = df.groupby(by=keys, as_index=as_index, observed=observed)
|
2146 |
+
if test_series:
|
2147 |
+
gb = gb["b"]
|
2148 |
+
args = get_groupby_method_args(reduction_func, df)
|
2149 |
+
|
2150 |
+
if not observed and reduction_func in ["idxmin", "idxmax"] and keys == ["a1", "a2"]:
|
2151 |
+
with pytest.raises(
|
2152 |
+
ValueError, match="empty group due to unobserved categories"
|
2153 |
+
):
|
2154 |
+
gb.agg([reduction_func], *args)
|
2155 |
+
return
|
2156 |
+
|
2157 |
+
result = gb.agg([reduction_func], *args)
|
2158 |
+
expected = getattr(gb, reduction_func)(*args)
|
2159 |
+
|
2160 |
+
if as_index and (test_series or reduction_func == "size"):
|
2161 |
+
expected = expected.to_frame(reduction_func)
|
2162 |
+
if not test_series:
|
2163 |
+
expected.columns = MultiIndex.from_tuples(
|
2164 |
+
[(ind, "") for ind in expected.columns[:-1]] + [("b", reduction_func)]
|
2165 |
+
)
|
2166 |
+
elif not as_index:
|
2167 |
+
expected.columns = keys + [reduction_func]
|
2168 |
+
|
2169 |
+
tm.assert_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_counting.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
from string import ascii_lowercase
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from pandas import (
|
8 |
+
DataFrame,
|
9 |
+
Index,
|
10 |
+
MultiIndex,
|
11 |
+
Period,
|
12 |
+
Series,
|
13 |
+
Timedelta,
|
14 |
+
Timestamp,
|
15 |
+
date_range,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
|
19 |
+
|
20 |
+
class TestCounting:
|
21 |
+
def test_cumcount(self):
|
22 |
+
df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"])
|
23 |
+
g = df.groupby("A")
|
24 |
+
sg = g.A
|
25 |
+
|
26 |
+
expected = Series([0, 1, 2, 0, 3])
|
27 |
+
|
28 |
+
tm.assert_series_equal(expected, g.cumcount())
|
29 |
+
tm.assert_series_equal(expected, sg.cumcount())
|
30 |
+
|
31 |
+
def test_cumcount_empty(self):
|
32 |
+
ge = DataFrame().groupby(level=0)
|
33 |
+
se = Series(dtype=object).groupby(level=0)
|
34 |
+
|
35 |
+
# edge case, as this is usually considered float
|
36 |
+
e = Series(dtype="int64")
|
37 |
+
|
38 |
+
tm.assert_series_equal(e, ge.cumcount())
|
39 |
+
tm.assert_series_equal(e, se.cumcount())
|
40 |
+
|
41 |
+
def test_cumcount_dupe_index(self):
|
42 |
+
df = DataFrame(
|
43 |
+
[["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5
|
44 |
+
)
|
45 |
+
g = df.groupby("A")
|
46 |
+
sg = g.A
|
47 |
+
|
48 |
+
expected = Series([0, 1, 2, 0, 3], index=[0] * 5)
|
49 |
+
|
50 |
+
tm.assert_series_equal(expected, g.cumcount())
|
51 |
+
tm.assert_series_equal(expected, sg.cumcount())
|
52 |
+
|
53 |
+
def test_cumcount_mi(self):
|
54 |
+
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]])
|
55 |
+
df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=mi)
|
56 |
+
g = df.groupby("A")
|
57 |
+
sg = g.A
|
58 |
+
|
59 |
+
expected = Series([0, 1, 2, 0, 3], index=mi)
|
60 |
+
|
61 |
+
tm.assert_series_equal(expected, g.cumcount())
|
62 |
+
tm.assert_series_equal(expected, sg.cumcount())
|
63 |
+
|
64 |
+
def test_cumcount_groupby_not_col(self):
|
65 |
+
df = DataFrame(
|
66 |
+
[["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5
|
67 |
+
)
|
68 |
+
g = df.groupby([0, 0, 0, 1, 0])
|
69 |
+
sg = g.A
|
70 |
+
|
71 |
+
expected = Series([0, 1, 2, 0, 3], index=[0] * 5)
|
72 |
+
|
73 |
+
tm.assert_series_equal(expected, g.cumcount())
|
74 |
+
tm.assert_series_equal(expected, sg.cumcount())
|
75 |
+
|
76 |
+
def test_ngroup(self):
|
77 |
+
df = DataFrame({"A": list("aaaba")})
|
78 |
+
g = df.groupby("A")
|
79 |
+
sg = g.A
|
80 |
+
|
81 |
+
expected = Series([0, 0, 0, 1, 0])
|
82 |
+
|
83 |
+
tm.assert_series_equal(expected, g.ngroup())
|
84 |
+
tm.assert_series_equal(expected, sg.ngroup())
|
85 |
+
|
86 |
+
def test_ngroup_distinct(self):
|
87 |
+
df = DataFrame({"A": list("abcde")})
|
88 |
+
g = df.groupby("A")
|
89 |
+
sg = g.A
|
90 |
+
|
91 |
+
expected = Series(range(5), dtype="int64")
|
92 |
+
|
93 |
+
tm.assert_series_equal(expected, g.ngroup())
|
94 |
+
tm.assert_series_equal(expected, sg.ngroup())
|
95 |
+
|
96 |
+
def test_ngroup_one_group(self):
|
97 |
+
df = DataFrame({"A": [0] * 5})
|
98 |
+
g = df.groupby("A")
|
99 |
+
sg = g.A
|
100 |
+
|
101 |
+
expected = Series([0] * 5)
|
102 |
+
|
103 |
+
tm.assert_series_equal(expected, g.ngroup())
|
104 |
+
tm.assert_series_equal(expected, sg.ngroup())
|
105 |
+
|
106 |
+
def test_ngroup_empty(self):
|
107 |
+
ge = DataFrame().groupby(level=0)
|
108 |
+
se = Series(dtype=object).groupby(level=0)
|
109 |
+
|
110 |
+
# edge case, as this is usually considered float
|
111 |
+
e = Series(dtype="int64")
|
112 |
+
|
113 |
+
tm.assert_series_equal(e, ge.ngroup())
|
114 |
+
tm.assert_series_equal(e, se.ngroup())
|
115 |
+
|
116 |
+
def test_ngroup_series_matches_frame(self):
|
117 |
+
df = DataFrame({"A": list("aaaba")})
|
118 |
+
s = Series(list("aaaba"))
|
119 |
+
|
120 |
+
tm.assert_series_equal(df.groupby(s).ngroup(), s.groupby(s).ngroup())
|
121 |
+
|
122 |
+
def test_ngroup_dupe_index(self):
|
123 |
+
df = DataFrame({"A": list("aaaba")}, index=[0] * 5)
|
124 |
+
g = df.groupby("A")
|
125 |
+
sg = g.A
|
126 |
+
|
127 |
+
expected = Series([0, 0, 0, 1, 0], index=[0] * 5)
|
128 |
+
|
129 |
+
tm.assert_series_equal(expected, g.ngroup())
|
130 |
+
tm.assert_series_equal(expected, sg.ngroup())
|
131 |
+
|
132 |
+
def test_ngroup_mi(self):
|
133 |
+
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]])
|
134 |
+
df = DataFrame({"A": list("aaaba")}, index=mi)
|
135 |
+
g = df.groupby("A")
|
136 |
+
sg = g.A
|
137 |
+
expected = Series([0, 0, 0, 1, 0], index=mi)
|
138 |
+
|
139 |
+
tm.assert_series_equal(expected, g.ngroup())
|
140 |
+
tm.assert_series_equal(expected, sg.ngroup())
|
141 |
+
|
142 |
+
def test_ngroup_groupby_not_col(self):
|
143 |
+
df = DataFrame({"A": list("aaaba")}, index=[0] * 5)
|
144 |
+
g = df.groupby([0, 0, 0, 1, 0])
|
145 |
+
sg = g.A
|
146 |
+
|
147 |
+
expected = Series([0, 0, 0, 1, 0], index=[0] * 5)
|
148 |
+
|
149 |
+
tm.assert_series_equal(expected, g.ngroup())
|
150 |
+
tm.assert_series_equal(expected, sg.ngroup())
|
151 |
+
|
152 |
+
def test_ngroup_descending(self):
|
153 |
+
df = DataFrame(["a", "a", "b", "a", "b"], columns=["A"])
|
154 |
+
g = df.groupby(["A"])
|
155 |
+
|
156 |
+
ascending = Series([0, 0, 1, 0, 1])
|
157 |
+
descending = Series([1, 1, 0, 1, 0])
|
158 |
+
|
159 |
+
tm.assert_series_equal(descending, (g.ngroups - 1) - ascending)
|
160 |
+
tm.assert_series_equal(ascending, g.ngroup(ascending=True))
|
161 |
+
tm.assert_series_equal(descending, g.ngroup(ascending=False))
|
162 |
+
|
163 |
+
def test_ngroup_matches_cumcount(self):
|
164 |
+
# verify one manually-worked out case works
|
165 |
+
df = DataFrame(
|
166 |
+
[["a", "x"], ["a", "y"], ["b", "x"], ["a", "x"], ["b", "y"]],
|
167 |
+
columns=["A", "X"],
|
168 |
+
)
|
169 |
+
g = df.groupby(["A", "X"])
|
170 |
+
g_ngroup = g.ngroup()
|
171 |
+
g_cumcount = g.cumcount()
|
172 |
+
expected_ngroup = Series([0, 1, 2, 0, 3])
|
173 |
+
expected_cumcount = Series([0, 0, 0, 1, 0])
|
174 |
+
|
175 |
+
tm.assert_series_equal(g_ngroup, expected_ngroup)
|
176 |
+
tm.assert_series_equal(g_cumcount, expected_cumcount)
|
177 |
+
|
178 |
+
def test_ngroup_cumcount_pair(self):
|
179 |
+
# brute force comparison for all small series
|
180 |
+
for p in product(range(3), repeat=4):
|
181 |
+
df = DataFrame({"a": p})
|
182 |
+
g = df.groupby(["a"])
|
183 |
+
|
184 |
+
order = sorted(set(p))
|
185 |
+
ngroupd = [order.index(val) for val in p]
|
186 |
+
cumcounted = [p[:i].count(val) for i, val in enumerate(p)]
|
187 |
+
|
188 |
+
tm.assert_series_equal(g.ngroup(), Series(ngroupd))
|
189 |
+
tm.assert_series_equal(g.cumcount(), Series(cumcounted))
|
190 |
+
|
191 |
+
def test_ngroup_respects_groupby_order(self, sort):
|
192 |
+
df = DataFrame({"a": np.random.default_rng(2).choice(list("abcdef"), 100)})
|
193 |
+
g = df.groupby("a", sort=sort)
|
194 |
+
df["group_id"] = -1
|
195 |
+
df["group_index"] = -1
|
196 |
+
|
197 |
+
for i, (_, group) in enumerate(g):
|
198 |
+
df.loc[group.index, "group_id"] = i
|
199 |
+
for j, ind in enumerate(group.index):
|
200 |
+
df.loc[ind, "group_index"] = j
|
201 |
+
|
202 |
+
tm.assert_series_equal(Series(df["group_id"].values), g.ngroup())
|
203 |
+
tm.assert_series_equal(Series(df["group_index"].values), g.cumcount())
|
204 |
+
|
205 |
+
@pytest.mark.parametrize(
|
206 |
+
"datetimelike",
|
207 |
+
[
|
208 |
+
[Timestamp(f"2016-05-{i:02d} 20:09:25+00:00") for i in range(1, 4)],
|
209 |
+
[Timestamp(f"2016-05-{i:02d} 20:09:25") for i in range(1, 4)],
|
210 |
+
[Timestamp(f"2016-05-{i:02d} 20:09:25", tz="UTC") for i in range(1, 4)],
|
211 |
+
[Timedelta(x, unit="h") for x in range(1, 4)],
|
212 |
+
[Period(freq="2W", year=2017, month=x) for x in range(1, 4)],
|
213 |
+
],
|
214 |
+
)
|
215 |
+
def test_count_with_datetimelike(self, datetimelike):
|
216 |
+
# test for #13393, where DataframeGroupBy.count() fails
|
217 |
+
# when counting a datetimelike column.
|
218 |
+
|
219 |
+
df = DataFrame({"x": ["a", "a", "b"], "y": datetimelike})
|
220 |
+
res = df.groupby("x").count()
|
221 |
+
expected = DataFrame({"y": [2, 1]}, index=["a", "b"])
|
222 |
+
expected.index.name = "x"
|
223 |
+
tm.assert_frame_equal(expected, res)
|
224 |
+
|
225 |
+
def test_count_with_only_nans_in_first_group(self):
|
226 |
+
# GH21956
|
227 |
+
df = DataFrame({"A": [np.nan, np.nan], "B": ["a", "b"], "C": [1, 2]})
|
228 |
+
result = df.groupby(["A", "B"]).C.count()
|
229 |
+
mi = MultiIndex(levels=[[], ["a", "b"]], codes=[[], []], names=["A", "B"])
|
230 |
+
expected = Series([], index=mi, dtype=np.int64, name="C")
|
231 |
+
tm.assert_series_equal(result, expected, check_index_type=False)
|
232 |
+
|
233 |
+
def test_count_groupby_column_with_nan_in_groupby_column(self):
|
234 |
+
# https://github.com/pandas-dev/pandas/issues/32841
|
235 |
+
df = DataFrame({"A": [1, 1, 1, 1, 1], "B": [5, 4, np.nan, 3, 0]})
|
236 |
+
res = df.groupby(["B"]).count()
|
237 |
+
expected = DataFrame(
|
238 |
+
index=Index([0.0, 3.0, 4.0, 5.0], name="B"), data={"A": [1, 1, 1, 1]}
|
239 |
+
)
|
240 |
+
tm.assert_frame_equal(expected, res)
|
241 |
+
|
242 |
+
def test_groupby_count_dateparseerror(self):
|
243 |
+
dr = date_range(start="1/1/2012", freq="5min", periods=10)
|
244 |
+
|
245 |
+
# BAD Example, datetimes first
|
246 |
+
ser = Series(np.arange(10), index=[dr, np.arange(10)])
|
247 |
+
grouped = ser.groupby(lambda x: x[1] % 2 == 0)
|
248 |
+
result = grouped.count()
|
249 |
+
|
250 |
+
ser = Series(np.arange(10), index=[np.arange(10), dr])
|
251 |
+
grouped = ser.groupby(lambda x: x[0] % 2 == 0)
|
252 |
+
expected = grouped.count()
|
253 |
+
|
254 |
+
tm.assert_series_equal(result, expected)
|
255 |
+
|
256 |
+
|
257 |
+
def test_groupby_timedelta_cython_count():
|
258 |
+
df = DataFrame(
|
259 |
+
{"g": list("ab" * 2), "delta": np.arange(4).astype("timedelta64[ns]")}
|
260 |
+
)
|
261 |
+
expected = Series([2, 2], index=Index(["a", "b"], name="g"), name="delta")
|
262 |
+
result = df.groupby("g").delta.count()
|
263 |
+
tm.assert_series_equal(expected, result)
|
264 |
+
|
265 |
+
|
266 |
+
def test_count():
|
267 |
+
n = 1 << 15
|
268 |
+
dr = date_range("2015-08-30", periods=n // 10, freq="min")
|
269 |
+
|
270 |
+
df = DataFrame(
|
271 |
+
{
|
272 |
+
"1st": np.random.default_rng(2).choice(list(ascii_lowercase), n),
|
273 |
+
"2nd": np.random.default_rng(2).integers(0, 5, n),
|
274 |
+
"3rd": np.random.default_rng(2).standard_normal(n).round(3),
|
275 |
+
"4th": np.random.default_rng(2).integers(-10, 10, n),
|
276 |
+
"5th": np.random.default_rng(2).choice(dr, n),
|
277 |
+
"6th": np.random.default_rng(2).standard_normal(n).round(3),
|
278 |
+
"7th": np.random.default_rng(2).standard_normal(n).round(3),
|
279 |
+
"8th": np.random.default_rng(2).choice(dr, n)
|
280 |
+
- np.random.default_rng(2).choice(dr, 1),
|
281 |
+
"9th": np.random.default_rng(2).choice(list(ascii_lowercase), n),
|
282 |
+
}
|
283 |
+
)
|
284 |
+
|
285 |
+
for col in df.columns.drop(["1st", "2nd", "4th"]):
|
286 |
+
df.loc[np.random.default_rng(2).choice(n, n // 10), col] = np.nan
|
287 |
+
|
288 |
+
df["9th"] = df["9th"].astype("category")
|
289 |
+
|
290 |
+
for key in ["1st", "2nd", ["1st", "2nd"]]:
|
291 |
+
left = df.groupby(key).count()
|
292 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
293 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
294 |
+
right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1)
|
295 |
+
tm.assert_frame_equal(left, right)
|
296 |
+
|
297 |
+
|
298 |
+
def test_count_non_nulls():
|
299 |
+
# GH#5610
|
300 |
+
# count counts non-nulls
|
301 |
+
df = DataFrame(
|
302 |
+
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, np.nan]],
|
303 |
+
columns=["A", "B", "C"],
|
304 |
+
)
|
305 |
+
|
306 |
+
count_as = df.groupby("A").count()
|
307 |
+
count_not_as = df.groupby("A", as_index=False).count()
|
308 |
+
|
309 |
+
expected = DataFrame([[1, 2], [0, 0]], columns=["B", "C"], index=[1, 3])
|
310 |
+
expected.index.name = "A"
|
311 |
+
tm.assert_frame_equal(count_not_as, expected.reset_index())
|
312 |
+
tm.assert_frame_equal(count_as, expected)
|
313 |
+
|
314 |
+
count_B = df.groupby("A")["B"].count()
|
315 |
+
tm.assert_series_equal(count_B, expected["B"])
|
316 |
+
|
317 |
+
|
318 |
+
def test_count_object():
|
319 |
+
df = DataFrame({"a": ["a"] * 3 + ["b"] * 3, "c": [2] * 3 + [3] * 3})
|
320 |
+
result = df.groupby("c").a.count()
|
321 |
+
expected = Series([3, 3], index=Index([2, 3], name="c"), name="a")
|
322 |
+
tm.assert_series_equal(result, expected)
|
323 |
+
|
324 |
+
df = DataFrame({"a": ["a", np.nan, np.nan] + ["b"] * 3, "c": [2] * 3 + [3] * 3})
|
325 |
+
result = df.groupby("c").a.count()
|
326 |
+
expected = Series([1, 3], index=Index([2, 3], name="c"), name="a")
|
327 |
+
tm.assert_series_equal(result, expected)
|
328 |
+
|
329 |
+
|
330 |
+
def test_count_cross_type():
|
331 |
+
# GH8169
|
332 |
+
# Set float64 dtype to avoid upcast when setting nan below
|
333 |
+
vals = np.hstack(
|
334 |
+
(
|
335 |
+
np.random.default_rng(2).integers(0, 5, (100, 2)),
|
336 |
+
np.random.default_rng(2).integers(0, 2, (100, 2)),
|
337 |
+
)
|
338 |
+
).astype("float64")
|
339 |
+
|
340 |
+
df = DataFrame(vals, columns=["a", "b", "c", "d"])
|
341 |
+
df[df == 2] = np.nan
|
342 |
+
expected = df.groupby(["c", "d"]).count()
|
343 |
+
|
344 |
+
for t in ["float32", "object"]:
|
345 |
+
df["a"] = df["a"].astype(t)
|
346 |
+
df["b"] = df["b"].astype(t)
|
347 |
+
result = df.groupby(["c", "d"]).count()
|
348 |
+
tm.assert_frame_equal(result, expected)
|
349 |
+
|
350 |
+
|
351 |
+
def test_lower_int_prec_count():
|
352 |
+
df = DataFrame(
|
353 |
+
{
|
354 |
+
"a": np.array([0, 1, 2, 100], np.int8),
|
355 |
+
"b": np.array([1, 2, 3, 6], np.uint32),
|
356 |
+
"c": np.array([4, 5, 6, 8], np.int16),
|
357 |
+
"grp": list("ab" * 2),
|
358 |
+
}
|
359 |
+
)
|
360 |
+
result = df.groupby("grp").count()
|
361 |
+
expected = DataFrame(
|
362 |
+
{"a": [2, 2], "b": [2, 2], "c": [2, 2]}, index=Index(list("ab"), name="grp")
|
363 |
+
)
|
364 |
+
tm.assert_frame_equal(result, expected)
|
365 |
+
|
366 |
+
|
367 |
+
def test_count_uses_size_on_exception():
|
368 |
+
class RaisingObjectException(Exception):
|
369 |
+
pass
|
370 |
+
|
371 |
+
class RaisingObject:
|
372 |
+
def __init__(self, msg="I will raise inside Cython") -> None:
|
373 |
+
super().__init__()
|
374 |
+
self.msg = msg
|
375 |
+
|
376 |
+
def __eq__(self, other):
|
377 |
+
# gets called in Cython to check that raising calls the method
|
378 |
+
raise RaisingObjectException(self.msg)
|
379 |
+
|
380 |
+
df = DataFrame({"a": [RaisingObject() for _ in range(4)], "grp": list("ab" * 2)})
|
381 |
+
result = df.groupby("grp").count()
|
382 |
+
expected = DataFrame({"a": [2, 2]}, index=Index(list("ab"), name="grp"))
|
383 |
+
tm.assert_frame_equal(result, expected)
|
384 |
+
|
385 |
+
|
386 |
+
def test_count_arrow_string_array(any_string_dtype):
|
387 |
+
# GH#54751
|
388 |
+
pytest.importorskip("pyarrow")
|
389 |
+
df = DataFrame(
|
390 |
+
{"a": [1, 2, 3], "b": Series(["a", "b", "a"], dtype=any_string_dtype)}
|
391 |
+
)
|
392 |
+
result = df.groupby("a").count()
|
393 |
+
expected = DataFrame({"b": 1}, index=Index([1, 2, 3], name="a"))
|
394 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_cumulative.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.errors import UnsupportedFunctionCall
|
5 |
+
import pandas.util._test_decorators as td
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from pandas import (
|
9 |
+
DataFrame,
|
10 |
+
Series,
|
11 |
+
)
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
|
15 |
+
@pytest.fixture(
|
16 |
+
params=[np.int32, np.int64, np.float32, np.float64, "Int64", "Float64"],
|
17 |
+
ids=["np.int32", "np.int64", "np.float32", "np.float64", "Int64", "Float64"],
|
18 |
+
)
|
19 |
+
def dtypes_for_minmax(request):
|
20 |
+
"""
|
21 |
+
Fixture of dtypes with min and max values used for testing
|
22 |
+
cummin and cummax
|
23 |
+
"""
|
24 |
+
dtype = request.param
|
25 |
+
|
26 |
+
np_type = dtype
|
27 |
+
if dtype == "Int64":
|
28 |
+
np_type = np.int64
|
29 |
+
elif dtype == "Float64":
|
30 |
+
np_type = np.float64
|
31 |
+
|
32 |
+
min_val = (
|
33 |
+
np.iinfo(np_type).min
|
34 |
+
if np.dtype(np_type).kind == "i"
|
35 |
+
else np.finfo(np_type).min
|
36 |
+
)
|
37 |
+
max_val = (
|
38 |
+
np.iinfo(np_type).max
|
39 |
+
if np.dtype(np_type).kind == "i"
|
40 |
+
else np.finfo(np_type).max
|
41 |
+
)
|
42 |
+
|
43 |
+
return (dtype, min_val, max_val)
|
44 |
+
|
45 |
+
|
46 |
+
def test_groupby_cumprod():
|
47 |
+
# GH 4095
|
48 |
+
df = DataFrame({"key": ["b"] * 10, "value": 2})
|
49 |
+
|
50 |
+
actual = df.groupby("key")["value"].cumprod()
|
51 |
+
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
|
52 |
+
expected.name = "value"
|
53 |
+
tm.assert_series_equal(actual, expected)
|
54 |
+
|
55 |
+
df = DataFrame({"key": ["b"] * 100, "value": 2})
|
56 |
+
df["value"] = df["value"].astype(float)
|
57 |
+
actual = df.groupby("key")["value"].cumprod()
|
58 |
+
expected = df.groupby("key", group_keys=False)["value"].apply(lambda x: x.cumprod())
|
59 |
+
expected.name = "value"
|
60 |
+
tm.assert_series_equal(actual, expected)
|
61 |
+
|
62 |
+
|
63 |
+
@pytest.mark.skip_ubsan
|
64 |
+
def test_groupby_cumprod_overflow():
|
65 |
+
# GH#37493 if we overflow we return garbage consistent with numpy
|
66 |
+
df = DataFrame({"key": ["b"] * 4, "value": 100_000})
|
67 |
+
actual = df.groupby("key")["value"].cumprod()
|
68 |
+
expected = Series(
|
69 |
+
[100_000, 10_000_000_000, 1_000_000_000_000_000, 7766279631452241920],
|
70 |
+
name="value",
|
71 |
+
)
|
72 |
+
tm.assert_series_equal(actual, expected)
|
73 |
+
|
74 |
+
numpy_result = df.groupby("key", group_keys=False)["value"].apply(
|
75 |
+
lambda x: x.cumprod()
|
76 |
+
)
|
77 |
+
numpy_result.name = "value"
|
78 |
+
tm.assert_series_equal(actual, numpy_result)
|
79 |
+
|
80 |
+
|
81 |
+
def test_groupby_cumprod_nan_influences_other_columns():
|
82 |
+
# GH#48064
|
83 |
+
df = DataFrame(
|
84 |
+
{
|
85 |
+
"a": 1,
|
86 |
+
"b": [1, np.nan, 2],
|
87 |
+
"c": [1, 2, 3.0],
|
88 |
+
}
|
89 |
+
)
|
90 |
+
result = df.groupby("a").cumprod(numeric_only=True, skipna=False)
|
91 |
+
expected = DataFrame({"b": [1, np.nan, np.nan], "c": [1, 2, 6.0]})
|
92 |
+
tm.assert_frame_equal(result, expected)
|
93 |
+
|
94 |
+
|
95 |
+
def test_cummin(dtypes_for_minmax):
|
96 |
+
dtype = dtypes_for_minmax[0]
|
97 |
+
min_val = dtypes_for_minmax[1]
|
98 |
+
|
99 |
+
# GH 15048
|
100 |
+
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
|
101 |
+
expected_mins = [3, 3, 3, 2, 2, 2, 2, 1]
|
102 |
+
|
103 |
+
df = base_df.astype(dtype)
|
104 |
+
|
105 |
+
expected = DataFrame({"B": expected_mins}).astype(dtype)
|
106 |
+
result = df.groupby("A").cummin()
|
107 |
+
tm.assert_frame_equal(result, expected)
|
108 |
+
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
|
109 |
+
tm.assert_frame_equal(result, expected)
|
110 |
+
|
111 |
+
# Test w/ min value for dtype
|
112 |
+
df.loc[[2, 6], "B"] = min_val
|
113 |
+
df.loc[[1, 5], "B"] = min_val + 1
|
114 |
+
expected.loc[[2, 3, 6, 7], "B"] = min_val
|
115 |
+
expected.loc[[1, 5], "B"] = min_val + 1 # should not be rounded to min_val
|
116 |
+
result = df.groupby("A").cummin()
|
117 |
+
tm.assert_frame_equal(result, expected, check_exact=True)
|
118 |
+
expected = (
|
119 |
+
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
|
120 |
+
)
|
121 |
+
tm.assert_frame_equal(result, expected, check_exact=True)
|
122 |
+
|
123 |
+
# Test nan in some values
|
124 |
+
# Explicit cast to float to avoid implicit cast when setting nan
|
125 |
+
base_df = base_df.astype({"B": "float"})
|
126 |
+
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
|
127 |
+
expected = DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]})
|
128 |
+
result = base_df.groupby("A").cummin()
|
129 |
+
tm.assert_frame_equal(result, expected)
|
130 |
+
expected = (
|
131 |
+
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummin()).to_frame()
|
132 |
+
)
|
133 |
+
tm.assert_frame_equal(result, expected)
|
134 |
+
|
135 |
+
# GH 15561
|
136 |
+
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
|
137 |
+
expected = Series(pd.to_datetime("2001"), index=[0], name="b")
|
138 |
+
|
139 |
+
result = df.groupby("a")["b"].cummin()
|
140 |
+
tm.assert_series_equal(expected, result)
|
141 |
+
|
142 |
+
# GH 15635
|
143 |
+
df = DataFrame({"a": [1, 2, 1], "b": [1, 2, 2]})
|
144 |
+
result = df.groupby("a").b.cummin()
|
145 |
+
expected = Series([1, 2, 1], name="b")
|
146 |
+
tm.assert_series_equal(result, expected)
|
147 |
+
|
148 |
+
|
149 |
+
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
150 |
+
@pytest.mark.parametrize("dtype", ["UInt64", "Int64", "Float64", "float", "boolean"])
|
151 |
+
def test_cummin_max_all_nan_column(method, dtype):
|
152 |
+
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8})
|
153 |
+
base_df["B"] = base_df["B"].astype(dtype)
|
154 |
+
grouped = base_df.groupby("A")
|
155 |
+
|
156 |
+
expected = DataFrame({"B": [np.nan] * 8}, dtype=dtype)
|
157 |
+
result = getattr(grouped, method)()
|
158 |
+
tm.assert_frame_equal(expected, result)
|
159 |
+
|
160 |
+
result = getattr(grouped["B"], method)().to_frame()
|
161 |
+
tm.assert_frame_equal(expected, result)
|
162 |
+
|
163 |
+
|
164 |
+
def test_cummax(dtypes_for_minmax):
|
165 |
+
dtype = dtypes_for_minmax[0]
|
166 |
+
max_val = dtypes_for_minmax[2]
|
167 |
+
|
168 |
+
# GH 15048
|
169 |
+
base_df = DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]})
|
170 |
+
expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3]
|
171 |
+
|
172 |
+
df = base_df.astype(dtype)
|
173 |
+
|
174 |
+
expected = DataFrame({"B": expected_maxs}).astype(dtype)
|
175 |
+
result = df.groupby("A").cummax()
|
176 |
+
tm.assert_frame_equal(result, expected)
|
177 |
+
result = df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
|
178 |
+
tm.assert_frame_equal(result, expected)
|
179 |
+
|
180 |
+
# Test w/ max value for dtype
|
181 |
+
df.loc[[2, 6], "B"] = max_val
|
182 |
+
expected.loc[[2, 3, 6, 7], "B"] = max_val
|
183 |
+
result = df.groupby("A").cummax()
|
184 |
+
tm.assert_frame_equal(result, expected)
|
185 |
+
expected = (
|
186 |
+
df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
|
187 |
+
)
|
188 |
+
tm.assert_frame_equal(result, expected)
|
189 |
+
|
190 |
+
# Test nan in some values
|
191 |
+
# Explicit cast to float to avoid implicit cast when setting nan
|
192 |
+
base_df = base_df.astype({"B": "float"})
|
193 |
+
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
|
194 |
+
expected = DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]})
|
195 |
+
result = base_df.groupby("A").cummax()
|
196 |
+
tm.assert_frame_equal(result, expected)
|
197 |
+
expected = (
|
198 |
+
base_df.groupby("A", group_keys=False).B.apply(lambda x: x.cummax()).to_frame()
|
199 |
+
)
|
200 |
+
tm.assert_frame_equal(result, expected)
|
201 |
+
|
202 |
+
# GH 15561
|
203 |
+
df = DataFrame({"a": [1], "b": pd.to_datetime(["2001"])})
|
204 |
+
expected = Series(pd.to_datetime("2001"), index=[0], name="b")
|
205 |
+
|
206 |
+
result = df.groupby("a")["b"].cummax()
|
207 |
+
tm.assert_series_equal(expected, result)
|
208 |
+
|
209 |
+
# GH 15635
|
210 |
+
df = DataFrame({"a": [1, 2, 1], "b": [2, 1, 1]})
|
211 |
+
result = df.groupby("a").b.cummax()
|
212 |
+
expected = Series([2, 1, 2], name="b")
|
213 |
+
tm.assert_series_equal(result, expected)
|
214 |
+
|
215 |
+
|
216 |
+
def test_cummax_i8_at_implementation_bound():
|
217 |
+
# the minimum value used to be treated as NPY_NAT+1 instead of NPY_NAT
|
218 |
+
# for int64 dtype GH#46382
|
219 |
+
ser = Series([pd.NaT._value + n for n in range(5)])
|
220 |
+
df = DataFrame({"A": 1, "B": ser, "C": ser._values.view("M8[ns]")})
|
221 |
+
gb = df.groupby("A")
|
222 |
+
|
223 |
+
res = gb.cummax()
|
224 |
+
exp = df[["B", "C"]]
|
225 |
+
tm.assert_frame_equal(res, exp)
|
226 |
+
|
227 |
+
|
228 |
+
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
229 |
+
@pytest.mark.parametrize("dtype", ["float", "Int64", "Float64"])
|
230 |
+
@pytest.mark.parametrize(
|
231 |
+
"groups,expected_data",
|
232 |
+
[
|
233 |
+
([1, 1, 1], [1, None, None]),
|
234 |
+
([1, 2, 3], [1, None, 2]),
|
235 |
+
([1, 3, 3], [1, None, None]),
|
236 |
+
],
|
237 |
+
)
|
238 |
+
def test_cummin_max_skipna(method, dtype, groups, expected_data):
|
239 |
+
# GH-34047
|
240 |
+
df = DataFrame({"a": Series([1, None, 2], dtype=dtype)})
|
241 |
+
orig = df.copy()
|
242 |
+
gb = df.groupby(groups)["a"]
|
243 |
+
|
244 |
+
result = getattr(gb, method)(skipna=False)
|
245 |
+
expected = Series(expected_data, dtype=dtype, name="a")
|
246 |
+
|
247 |
+
# check we didn't accidentally alter df
|
248 |
+
tm.assert_frame_equal(df, orig)
|
249 |
+
|
250 |
+
tm.assert_series_equal(result, expected)
|
251 |
+
|
252 |
+
|
253 |
+
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
254 |
+
def test_cummin_max_skipna_multiple_cols(method):
|
255 |
+
# Ensure missing value in "a" doesn't cause "b" to be nan-filled
|
256 |
+
df = DataFrame({"a": [np.nan, 2.0, 2.0], "b": [2.0, 2.0, 2.0]})
|
257 |
+
gb = df.groupby([1, 1, 1])[["a", "b"]]
|
258 |
+
|
259 |
+
result = getattr(gb, method)(skipna=False)
|
260 |
+
expected = DataFrame({"a": [np.nan, np.nan, np.nan], "b": [2.0, 2.0, 2.0]})
|
261 |
+
|
262 |
+
tm.assert_frame_equal(result, expected)
|
263 |
+
|
264 |
+
|
265 |
+
@pytest.mark.parametrize("func", ["cumprod", "cumsum"])
|
266 |
+
def test_numpy_compat(func):
|
267 |
+
# see gh-12811
|
268 |
+
df = DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
|
269 |
+
g = df.groupby("A")
|
270 |
+
|
271 |
+
msg = "numpy operations are not valid with groupby"
|
272 |
+
|
273 |
+
with pytest.raises(UnsupportedFunctionCall, match=msg):
|
274 |
+
getattr(g, func)(1, 2, 3)
|
275 |
+
with pytest.raises(UnsupportedFunctionCall, match=msg):
|
276 |
+
getattr(g, func)(foo=1)
|
277 |
+
|
278 |
+
|
279 |
+
@td.skip_if_32bit
|
280 |
+
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
281 |
+
@pytest.mark.parametrize(
|
282 |
+
"dtype,val", [("UInt64", np.iinfo("uint64").max), ("Int64", 2**53 + 1)]
|
283 |
+
)
|
284 |
+
def test_nullable_int_not_cast_as_float(method, dtype, val):
|
285 |
+
data = [val, pd.NA]
|
286 |
+
df = DataFrame({"grp": [1, 1], "b": data}, dtype=dtype)
|
287 |
+
grouped = df.groupby("grp")
|
288 |
+
|
289 |
+
result = grouped.transform(method)
|
290 |
+
expected = DataFrame({"b": data}, dtype=dtype)
|
291 |
+
|
292 |
+
tm.assert_frame_equal(result, expected)
|
293 |
+
|
294 |
+
|
295 |
+
def test_cython_api2():
|
296 |
+
# this takes the fast apply path
|
297 |
+
|
298 |
+
# cumsum (GH5614)
|
299 |
+
df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"])
|
300 |
+
expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"])
|
301 |
+
result = df.groupby("A").cumsum()
|
302 |
+
tm.assert_frame_equal(result, expected)
|
303 |
+
|
304 |
+
# GH 5755 - cumsum is a transformer and should ignore as_index
|
305 |
+
result = df.groupby("A", as_index=False).cumsum()
|
306 |
+
tm.assert_frame_equal(result, expected)
|
307 |
+
|
308 |
+
# GH 13994
|
309 |
+
msg = "DataFrameGroupBy.cumsum with axis=1 is deprecated"
|
310 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
311 |
+
result = df.groupby("A").cumsum(axis=1)
|
312 |
+
expected = df.cumsum(axis=1)
|
313 |
+
tm.assert_frame_equal(result, expected)
|
314 |
+
|
315 |
+
msg = "DataFrameGroupBy.cumprod with axis=1 is deprecated"
|
316 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
317 |
+
result = df.groupby("A").cumprod(axis=1)
|
318 |
+
expected = df.cumprod(axis=1)
|
319 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_filters.py
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from string import ascii_lowercase
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import (
|
8 |
+
DataFrame,
|
9 |
+
Series,
|
10 |
+
Timestamp,
|
11 |
+
)
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
|
15 |
+
def test_filter_series():
|
16 |
+
s = Series([1, 3, 20, 5, 22, 24, 7])
|
17 |
+
expected_odd = Series([1, 3, 5, 7], index=[0, 1, 3, 6])
|
18 |
+
expected_even = Series([20, 22, 24], index=[2, 4, 5])
|
19 |
+
grouper = s.apply(lambda x: x % 2)
|
20 |
+
grouped = s.groupby(grouper)
|
21 |
+
tm.assert_series_equal(grouped.filter(lambda x: x.mean() < 10), expected_odd)
|
22 |
+
tm.assert_series_equal(grouped.filter(lambda x: x.mean() > 10), expected_even)
|
23 |
+
# Test dropna=False.
|
24 |
+
tm.assert_series_equal(
|
25 |
+
grouped.filter(lambda x: x.mean() < 10, dropna=False),
|
26 |
+
expected_odd.reindex(s.index),
|
27 |
+
)
|
28 |
+
tm.assert_series_equal(
|
29 |
+
grouped.filter(lambda x: x.mean() > 10, dropna=False),
|
30 |
+
expected_even.reindex(s.index),
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def test_filter_single_column_df():
|
35 |
+
df = DataFrame([1, 3, 20, 5, 22, 24, 7])
|
36 |
+
expected_odd = DataFrame([1, 3, 5, 7], index=[0, 1, 3, 6])
|
37 |
+
expected_even = DataFrame([20, 22, 24], index=[2, 4, 5])
|
38 |
+
grouper = df[0].apply(lambda x: x % 2)
|
39 |
+
grouped = df.groupby(grouper)
|
40 |
+
tm.assert_frame_equal(grouped.filter(lambda x: x.mean() < 10), expected_odd)
|
41 |
+
tm.assert_frame_equal(grouped.filter(lambda x: x.mean() > 10), expected_even)
|
42 |
+
# Test dropna=False.
|
43 |
+
tm.assert_frame_equal(
|
44 |
+
grouped.filter(lambda x: x.mean() < 10, dropna=False),
|
45 |
+
expected_odd.reindex(df.index),
|
46 |
+
)
|
47 |
+
tm.assert_frame_equal(
|
48 |
+
grouped.filter(lambda x: x.mean() > 10, dropna=False),
|
49 |
+
expected_even.reindex(df.index),
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def test_filter_multi_column_df():
|
54 |
+
df = DataFrame({"A": [1, 12, 12, 1], "B": [1, 1, 1, 1]})
|
55 |
+
grouper = df["A"].apply(lambda x: x % 2)
|
56 |
+
grouped = df.groupby(grouper)
|
57 |
+
expected = DataFrame({"A": [12, 12], "B": [1, 1]}, index=[1, 2])
|
58 |
+
tm.assert_frame_equal(
|
59 |
+
grouped.filter(lambda x: x["A"].sum() - x["B"].sum() > 10), expected
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
def test_filter_mixed_df():
|
64 |
+
df = DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()})
|
65 |
+
grouper = df["A"].apply(lambda x: x % 2)
|
66 |
+
grouped = df.groupby(grouper)
|
67 |
+
expected = DataFrame({"A": [12, 12], "B": ["b", "c"]}, index=[1, 2])
|
68 |
+
tm.assert_frame_equal(grouped.filter(lambda x: x["A"].sum() > 10), expected)
|
69 |
+
|
70 |
+
|
71 |
+
def test_filter_out_all_groups():
|
72 |
+
s = Series([1, 3, 20, 5, 22, 24, 7])
|
73 |
+
grouper = s.apply(lambda x: x % 2)
|
74 |
+
grouped = s.groupby(grouper)
|
75 |
+
tm.assert_series_equal(grouped.filter(lambda x: x.mean() > 1000), s[[]])
|
76 |
+
df = DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()})
|
77 |
+
grouper = df["A"].apply(lambda x: x % 2)
|
78 |
+
grouped = df.groupby(grouper)
|
79 |
+
tm.assert_frame_equal(grouped.filter(lambda x: x["A"].sum() > 1000), df.loc[[]])
|
80 |
+
|
81 |
+
|
82 |
+
def test_filter_out_no_groups():
|
83 |
+
s = Series([1, 3, 20, 5, 22, 24, 7])
|
84 |
+
grouper = s.apply(lambda x: x % 2)
|
85 |
+
grouped = s.groupby(grouper)
|
86 |
+
filtered = grouped.filter(lambda x: x.mean() > 0)
|
87 |
+
tm.assert_series_equal(filtered, s)
|
88 |
+
df = DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()})
|
89 |
+
grouper = df["A"].apply(lambda x: x % 2)
|
90 |
+
grouped = df.groupby(grouper)
|
91 |
+
filtered = grouped.filter(lambda x: x["A"].mean() > 0)
|
92 |
+
tm.assert_frame_equal(filtered, df)
|
93 |
+
|
94 |
+
|
95 |
+
def test_filter_out_all_groups_in_df():
|
96 |
+
# GH12768
|
97 |
+
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 0]})
|
98 |
+
res = df.groupby("a")
|
99 |
+
res = res.filter(lambda x: x["b"].sum() > 5, dropna=False)
|
100 |
+
expected = DataFrame({"a": [np.nan] * 3, "b": [np.nan] * 3})
|
101 |
+
tm.assert_frame_equal(expected, res)
|
102 |
+
|
103 |
+
df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 0]})
|
104 |
+
res = df.groupby("a")
|
105 |
+
res = res.filter(lambda x: x["b"].sum() > 5, dropna=True)
|
106 |
+
expected = DataFrame({"a": [], "b": []}, dtype="int64")
|
107 |
+
tm.assert_frame_equal(expected, res)
|
108 |
+
|
109 |
+
|
110 |
+
def test_filter_condition_raises():
|
111 |
+
def raise_if_sum_is_zero(x):
|
112 |
+
if x.sum() == 0:
|
113 |
+
raise ValueError
|
114 |
+
return x.sum() > 0
|
115 |
+
|
116 |
+
s = Series([-1, 0, 1, 2])
|
117 |
+
grouper = s.apply(lambda x: x % 2)
|
118 |
+
grouped = s.groupby(grouper)
|
119 |
+
msg = "the filter must return a boolean result"
|
120 |
+
with pytest.raises(TypeError, match=msg):
|
121 |
+
grouped.filter(raise_if_sum_is_zero)
|
122 |
+
|
123 |
+
|
124 |
+
def test_filter_with_axis_in_groupby():
|
125 |
+
# issue 11041
|
126 |
+
index = pd.MultiIndex.from_product([range(10), [0, 1]])
|
127 |
+
data = DataFrame(np.arange(100).reshape(-1, 20), columns=index, dtype="int64")
|
128 |
+
|
129 |
+
msg = "DataFrame.groupby with axis=1"
|
130 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
131 |
+
gb = data.groupby(level=0, axis=1)
|
132 |
+
result = gb.filter(lambda x: x.iloc[0, 0] > 10)
|
133 |
+
expected = data.iloc[:, 12:20]
|
134 |
+
tm.assert_frame_equal(result, expected)
|
135 |
+
|
136 |
+
|
137 |
+
def test_filter_bad_shapes():
|
138 |
+
df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)})
|
139 |
+
s = df["B"]
|
140 |
+
g_df = df.groupby("B")
|
141 |
+
g_s = s.groupby(s)
|
142 |
+
|
143 |
+
f = lambda x: x
|
144 |
+
msg = "filter function returned a DataFrame, but expected a scalar bool"
|
145 |
+
with pytest.raises(TypeError, match=msg):
|
146 |
+
g_df.filter(f)
|
147 |
+
msg = "the filter must return a boolean result"
|
148 |
+
with pytest.raises(TypeError, match=msg):
|
149 |
+
g_s.filter(f)
|
150 |
+
|
151 |
+
f = lambda x: x == 1
|
152 |
+
msg = "filter function returned a DataFrame, but expected a scalar bool"
|
153 |
+
with pytest.raises(TypeError, match=msg):
|
154 |
+
g_df.filter(f)
|
155 |
+
msg = "the filter must return a boolean result"
|
156 |
+
with pytest.raises(TypeError, match=msg):
|
157 |
+
g_s.filter(f)
|
158 |
+
|
159 |
+
f = lambda x: np.outer(x, x)
|
160 |
+
msg = "can't multiply sequence by non-int of type 'str'"
|
161 |
+
with pytest.raises(TypeError, match=msg):
|
162 |
+
g_df.filter(f)
|
163 |
+
msg = "the filter must return a boolean result"
|
164 |
+
with pytest.raises(TypeError, match=msg):
|
165 |
+
g_s.filter(f)
|
166 |
+
|
167 |
+
|
168 |
+
def test_filter_nan_is_false():
|
169 |
+
df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)})
|
170 |
+
s = df["B"]
|
171 |
+
g_df = df.groupby(df["B"])
|
172 |
+
g_s = s.groupby(s)
|
173 |
+
|
174 |
+
f = lambda x: np.nan
|
175 |
+
tm.assert_frame_equal(g_df.filter(f), df.loc[[]])
|
176 |
+
tm.assert_series_equal(g_s.filter(f), s[[]])
|
177 |
+
|
178 |
+
|
179 |
+
def test_filter_pdna_is_false():
|
180 |
+
# in particular, dont raise in filter trying to call bool(pd.NA)
|
181 |
+
df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)})
|
182 |
+
ser = df["B"]
|
183 |
+
g_df = df.groupby(df["B"])
|
184 |
+
g_s = ser.groupby(ser)
|
185 |
+
|
186 |
+
func = lambda x: pd.NA
|
187 |
+
res = g_df.filter(func)
|
188 |
+
tm.assert_frame_equal(res, df.loc[[]])
|
189 |
+
res = g_s.filter(func)
|
190 |
+
tm.assert_series_equal(res, ser[[]])
|
191 |
+
|
192 |
+
|
193 |
+
def test_filter_against_workaround_ints():
|
194 |
+
# Series of ints
|
195 |
+
s = Series(np.random.default_rng(2).integers(0, 100, 100))
|
196 |
+
grouper = s.apply(lambda x: np.round(x, -1))
|
197 |
+
grouped = s.groupby(grouper)
|
198 |
+
f = lambda x: x.mean() > 10
|
199 |
+
|
200 |
+
old_way = s[grouped.transform(f).astype("bool")]
|
201 |
+
new_way = grouped.filter(f)
|
202 |
+
tm.assert_series_equal(new_way.sort_values(), old_way.sort_values())
|
203 |
+
|
204 |
+
|
205 |
+
def test_filter_against_workaround_floats():
|
206 |
+
# Series of floats
|
207 |
+
s = 100 * Series(np.random.default_rng(2).random(100))
|
208 |
+
grouper = s.apply(lambda x: np.round(x, -1))
|
209 |
+
grouped = s.groupby(grouper)
|
210 |
+
f = lambda x: x.mean() > 10
|
211 |
+
old_way = s[grouped.transform(f).astype("bool")]
|
212 |
+
new_way = grouped.filter(f)
|
213 |
+
tm.assert_series_equal(new_way.sort_values(), old_way.sort_values())
|
214 |
+
|
215 |
+
|
216 |
+
def test_filter_against_workaround_dataframe():
|
217 |
+
# Set up DataFrame of ints, floats, strings.
|
218 |
+
letters = np.array(list(ascii_lowercase))
|
219 |
+
N = 100
|
220 |
+
random_letters = letters.take(
|
221 |
+
np.random.default_rng(2).integers(0, 26, N, dtype=int)
|
222 |
+
)
|
223 |
+
df = DataFrame(
|
224 |
+
{
|
225 |
+
"ints": Series(np.random.default_rng(2).integers(0, 100, N)),
|
226 |
+
"floats": N / 10 * Series(np.random.default_rng(2).random(N)),
|
227 |
+
"letters": Series(random_letters),
|
228 |
+
}
|
229 |
+
)
|
230 |
+
|
231 |
+
# Group by ints; filter on floats.
|
232 |
+
grouped = df.groupby("ints")
|
233 |
+
old_way = df[grouped.floats.transform(lambda x: x.mean() > N / 20).astype("bool")]
|
234 |
+
new_way = grouped.filter(lambda x: x["floats"].mean() > N / 20)
|
235 |
+
tm.assert_frame_equal(new_way, old_way)
|
236 |
+
|
237 |
+
# Group by floats (rounded); filter on strings.
|
238 |
+
grouper = df.floats.apply(lambda x: np.round(x, -1))
|
239 |
+
grouped = df.groupby(grouper)
|
240 |
+
old_way = df[grouped.letters.transform(lambda x: len(x) < N / 10).astype("bool")]
|
241 |
+
new_way = grouped.filter(lambda x: len(x.letters) < N / 10)
|
242 |
+
tm.assert_frame_equal(new_way, old_way)
|
243 |
+
|
244 |
+
# Group by strings; filter on ints.
|
245 |
+
grouped = df.groupby("letters")
|
246 |
+
old_way = df[grouped.ints.transform(lambda x: x.mean() > N / 20).astype("bool")]
|
247 |
+
new_way = grouped.filter(lambda x: x["ints"].mean() > N / 20)
|
248 |
+
tm.assert_frame_equal(new_way, old_way)
|
249 |
+
|
250 |
+
|
251 |
+
def test_filter_using_len():
|
252 |
+
# BUG GH4447
|
253 |
+
df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)})
|
254 |
+
grouped = df.groupby("B")
|
255 |
+
actual = grouped.filter(lambda x: len(x) > 2)
|
256 |
+
expected = DataFrame(
|
257 |
+
{"A": np.arange(2, 6), "B": list("bbbb"), "C": np.arange(2, 6)},
|
258 |
+
index=np.arange(2, 6, dtype=np.int64),
|
259 |
+
)
|
260 |
+
tm.assert_frame_equal(actual, expected)
|
261 |
+
|
262 |
+
actual = grouped.filter(lambda x: len(x) > 4)
|
263 |
+
expected = df.loc[[]]
|
264 |
+
tm.assert_frame_equal(actual, expected)
|
265 |
+
|
266 |
+
# Series have always worked properly, but we'll test anyway.
|
267 |
+
s = df["B"]
|
268 |
+
grouped = s.groupby(s)
|
269 |
+
actual = grouped.filter(lambda x: len(x) > 2)
|
270 |
+
expected = Series(4 * ["b"], index=np.arange(2, 6, dtype=np.int64), name="B")
|
271 |
+
tm.assert_series_equal(actual, expected)
|
272 |
+
|
273 |
+
actual = grouped.filter(lambda x: len(x) > 4)
|
274 |
+
expected = s[[]]
|
275 |
+
tm.assert_series_equal(actual, expected)
|
276 |
+
|
277 |
+
|
278 |
+
def test_filter_maintains_ordering():
|
279 |
+
# Simple case: index is sequential. #4621
|
280 |
+
df = DataFrame(
|
281 |
+
{"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]}
|
282 |
+
)
|
283 |
+
s = df["pid"]
|
284 |
+
grouped = df.groupby("tag")
|
285 |
+
actual = grouped.filter(lambda x: len(x) > 1)
|
286 |
+
expected = df.iloc[[1, 2, 4, 7]]
|
287 |
+
tm.assert_frame_equal(actual, expected)
|
288 |
+
|
289 |
+
grouped = s.groupby(df["tag"])
|
290 |
+
actual = grouped.filter(lambda x: len(x) > 1)
|
291 |
+
expected = s.iloc[[1, 2, 4, 7]]
|
292 |
+
tm.assert_series_equal(actual, expected)
|
293 |
+
|
294 |
+
# Now index is sequentially decreasing.
|
295 |
+
df.index = np.arange(len(df) - 1, -1, -1)
|
296 |
+
s = df["pid"]
|
297 |
+
grouped = df.groupby("tag")
|
298 |
+
actual = grouped.filter(lambda x: len(x) > 1)
|
299 |
+
expected = df.iloc[[1, 2, 4, 7]]
|
300 |
+
tm.assert_frame_equal(actual, expected)
|
301 |
+
|
302 |
+
grouped = s.groupby(df["tag"])
|
303 |
+
actual = grouped.filter(lambda x: len(x) > 1)
|
304 |
+
expected = s.iloc[[1, 2, 4, 7]]
|
305 |
+
tm.assert_series_equal(actual, expected)
|
306 |
+
|
307 |
+
# Index is shuffled.
|
308 |
+
SHUFFLED = [4, 6, 7, 2, 1, 0, 5, 3]
|
309 |
+
df.index = df.index[SHUFFLED]
|
310 |
+
s = df["pid"]
|
311 |
+
grouped = df.groupby("tag")
|
312 |
+
actual = grouped.filter(lambda x: len(x) > 1)
|
313 |
+
expected = df.iloc[[1, 2, 4, 7]]
|
314 |
+
tm.assert_frame_equal(actual, expected)
|
315 |
+
|
316 |
+
grouped = s.groupby(df["tag"])
|
317 |
+
actual = grouped.filter(lambda x: len(x) > 1)
|
318 |
+
expected = s.iloc[[1, 2, 4, 7]]
|
319 |
+
tm.assert_series_equal(actual, expected)
|
320 |
+
|
321 |
+
|
322 |
+
def test_filter_multiple_timestamp():
|
323 |
+
# GH 10114
|
324 |
+
df = DataFrame(
|
325 |
+
{
|
326 |
+
"A": np.arange(5, dtype="int64"),
|
327 |
+
"B": ["foo", "bar", "foo", "bar", "bar"],
|
328 |
+
"C": Timestamp("20130101"),
|
329 |
+
}
|
330 |
+
)
|
331 |
+
|
332 |
+
grouped = df.groupby(["B", "C"])
|
333 |
+
|
334 |
+
result = grouped["A"].filter(lambda x: True)
|
335 |
+
tm.assert_series_equal(df["A"], result)
|
336 |
+
|
337 |
+
result = grouped["A"].transform(len)
|
338 |
+
expected = Series([2, 3, 2, 3, 3], name="A")
|
339 |
+
tm.assert_series_equal(result, expected)
|
340 |
+
|
341 |
+
result = grouped.filter(lambda x: True)
|
342 |
+
tm.assert_frame_equal(df, result)
|
343 |
+
|
344 |
+
result = grouped.transform("sum")
|
345 |
+
expected = DataFrame({"A": [2, 8, 2, 8, 8]})
|
346 |
+
tm.assert_frame_equal(result, expected)
|
347 |
+
|
348 |
+
result = grouped.transform(len)
|
349 |
+
expected = DataFrame({"A": [2, 3, 2, 3, 3]})
|
350 |
+
tm.assert_frame_equal(result, expected)
|
351 |
+
|
352 |
+
|
353 |
+
def test_filter_and_transform_with_non_unique_int_index():
|
354 |
+
# GH4620
|
355 |
+
index = [1, 1, 1, 2, 1, 1, 0, 1]
|
356 |
+
df = DataFrame(
|
357 |
+
{"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]},
|
358 |
+
index=index,
|
359 |
+
)
|
360 |
+
grouped_df = df.groupby("tag")
|
361 |
+
ser = df["pid"]
|
362 |
+
grouped_ser = ser.groupby(df["tag"])
|
363 |
+
expected_indexes = [1, 2, 4, 7]
|
364 |
+
|
365 |
+
# Filter DataFrame
|
366 |
+
actual = grouped_df.filter(lambda x: len(x) > 1)
|
367 |
+
expected = df.iloc[expected_indexes]
|
368 |
+
tm.assert_frame_equal(actual, expected)
|
369 |
+
|
370 |
+
actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False)
|
371 |
+
# Cast to avoid upcast when setting nan below
|
372 |
+
expected = df.copy().astype("float64")
|
373 |
+
expected.iloc[[0, 3, 5, 6]] = np.nan
|
374 |
+
tm.assert_frame_equal(actual, expected)
|
375 |
+
|
376 |
+
# Filter Series
|
377 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1)
|
378 |
+
expected = ser.take(expected_indexes)
|
379 |
+
tm.assert_series_equal(actual, expected)
|
380 |
+
|
381 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False)
|
382 |
+
expected = Series([np.nan, 1, 1, np.nan, 2, np.nan, np.nan, 3], index, name="pid")
|
383 |
+
# ^ made manually because this can get confusing!
|
384 |
+
tm.assert_series_equal(actual, expected)
|
385 |
+
|
386 |
+
# Transform Series
|
387 |
+
actual = grouped_ser.transform(len)
|
388 |
+
expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid")
|
389 |
+
tm.assert_series_equal(actual, expected)
|
390 |
+
|
391 |
+
# Transform (a column from) DataFrameGroupBy
|
392 |
+
actual = grouped_df.pid.transform(len)
|
393 |
+
tm.assert_series_equal(actual, expected)
|
394 |
+
|
395 |
+
|
396 |
+
def test_filter_and_transform_with_multiple_non_unique_int_index():
|
397 |
+
# GH4620
|
398 |
+
index = [1, 1, 1, 2, 0, 0, 0, 1]
|
399 |
+
df = DataFrame(
|
400 |
+
{"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]},
|
401 |
+
index=index,
|
402 |
+
)
|
403 |
+
grouped_df = df.groupby("tag")
|
404 |
+
ser = df["pid"]
|
405 |
+
grouped_ser = ser.groupby(df["tag"])
|
406 |
+
expected_indexes = [1, 2, 4, 7]
|
407 |
+
|
408 |
+
# Filter DataFrame
|
409 |
+
actual = grouped_df.filter(lambda x: len(x) > 1)
|
410 |
+
expected = df.iloc[expected_indexes]
|
411 |
+
tm.assert_frame_equal(actual, expected)
|
412 |
+
|
413 |
+
actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False)
|
414 |
+
# Cast to avoid upcast when setting nan below
|
415 |
+
expected = df.copy().astype("float64")
|
416 |
+
expected.iloc[[0, 3, 5, 6]] = np.nan
|
417 |
+
tm.assert_frame_equal(actual, expected)
|
418 |
+
|
419 |
+
# Filter Series
|
420 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1)
|
421 |
+
expected = ser.take(expected_indexes)
|
422 |
+
tm.assert_series_equal(actual, expected)
|
423 |
+
|
424 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False)
|
425 |
+
expected = Series([np.nan, 1, 1, np.nan, 2, np.nan, np.nan, 3], index, name="pid")
|
426 |
+
# ^ made manually because this can get confusing!
|
427 |
+
tm.assert_series_equal(actual, expected)
|
428 |
+
|
429 |
+
# Transform Series
|
430 |
+
actual = grouped_ser.transform(len)
|
431 |
+
expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid")
|
432 |
+
tm.assert_series_equal(actual, expected)
|
433 |
+
|
434 |
+
# Transform (a column from) DataFrameGroupBy
|
435 |
+
actual = grouped_df.pid.transform(len)
|
436 |
+
tm.assert_series_equal(actual, expected)
|
437 |
+
|
438 |
+
|
439 |
+
def test_filter_and_transform_with_non_unique_float_index():
|
440 |
+
# GH4620
|
441 |
+
index = np.array([1, 1, 1, 2, 1, 1, 0, 1], dtype=float)
|
442 |
+
df = DataFrame(
|
443 |
+
{"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]},
|
444 |
+
index=index,
|
445 |
+
)
|
446 |
+
grouped_df = df.groupby("tag")
|
447 |
+
ser = df["pid"]
|
448 |
+
grouped_ser = ser.groupby(df["tag"])
|
449 |
+
expected_indexes = [1, 2, 4, 7]
|
450 |
+
|
451 |
+
# Filter DataFrame
|
452 |
+
actual = grouped_df.filter(lambda x: len(x) > 1)
|
453 |
+
expected = df.iloc[expected_indexes]
|
454 |
+
tm.assert_frame_equal(actual, expected)
|
455 |
+
|
456 |
+
actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False)
|
457 |
+
# Cast to avoid upcast when setting nan below
|
458 |
+
expected = df.copy().astype("float64")
|
459 |
+
expected.iloc[[0, 3, 5, 6]] = np.nan
|
460 |
+
tm.assert_frame_equal(actual, expected)
|
461 |
+
|
462 |
+
# Filter Series
|
463 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1)
|
464 |
+
expected = ser.take(expected_indexes)
|
465 |
+
tm.assert_series_equal(actual, expected)
|
466 |
+
|
467 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False)
|
468 |
+
expected = Series([np.nan, 1, 1, np.nan, 2, np.nan, np.nan, 3], index, name="pid")
|
469 |
+
# ^ made manually because this can get confusing!
|
470 |
+
tm.assert_series_equal(actual, expected)
|
471 |
+
|
472 |
+
# Transform Series
|
473 |
+
actual = grouped_ser.transform(len)
|
474 |
+
expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid")
|
475 |
+
tm.assert_series_equal(actual, expected)
|
476 |
+
|
477 |
+
# Transform (a column from) DataFrameGroupBy
|
478 |
+
actual = grouped_df.pid.transform(len)
|
479 |
+
tm.assert_series_equal(actual, expected)
|
480 |
+
|
481 |
+
|
482 |
+
def test_filter_and_transform_with_non_unique_timestamp_index():
|
483 |
+
# GH4620
|
484 |
+
t0 = Timestamp("2013-09-30 00:05:00")
|
485 |
+
t1 = Timestamp("2013-10-30 00:05:00")
|
486 |
+
t2 = Timestamp("2013-11-30 00:05:00")
|
487 |
+
index = [t1, t1, t1, t2, t1, t1, t0, t1]
|
488 |
+
df = DataFrame(
|
489 |
+
{"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]},
|
490 |
+
index=index,
|
491 |
+
)
|
492 |
+
grouped_df = df.groupby("tag")
|
493 |
+
ser = df["pid"]
|
494 |
+
grouped_ser = ser.groupby(df["tag"])
|
495 |
+
expected_indexes = [1, 2, 4, 7]
|
496 |
+
|
497 |
+
# Filter DataFrame
|
498 |
+
actual = grouped_df.filter(lambda x: len(x) > 1)
|
499 |
+
expected = df.iloc[expected_indexes]
|
500 |
+
tm.assert_frame_equal(actual, expected)
|
501 |
+
|
502 |
+
actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False)
|
503 |
+
# Cast to avoid upcast when setting nan below
|
504 |
+
expected = df.copy().astype("float64")
|
505 |
+
expected.iloc[[0, 3, 5, 6]] = np.nan
|
506 |
+
tm.assert_frame_equal(actual, expected)
|
507 |
+
|
508 |
+
# Filter Series
|
509 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1)
|
510 |
+
expected = ser.take(expected_indexes)
|
511 |
+
tm.assert_series_equal(actual, expected)
|
512 |
+
|
513 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False)
|
514 |
+
expected = Series([np.nan, 1, 1, np.nan, 2, np.nan, np.nan, 3], index, name="pid")
|
515 |
+
# ^ made manually because this can get confusing!
|
516 |
+
tm.assert_series_equal(actual, expected)
|
517 |
+
|
518 |
+
# Transform Series
|
519 |
+
actual = grouped_ser.transform(len)
|
520 |
+
expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid")
|
521 |
+
tm.assert_series_equal(actual, expected)
|
522 |
+
|
523 |
+
# Transform (a column from) DataFrameGroupBy
|
524 |
+
actual = grouped_df.pid.transform(len)
|
525 |
+
tm.assert_series_equal(actual, expected)
|
526 |
+
|
527 |
+
|
528 |
+
def test_filter_and_transform_with_non_unique_string_index():
|
529 |
+
# GH4620
|
530 |
+
index = list("bbbcbbab")
|
531 |
+
df = DataFrame(
|
532 |
+
{"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]},
|
533 |
+
index=index,
|
534 |
+
)
|
535 |
+
grouped_df = df.groupby("tag")
|
536 |
+
ser = df["pid"]
|
537 |
+
grouped_ser = ser.groupby(df["tag"])
|
538 |
+
expected_indexes = [1, 2, 4, 7]
|
539 |
+
|
540 |
+
# Filter DataFrame
|
541 |
+
actual = grouped_df.filter(lambda x: len(x) > 1)
|
542 |
+
expected = df.iloc[expected_indexes]
|
543 |
+
tm.assert_frame_equal(actual, expected)
|
544 |
+
|
545 |
+
actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False)
|
546 |
+
# Cast to avoid upcast when setting nan below
|
547 |
+
expected = df.copy().astype("float64")
|
548 |
+
expected.iloc[[0, 3, 5, 6]] = np.nan
|
549 |
+
tm.assert_frame_equal(actual, expected)
|
550 |
+
|
551 |
+
# Filter Series
|
552 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1)
|
553 |
+
expected = ser.take(expected_indexes)
|
554 |
+
tm.assert_series_equal(actual, expected)
|
555 |
+
|
556 |
+
actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False)
|
557 |
+
expected = Series([np.nan, 1, 1, np.nan, 2, np.nan, np.nan, 3], index, name="pid")
|
558 |
+
# ^ made manually because this can get confusing!
|
559 |
+
tm.assert_series_equal(actual, expected)
|
560 |
+
|
561 |
+
# Transform Series
|
562 |
+
actual = grouped_ser.transform(len)
|
563 |
+
expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid")
|
564 |
+
tm.assert_series_equal(actual, expected)
|
565 |
+
|
566 |
+
# Transform (a column from) DataFrameGroupBy
|
567 |
+
actual = grouped_df.pid.transform(len)
|
568 |
+
tm.assert_series_equal(actual, expected)
|
569 |
+
|
570 |
+
|
571 |
+
def test_filter_has_access_to_grouped_cols():
|
572 |
+
df = DataFrame([[1, 2], [1, 3], [5, 6]], columns=["A", "B"])
|
573 |
+
g = df.groupby("A")
|
574 |
+
# previously didn't have access to col A #????
|
575 |
+
filt = g.filter(lambda x: x["A"].sum() == 2)
|
576 |
+
tm.assert_frame_equal(filt, df.iloc[[0, 1]])
|
577 |
+
|
578 |
+
|
579 |
+
def test_filter_enforces_scalarness():
|
580 |
+
df = DataFrame(
|
581 |
+
[
|
582 |
+
["best", "a", "x"],
|
583 |
+
["worst", "b", "y"],
|
584 |
+
["best", "c", "x"],
|
585 |
+
["best", "d", "y"],
|
586 |
+
["worst", "d", "y"],
|
587 |
+
["worst", "d", "y"],
|
588 |
+
["best", "d", "z"],
|
589 |
+
],
|
590 |
+
columns=["a", "b", "c"],
|
591 |
+
)
|
592 |
+
with pytest.raises(TypeError, match="filter function returned a.*"):
|
593 |
+
df.groupby("c").filter(lambda g: g["a"] == "best")
|
594 |
+
|
595 |
+
|
596 |
+
def test_filter_non_bool_raises():
|
597 |
+
df = DataFrame(
|
598 |
+
[
|
599 |
+
["best", "a", 1],
|
600 |
+
["worst", "b", 1],
|
601 |
+
["best", "c", 1],
|
602 |
+
["best", "d", 1],
|
603 |
+
["worst", "d", 1],
|
604 |
+
["worst", "d", 1],
|
605 |
+
["best", "d", 1],
|
606 |
+
],
|
607 |
+
columns=["a", "b", "c"],
|
608 |
+
)
|
609 |
+
with pytest.raises(TypeError, match="filter function returned a.*"):
|
610 |
+
df.groupby("a").filter(lambda g: g.c.mean())
|
611 |
+
|
612 |
+
|
613 |
+
def test_filter_dropna_with_empty_groups():
|
614 |
+
# GH 10780
|
615 |
+
data = Series(np.random.default_rng(2).random(9), index=np.repeat([1, 2, 3], 3))
|
616 |
+
grouped = data.groupby(level=0)
|
617 |
+
result_false = grouped.filter(lambda x: x.mean() > 1, dropna=False)
|
618 |
+
expected_false = Series([np.nan] * 9, index=np.repeat([1, 2, 3], 3))
|
619 |
+
tm.assert_series_equal(result_false, expected_false)
|
620 |
+
|
621 |
+
result_true = grouped.filter(lambda x: x.mean() > 1, dropna=True)
|
622 |
+
expected_true = Series(index=pd.Index([], dtype=int), dtype=np.float64)
|
623 |
+
tm.assert_series_equal(result_true, expected_true)
|
624 |
+
|
625 |
+
|
626 |
+
def test_filter_consistent_result_before_after_agg_func():
|
627 |
+
# GH 17091
|
628 |
+
df = DataFrame({"data": range(6), "key": list("ABCABC")})
|
629 |
+
grouper = df.groupby("key")
|
630 |
+
result = grouper.filter(lambda x: True)
|
631 |
+
expected = DataFrame({"data": range(6), "key": list("ABCABC")})
|
632 |
+
tm.assert_frame_equal(result, expected)
|
633 |
+
|
634 |
+
grouper.sum()
|
635 |
+
result = grouper.filter(lambda x: True)
|
636 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby_dropna.py
ADDED
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.compat.pyarrow import pa_version_under10p1
|
5 |
+
|
6 |
+
from pandas.core.dtypes.missing import na_value_for_dtype
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
from pandas.tests.groupby import get_groupby_method_args
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.mark.parametrize(
|
14 |
+
"dropna, tuples, outputs",
|
15 |
+
[
|
16 |
+
(
|
17 |
+
True,
|
18 |
+
[["A", "B"], ["B", "A"]],
|
19 |
+
{"c": [13.0, 123.23], "d": [13.0, 123.0], "e": [13.0, 1.0]},
|
20 |
+
),
|
21 |
+
(
|
22 |
+
False,
|
23 |
+
[["A", "B"], ["A", np.nan], ["B", "A"]],
|
24 |
+
{
|
25 |
+
"c": [13.0, 12.3, 123.23],
|
26 |
+
"d": [13.0, 233.0, 123.0],
|
27 |
+
"e": [13.0, 12.0, 1.0],
|
28 |
+
},
|
29 |
+
),
|
30 |
+
],
|
31 |
+
)
|
32 |
+
def test_groupby_dropna_multi_index_dataframe_nan_in_one_group(
|
33 |
+
dropna, tuples, outputs, nulls_fixture
|
34 |
+
):
|
35 |
+
# GH 3729 this is to test that NA is in one group
|
36 |
+
df_list = [
|
37 |
+
["A", "B", 12, 12, 12],
|
38 |
+
["A", nulls_fixture, 12.3, 233.0, 12],
|
39 |
+
["B", "A", 123.23, 123, 1],
|
40 |
+
["A", "B", 1, 1, 1.0],
|
41 |
+
]
|
42 |
+
df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"])
|
43 |
+
grouped = df.groupby(["a", "b"], dropna=dropna).sum()
|
44 |
+
|
45 |
+
mi = pd.MultiIndex.from_tuples(tuples, names=list("ab"))
|
46 |
+
|
47 |
+
# Since right now, by default MI will drop NA from levels when we create MI
|
48 |
+
# via `from_*`, so we need to add NA for level manually afterwards.
|
49 |
+
if not dropna:
|
50 |
+
mi = mi.set_levels(["A", "B", np.nan], level="b")
|
51 |
+
expected = pd.DataFrame(outputs, index=mi)
|
52 |
+
|
53 |
+
tm.assert_frame_equal(grouped, expected)
|
54 |
+
|
55 |
+
|
56 |
+
@pytest.mark.parametrize(
|
57 |
+
"dropna, tuples, outputs",
|
58 |
+
[
|
59 |
+
(
|
60 |
+
True,
|
61 |
+
[["A", "B"], ["B", "A"]],
|
62 |
+
{"c": [12.0, 123.23], "d": [12.0, 123.0], "e": [12.0, 1.0]},
|
63 |
+
),
|
64 |
+
(
|
65 |
+
False,
|
66 |
+
[["A", "B"], ["A", np.nan], ["B", "A"], [np.nan, "B"]],
|
67 |
+
{
|
68 |
+
"c": [12.0, 13.3, 123.23, 1.0],
|
69 |
+
"d": [12.0, 234.0, 123.0, 1.0],
|
70 |
+
"e": [12.0, 13.0, 1.0, 1.0],
|
71 |
+
},
|
72 |
+
),
|
73 |
+
],
|
74 |
+
)
|
75 |
+
def test_groupby_dropna_multi_index_dataframe_nan_in_two_groups(
|
76 |
+
dropna, tuples, outputs, nulls_fixture, nulls_fixture2
|
77 |
+
):
|
78 |
+
# GH 3729 this is to test that NA in different groups with different representations
|
79 |
+
df_list = [
|
80 |
+
["A", "B", 12, 12, 12],
|
81 |
+
["A", nulls_fixture, 12.3, 233.0, 12],
|
82 |
+
["B", "A", 123.23, 123, 1],
|
83 |
+
[nulls_fixture2, "B", 1, 1, 1.0],
|
84 |
+
["A", nulls_fixture2, 1, 1, 1.0],
|
85 |
+
]
|
86 |
+
df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"])
|
87 |
+
grouped = df.groupby(["a", "b"], dropna=dropna).sum()
|
88 |
+
|
89 |
+
mi = pd.MultiIndex.from_tuples(tuples, names=list("ab"))
|
90 |
+
|
91 |
+
# Since right now, by default MI will drop NA from levels when we create MI
|
92 |
+
# via `from_*`, so we need to add NA for level manually afterwards.
|
93 |
+
if not dropna:
|
94 |
+
mi = mi.set_levels([["A", "B", np.nan], ["A", "B", np.nan]])
|
95 |
+
expected = pd.DataFrame(outputs, index=mi)
|
96 |
+
|
97 |
+
tm.assert_frame_equal(grouped, expected)
|
98 |
+
|
99 |
+
|
100 |
+
@pytest.mark.parametrize(
|
101 |
+
"dropna, idx, outputs",
|
102 |
+
[
|
103 |
+
(True, ["A", "B"], {"b": [123.23, 13.0], "c": [123.0, 13.0], "d": [1.0, 13.0]}),
|
104 |
+
(
|
105 |
+
False,
|
106 |
+
["A", "B", np.nan],
|
107 |
+
{
|
108 |
+
"b": [123.23, 13.0, 12.3],
|
109 |
+
"c": [123.0, 13.0, 233.0],
|
110 |
+
"d": [1.0, 13.0, 12.0],
|
111 |
+
},
|
112 |
+
),
|
113 |
+
],
|
114 |
+
)
|
115 |
+
def test_groupby_dropna_normal_index_dataframe(dropna, idx, outputs):
|
116 |
+
# GH 3729
|
117 |
+
df_list = [
|
118 |
+
["B", 12, 12, 12],
|
119 |
+
[None, 12.3, 233.0, 12],
|
120 |
+
["A", 123.23, 123, 1],
|
121 |
+
["B", 1, 1, 1.0],
|
122 |
+
]
|
123 |
+
df = pd.DataFrame(df_list, columns=["a", "b", "c", "d"])
|
124 |
+
grouped = df.groupby("a", dropna=dropna).sum()
|
125 |
+
|
126 |
+
expected = pd.DataFrame(outputs, index=pd.Index(idx, dtype="object", name="a"))
|
127 |
+
|
128 |
+
tm.assert_frame_equal(grouped, expected)
|
129 |
+
|
130 |
+
|
131 |
+
@pytest.mark.parametrize(
|
132 |
+
"dropna, idx, expected",
|
133 |
+
[
|
134 |
+
(True, ["a", "a", "b", np.nan], pd.Series([3, 3], index=["a", "b"])),
|
135 |
+
(
|
136 |
+
False,
|
137 |
+
["a", "a", "b", np.nan],
|
138 |
+
pd.Series([3, 3, 3], index=["a", "b", np.nan]),
|
139 |
+
),
|
140 |
+
],
|
141 |
+
)
|
142 |
+
def test_groupby_dropna_series_level(dropna, idx, expected):
|
143 |
+
ser = pd.Series([1, 2, 3, 3], index=idx)
|
144 |
+
|
145 |
+
result = ser.groupby(level=0, dropna=dropna).sum()
|
146 |
+
tm.assert_series_equal(result, expected)
|
147 |
+
|
148 |
+
|
149 |
+
@pytest.mark.parametrize(
|
150 |
+
"dropna, expected",
|
151 |
+
[
|
152 |
+
(True, pd.Series([210.0, 350.0], index=["a", "b"], name="Max Speed")),
|
153 |
+
(
|
154 |
+
False,
|
155 |
+
pd.Series([210.0, 350.0, 20.0], index=["a", "b", np.nan], name="Max Speed"),
|
156 |
+
),
|
157 |
+
],
|
158 |
+
)
|
159 |
+
def test_groupby_dropna_series_by(dropna, expected):
|
160 |
+
ser = pd.Series(
|
161 |
+
[390.0, 350.0, 30.0, 20.0],
|
162 |
+
index=["Falcon", "Falcon", "Parrot", "Parrot"],
|
163 |
+
name="Max Speed",
|
164 |
+
)
|
165 |
+
|
166 |
+
result = ser.groupby(["a", "b", "a", np.nan], dropna=dropna).mean()
|
167 |
+
tm.assert_series_equal(result, expected)
|
168 |
+
|
169 |
+
|
170 |
+
@pytest.mark.parametrize("dropna", (False, True))
|
171 |
+
def test_grouper_dropna_propagation(dropna):
|
172 |
+
# GH 36604
|
173 |
+
df = pd.DataFrame({"A": [0, 0, 1, None], "B": [1, 2, 3, None]})
|
174 |
+
gb = df.groupby("A", dropna=dropna)
|
175 |
+
assert gb._grouper.dropna == dropna
|
176 |
+
|
177 |
+
|
178 |
+
@pytest.mark.parametrize(
|
179 |
+
"index",
|
180 |
+
[
|
181 |
+
pd.RangeIndex(0, 4),
|
182 |
+
list("abcd"),
|
183 |
+
pd.MultiIndex.from_product([(1, 2), ("R", "B")], names=["num", "col"]),
|
184 |
+
],
|
185 |
+
)
|
186 |
+
def test_groupby_dataframe_slice_then_transform(dropna, index):
|
187 |
+
# GH35014 & GH35612
|
188 |
+
expected_data = {"B": [2, 2, 1, np.nan if dropna else 1]}
|
189 |
+
|
190 |
+
df = pd.DataFrame({"A": [0, 0, 1, None], "B": [1, 2, 3, None]}, index=index)
|
191 |
+
gb = df.groupby("A", dropna=dropna)
|
192 |
+
|
193 |
+
result = gb.transform(len)
|
194 |
+
expected = pd.DataFrame(expected_data, index=index)
|
195 |
+
tm.assert_frame_equal(result, expected)
|
196 |
+
|
197 |
+
result = gb[["B"]].transform(len)
|
198 |
+
expected = pd.DataFrame(expected_data, index=index)
|
199 |
+
tm.assert_frame_equal(result, expected)
|
200 |
+
|
201 |
+
result = gb["B"].transform(len)
|
202 |
+
expected = pd.Series(expected_data["B"], index=index, name="B")
|
203 |
+
tm.assert_series_equal(result, expected)
|
204 |
+
|
205 |
+
|
206 |
+
@pytest.mark.parametrize(
|
207 |
+
"dropna, tuples, outputs",
|
208 |
+
[
|
209 |
+
(
|
210 |
+
True,
|
211 |
+
[["A", "B"], ["B", "A"]],
|
212 |
+
{"c": [13.0, 123.23], "d": [12.0, 123.0], "e": [1.0, 1.0]},
|
213 |
+
),
|
214 |
+
(
|
215 |
+
False,
|
216 |
+
[["A", "B"], ["A", np.nan], ["B", "A"]],
|
217 |
+
{
|
218 |
+
"c": [13.0, 12.3, 123.23],
|
219 |
+
"d": [12.0, 233.0, 123.0],
|
220 |
+
"e": [1.0, 12.0, 1.0],
|
221 |
+
},
|
222 |
+
),
|
223 |
+
],
|
224 |
+
)
|
225 |
+
def test_groupby_dropna_multi_index_dataframe_agg(dropna, tuples, outputs):
|
226 |
+
# GH 3729
|
227 |
+
df_list = [
|
228 |
+
["A", "B", 12, 12, 12],
|
229 |
+
["A", None, 12.3, 233.0, 12],
|
230 |
+
["B", "A", 123.23, 123, 1],
|
231 |
+
["A", "B", 1, 1, 1.0],
|
232 |
+
]
|
233 |
+
df = pd.DataFrame(df_list, columns=["a", "b", "c", "d", "e"])
|
234 |
+
agg_dict = {"c": "sum", "d": "max", "e": "min"}
|
235 |
+
grouped = df.groupby(["a", "b"], dropna=dropna).agg(agg_dict)
|
236 |
+
|
237 |
+
mi = pd.MultiIndex.from_tuples(tuples, names=list("ab"))
|
238 |
+
|
239 |
+
# Since right now, by default MI will drop NA from levels when we create MI
|
240 |
+
# via `from_*`, so we need to add NA for level manually afterwards.
|
241 |
+
if not dropna:
|
242 |
+
mi = mi.set_levels(["A", "B", np.nan], level="b")
|
243 |
+
expected = pd.DataFrame(outputs, index=mi)
|
244 |
+
|
245 |
+
tm.assert_frame_equal(grouped, expected)
|
246 |
+
|
247 |
+
|
248 |
+
@pytest.mark.arm_slow
|
249 |
+
@pytest.mark.parametrize(
|
250 |
+
"datetime1, datetime2",
|
251 |
+
[
|
252 |
+
(pd.Timestamp("2020-01-01"), pd.Timestamp("2020-02-01")),
|
253 |
+
(pd.Timedelta("-2 days"), pd.Timedelta("-1 days")),
|
254 |
+
(pd.Period("2020-01-01"), pd.Period("2020-02-01")),
|
255 |
+
],
|
256 |
+
)
|
257 |
+
@pytest.mark.parametrize("dropna, values", [(True, [12, 3]), (False, [12, 3, 6])])
|
258 |
+
def test_groupby_dropna_datetime_like_data(
|
259 |
+
dropna, values, datetime1, datetime2, unique_nulls_fixture, unique_nulls_fixture2
|
260 |
+
):
|
261 |
+
# 3729
|
262 |
+
df = pd.DataFrame(
|
263 |
+
{
|
264 |
+
"values": [1, 2, 3, 4, 5, 6],
|
265 |
+
"dt": [
|
266 |
+
datetime1,
|
267 |
+
unique_nulls_fixture,
|
268 |
+
datetime2,
|
269 |
+
unique_nulls_fixture2,
|
270 |
+
datetime1,
|
271 |
+
datetime1,
|
272 |
+
],
|
273 |
+
}
|
274 |
+
)
|
275 |
+
|
276 |
+
if dropna:
|
277 |
+
indexes = [datetime1, datetime2]
|
278 |
+
else:
|
279 |
+
indexes = [datetime1, datetime2, np.nan]
|
280 |
+
|
281 |
+
grouped = df.groupby("dt", dropna=dropna).agg({"values": "sum"})
|
282 |
+
expected = pd.DataFrame({"values": values}, index=pd.Index(indexes, name="dt"))
|
283 |
+
|
284 |
+
tm.assert_frame_equal(grouped, expected)
|
285 |
+
|
286 |
+
|
287 |
+
@pytest.mark.parametrize(
|
288 |
+
"dropna, data, selected_data, levels",
|
289 |
+
[
|
290 |
+
pytest.param(
|
291 |
+
False,
|
292 |
+
{"groups": ["a", "a", "b", np.nan], "values": [10, 10, 20, 30]},
|
293 |
+
{"values": [0, 1, 0, 0]},
|
294 |
+
["a", "b", np.nan],
|
295 |
+
id="dropna_false_has_nan",
|
296 |
+
),
|
297 |
+
pytest.param(
|
298 |
+
True,
|
299 |
+
{"groups": ["a", "a", "b", np.nan], "values": [10, 10, 20, 30]},
|
300 |
+
{"values": [0, 1, 0]},
|
301 |
+
None,
|
302 |
+
id="dropna_true_has_nan",
|
303 |
+
),
|
304 |
+
pytest.param(
|
305 |
+
# no nan in "groups"; dropna=True|False should be same.
|
306 |
+
False,
|
307 |
+
{"groups": ["a", "a", "b", "c"], "values": [10, 10, 20, 30]},
|
308 |
+
{"values": [0, 1, 0, 0]},
|
309 |
+
None,
|
310 |
+
id="dropna_false_no_nan",
|
311 |
+
),
|
312 |
+
pytest.param(
|
313 |
+
# no nan in "groups"; dropna=True|False should be same.
|
314 |
+
True,
|
315 |
+
{"groups": ["a", "a", "b", "c"], "values": [10, 10, 20, 30]},
|
316 |
+
{"values": [0, 1, 0, 0]},
|
317 |
+
None,
|
318 |
+
id="dropna_true_no_nan",
|
319 |
+
),
|
320 |
+
],
|
321 |
+
)
|
322 |
+
def test_groupby_apply_with_dropna_for_multi_index(dropna, data, selected_data, levels):
|
323 |
+
# GH 35889
|
324 |
+
|
325 |
+
df = pd.DataFrame(data)
|
326 |
+
gb = df.groupby("groups", dropna=dropna)
|
327 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
328 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
329 |
+
result = gb.apply(lambda grp: pd.DataFrame({"values": range(len(grp))}))
|
330 |
+
|
331 |
+
mi_tuples = tuple(zip(data["groups"], selected_data["values"]))
|
332 |
+
mi = pd.MultiIndex.from_tuples(mi_tuples, names=["groups", None])
|
333 |
+
# Since right now, by default MI will drop NA from levels when we create MI
|
334 |
+
# via `from_*`, so we need to add NA for level manually afterwards.
|
335 |
+
if not dropna and levels:
|
336 |
+
mi = mi.set_levels(levels, level="groups")
|
337 |
+
|
338 |
+
expected = pd.DataFrame(selected_data, index=mi)
|
339 |
+
tm.assert_frame_equal(result, expected)
|
340 |
+
|
341 |
+
|
342 |
+
@pytest.mark.parametrize("input_index", [None, ["a"], ["a", "b"]])
|
343 |
+
@pytest.mark.parametrize("keys", [["a"], ["a", "b"]])
|
344 |
+
@pytest.mark.parametrize("series", [True, False])
|
345 |
+
def test_groupby_dropna_with_multiindex_input(input_index, keys, series):
|
346 |
+
# GH#46783
|
347 |
+
obj = pd.DataFrame(
|
348 |
+
{
|
349 |
+
"a": [1, np.nan],
|
350 |
+
"b": [1, 1],
|
351 |
+
"c": [2, 3],
|
352 |
+
}
|
353 |
+
)
|
354 |
+
|
355 |
+
expected = obj.set_index(keys)
|
356 |
+
if series:
|
357 |
+
expected = expected["c"]
|
358 |
+
elif input_index == ["a", "b"] and keys == ["a"]:
|
359 |
+
# Column b should not be aggregated
|
360 |
+
expected = expected[["c"]]
|
361 |
+
|
362 |
+
if input_index is not None:
|
363 |
+
obj = obj.set_index(input_index)
|
364 |
+
gb = obj.groupby(keys, dropna=False)
|
365 |
+
if series:
|
366 |
+
gb = gb["c"]
|
367 |
+
result = gb.sum()
|
368 |
+
|
369 |
+
tm.assert_equal(result, expected)
|
370 |
+
|
371 |
+
|
372 |
+
def test_groupby_nan_included():
|
373 |
+
# GH 35646
|
374 |
+
data = {"group": ["g1", np.nan, "g1", "g2", np.nan], "B": [0, 1, 2, 3, 4]}
|
375 |
+
df = pd.DataFrame(data)
|
376 |
+
grouped = df.groupby("group", dropna=False)
|
377 |
+
result = grouped.indices
|
378 |
+
dtype = np.intp
|
379 |
+
expected = {
|
380 |
+
"g1": np.array([0, 2], dtype=dtype),
|
381 |
+
"g2": np.array([3], dtype=dtype),
|
382 |
+
np.nan: np.array([1, 4], dtype=dtype),
|
383 |
+
}
|
384 |
+
for result_values, expected_values in zip(result.values(), expected.values()):
|
385 |
+
tm.assert_numpy_array_equal(result_values, expected_values)
|
386 |
+
assert np.isnan(list(result.keys())[2])
|
387 |
+
assert list(result.keys())[0:2] == ["g1", "g2"]
|
388 |
+
|
389 |
+
|
390 |
+
def test_groupby_drop_nan_with_multi_index():
|
391 |
+
# GH 39895
|
392 |
+
df = pd.DataFrame([[np.nan, 0, 1]], columns=["a", "b", "c"])
|
393 |
+
df = df.set_index(["a", "b"])
|
394 |
+
result = df.groupby(["a", "b"], dropna=False).first()
|
395 |
+
expected = df
|
396 |
+
tm.assert_frame_equal(result, expected)
|
397 |
+
|
398 |
+
|
399 |
+
# sequence_index enumerates all strings made up of x, y, z of length 4
|
400 |
+
@pytest.mark.parametrize("sequence_index", range(3**4))
|
401 |
+
@pytest.mark.parametrize(
|
402 |
+
"dtype",
|
403 |
+
[
|
404 |
+
None,
|
405 |
+
"UInt8",
|
406 |
+
"Int8",
|
407 |
+
"UInt16",
|
408 |
+
"Int16",
|
409 |
+
"UInt32",
|
410 |
+
"Int32",
|
411 |
+
"UInt64",
|
412 |
+
"Int64",
|
413 |
+
"Float32",
|
414 |
+
"Int64",
|
415 |
+
"Float64",
|
416 |
+
"category",
|
417 |
+
"string",
|
418 |
+
pytest.param(
|
419 |
+
"string[pyarrow]",
|
420 |
+
marks=pytest.mark.skipif(
|
421 |
+
pa_version_under10p1, reason="pyarrow is not installed"
|
422 |
+
),
|
423 |
+
),
|
424 |
+
"datetime64[ns]",
|
425 |
+
"period[d]",
|
426 |
+
"Sparse[float]",
|
427 |
+
],
|
428 |
+
)
|
429 |
+
@pytest.mark.parametrize("test_series", [True, False])
|
430 |
+
def test_no_sort_keep_na(sequence_index, dtype, test_series, as_index):
|
431 |
+
# GH#46584, GH#48794
|
432 |
+
|
433 |
+
# Convert sequence_index into a string sequence, e.g. 5 becomes "xxyz"
|
434 |
+
# This sequence is used for the grouper.
|
435 |
+
sequence = "".join(
|
436 |
+
[{0: "x", 1: "y", 2: "z"}[sequence_index // (3**k) % 3] for k in range(4)]
|
437 |
+
)
|
438 |
+
|
439 |
+
# Unique values to use for grouper, depends on dtype
|
440 |
+
if dtype in ("string", "string[pyarrow]"):
|
441 |
+
uniques = {"x": "x", "y": "y", "z": pd.NA}
|
442 |
+
elif dtype in ("datetime64[ns]", "period[d]"):
|
443 |
+
uniques = {"x": "2016-01-01", "y": "2017-01-01", "z": pd.NA}
|
444 |
+
else:
|
445 |
+
uniques = {"x": 1, "y": 2, "z": np.nan}
|
446 |
+
|
447 |
+
df = pd.DataFrame(
|
448 |
+
{
|
449 |
+
"key": pd.Series([uniques[label] for label in sequence], dtype=dtype),
|
450 |
+
"a": [0, 1, 2, 3],
|
451 |
+
}
|
452 |
+
)
|
453 |
+
gb = df.groupby("key", dropna=False, sort=False, as_index=as_index, observed=False)
|
454 |
+
if test_series:
|
455 |
+
gb = gb["a"]
|
456 |
+
result = gb.sum()
|
457 |
+
|
458 |
+
# Manually compute the groupby sum, use the labels "x", "y", and "z" to avoid
|
459 |
+
# issues with hashing np.nan
|
460 |
+
summed = {}
|
461 |
+
for idx, label in enumerate(sequence):
|
462 |
+
summed[label] = summed.get(label, 0) + idx
|
463 |
+
if dtype == "category":
|
464 |
+
index = pd.CategoricalIndex(
|
465 |
+
[uniques[e] for e in summed],
|
466 |
+
df["key"].cat.categories,
|
467 |
+
name="key",
|
468 |
+
)
|
469 |
+
elif isinstance(dtype, str) and dtype.startswith("Sparse"):
|
470 |
+
index = pd.Index(
|
471 |
+
pd.array([uniques[label] for label in summed], dtype=dtype), name="key"
|
472 |
+
)
|
473 |
+
else:
|
474 |
+
index = pd.Index([uniques[label] for label in summed], dtype=dtype, name="key")
|
475 |
+
expected = pd.Series(summed.values(), index=index, name="a", dtype=None)
|
476 |
+
if not test_series:
|
477 |
+
expected = expected.to_frame()
|
478 |
+
if not as_index:
|
479 |
+
expected = expected.reset_index()
|
480 |
+
if dtype is not None and dtype.startswith("Sparse"):
|
481 |
+
expected["key"] = expected["key"].astype(dtype)
|
482 |
+
|
483 |
+
tm.assert_equal(result, expected)
|
484 |
+
|
485 |
+
|
486 |
+
@pytest.mark.parametrize("test_series", [True, False])
|
487 |
+
@pytest.mark.parametrize("dtype", [object, None])
|
488 |
+
def test_null_is_null_for_dtype(
|
489 |
+
sort, dtype, nulls_fixture, nulls_fixture2, test_series
|
490 |
+
):
|
491 |
+
# GH#48506 - groups should always result in using the null for the dtype
|
492 |
+
df = pd.DataFrame({"a": [1, 2]})
|
493 |
+
groups = pd.Series([nulls_fixture, nulls_fixture2], dtype=dtype)
|
494 |
+
obj = df["a"] if test_series else df
|
495 |
+
gb = obj.groupby(groups, dropna=False, sort=sort)
|
496 |
+
result = gb.sum()
|
497 |
+
index = pd.Index([na_value_for_dtype(groups.dtype)])
|
498 |
+
expected = pd.DataFrame({"a": [3]}, index=index)
|
499 |
+
if test_series:
|
500 |
+
tm.assert_series_equal(result, expected["a"])
|
501 |
+
else:
|
502 |
+
tm.assert_frame_equal(result, expected)
|
503 |
+
|
504 |
+
|
505 |
+
@pytest.mark.parametrize("index_kind", ["range", "single", "multi"])
|
506 |
+
def test_categorical_reducers(reduction_func, observed, sort, as_index, index_kind):
|
507 |
+
# Ensure there is at least one null value by appending to the end
|
508 |
+
values = np.append(np.random.default_rng(2).choice([1, 2, None], size=19), None)
|
509 |
+
df = pd.DataFrame(
|
510 |
+
{"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(20)}
|
511 |
+
)
|
512 |
+
|
513 |
+
# Strategy: Compare to dropna=True by filling null values with a new code
|
514 |
+
df_filled = df.copy()
|
515 |
+
df_filled["x"] = pd.Categorical(values, categories=[1, 2, 3, 4]).fillna(4)
|
516 |
+
|
517 |
+
if index_kind == "range":
|
518 |
+
keys = ["x"]
|
519 |
+
elif index_kind == "single":
|
520 |
+
keys = ["x"]
|
521 |
+
df = df.set_index("x")
|
522 |
+
df_filled = df_filled.set_index("x")
|
523 |
+
else:
|
524 |
+
keys = ["x", "x2"]
|
525 |
+
df["x2"] = df["x"]
|
526 |
+
df = df.set_index(["x", "x2"])
|
527 |
+
df_filled["x2"] = df_filled["x"]
|
528 |
+
df_filled = df_filled.set_index(["x", "x2"])
|
529 |
+
args = get_groupby_method_args(reduction_func, df)
|
530 |
+
args_filled = get_groupby_method_args(reduction_func, df_filled)
|
531 |
+
if reduction_func == "corrwith" and index_kind == "range":
|
532 |
+
# Don't include the grouping columns so we can call reset_index
|
533 |
+
args = (args[0].drop(columns=keys),)
|
534 |
+
args_filled = (args_filled[0].drop(columns=keys),)
|
535 |
+
|
536 |
+
gb_keepna = df.groupby(
|
537 |
+
keys, dropna=False, observed=observed, sort=sort, as_index=as_index
|
538 |
+
)
|
539 |
+
|
540 |
+
if not observed and reduction_func in ["idxmin", "idxmax"]:
|
541 |
+
with pytest.raises(
|
542 |
+
ValueError, match="empty group due to unobserved categories"
|
543 |
+
):
|
544 |
+
getattr(gb_keepna, reduction_func)(*args)
|
545 |
+
return
|
546 |
+
|
547 |
+
gb_filled = df_filled.groupby(keys, observed=observed, sort=sort, as_index=True)
|
548 |
+
expected = getattr(gb_filled, reduction_func)(*args_filled).reset_index()
|
549 |
+
expected["x"] = expected["x"].cat.remove_categories([4])
|
550 |
+
if index_kind == "multi":
|
551 |
+
expected["x2"] = expected["x2"].cat.remove_categories([4])
|
552 |
+
if as_index:
|
553 |
+
if index_kind == "multi":
|
554 |
+
expected = expected.set_index(["x", "x2"])
|
555 |
+
else:
|
556 |
+
expected = expected.set_index("x")
|
557 |
+
elif index_kind != "range" and reduction_func != "size":
|
558 |
+
# size, unlike other methods, has the desired behavior in GH#49519
|
559 |
+
expected = expected.drop(columns="x")
|
560 |
+
if index_kind == "multi":
|
561 |
+
expected = expected.drop(columns="x2")
|
562 |
+
if reduction_func in ("idxmax", "idxmin") and index_kind != "range":
|
563 |
+
# expected was computed with a RangeIndex; need to translate to index values
|
564 |
+
values = expected["y"].values.tolist()
|
565 |
+
if index_kind == "single":
|
566 |
+
values = [np.nan if e == 4 else e for e in values]
|
567 |
+
expected["y"] = pd.Categorical(values, categories=[1, 2, 3])
|
568 |
+
else:
|
569 |
+
values = [(np.nan, np.nan) if e == (4, 4) else e for e in values]
|
570 |
+
expected["y"] = values
|
571 |
+
if reduction_func == "size":
|
572 |
+
# size, unlike other methods, has the desired behavior in GH#49519
|
573 |
+
expected = expected.rename(columns={0: "size"})
|
574 |
+
if as_index:
|
575 |
+
expected = expected["size"].rename(None)
|
576 |
+
|
577 |
+
if as_index or index_kind == "range" or reduction_func == "size":
|
578 |
+
warn = None
|
579 |
+
else:
|
580 |
+
warn = FutureWarning
|
581 |
+
msg = "A grouping .* was excluded from the result"
|
582 |
+
with tm.assert_produces_warning(warn, match=msg):
|
583 |
+
result = getattr(gb_keepna, reduction_func)(*args)
|
584 |
+
|
585 |
+
# size will return a Series, others are DataFrame
|
586 |
+
tm.assert_equal(result, expected)
|
587 |
+
|
588 |
+
|
589 |
+
def test_categorical_transformers(
|
590 |
+
request, transformation_func, observed, sort, as_index
|
591 |
+
):
|
592 |
+
# GH#36327
|
593 |
+
if transformation_func == "fillna":
|
594 |
+
msg = "GH#49651 fillna may incorrectly reorders results when dropna=False"
|
595 |
+
request.applymarker(pytest.mark.xfail(reason=msg, strict=False))
|
596 |
+
|
597 |
+
values = np.append(np.random.default_rng(2).choice([1, 2, None], size=19), None)
|
598 |
+
df = pd.DataFrame(
|
599 |
+
{"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(20)}
|
600 |
+
)
|
601 |
+
args = get_groupby_method_args(transformation_func, df)
|
602 |
+
|
603 |
+
# Compute result for null group
|
604 |
+
null_group_values = df[df["x"].isnull()]["y"]
|
605 |
+
if transformation_func == "cumcount":
|
606 |
+
null_group_data = list(range(len(null_group_values)))
|
607 |
+
elif transformation_func == "ngroup":
|
608 |
+
if sort:
|
609 |
+
if observed:
|
610 |
+
na_group = df["x"].nunique(dropna=False) - 1
|
611 |
+
else:
|
612 |
+
# TODO: Should this be 3?
|
613 |
+
na_group = df["x"].nunique(dropna=False) - 1
|
614 |
+
else:
|
615 |
+
na_group = df.iloc[: null_group_values.index[0]]["x"].nunique()
|
616 |
+
null_group_data = len(null_group_values) * [na_group]
|
617 |
+
else:
|
618 |
+
null_group_data = getattr(null_group_values, transformation_func)(*args)
|
619 |
+
null_group_result = pd.DataFrame({"y": null_group_data})
|
620 |
+
|
621 |
+
gb_keepna = df.groupby(
|
622 |
+
"x", dropna=False, observed=observed, sort=sort, as_index=as_index
|
623 |
+
)
|
624 |
+
gb_dropna = df.groupby("x", dropna=True, observed=observed, sort=sort)
|
625 |
+
|
626 |
+
msg = "The default fill_method='ffill' in DataFrameGroupBy.pct_change is deprecated"
|
627 |
+
if transformation_func == "pct_change":
|
628 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
629 |
+
result = getattr(gb_keepna, "pct_change")(*args)
|
630 |
+
else:
|
631 |
+
result = getattr(gb_keepna, transformation_func)(*args)
|
632 |
+
expected = getattr(gb_dropna, transformation_func)(*args)
|
633 |
+
|
634 |
+
for iloc, value in zip(
|
635 |
+
df[df["x"].isnull()].index.tolist(), null_group_result.values.ravel()
|
636 |
+
):
|
637 |
+
if expected.ndim == 1:
|
638 |
+
expected.iloc[iloc] = value
|
639 |
+
else:
|
640 |
+
expected.iloc[iloc, 0] = value
|
641 |
+
if transformation_func == "ngroup":
|
642 |
+
expected[df["x"].notnull() & expected.ge(na_group)] += 1
|
643 |
+
if transformation_func not in ("rank", "diff", "pct_change", "shift"):
|
644 |
+
expected = expected.astype("int64")
|
645 |
+
|
646 |
+
tm.assert_equal(result, expected)
|
647 |
+
|
648 |
+
|
649 |
+
@pytest.mark.parametrize("method", ["head", "tail"])
|
650 |
+
def test_categorical_head_tail(method, observed, sort, as_index):
|
651 |
+
# GH#36327
|
652 |
+
values = np.random.default_rng(2).choice([1, 2, None], 30)
|
653 |
+
df = pd.DataFrame(
|
654 |
+
{"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(len(values))}
|
655 |
+
)
|
656 |
+
gb = df.groupby("x", dropna=False, observed=observed, sort=sort, as_index=as_index)
|
657 |
+
result = getattr(gb, method)()
|
658 |
+
|
659 |
+
if method == "tail":
|
660 |
+
values = values[::-1]
|
661 |
+
# Take the top 5 values from each group
|
662 |
+
mask = (
|
663 |
+
((values == 1) & ((values == 1).cumsum() <= 5))
|
664 |
+
| ((values == 2) & ((values == 2).cumsum() <= 5))
|
665 |
+
# flake8 doesn't like the vectorized check for None, thinks we should use `is`
|
666 |
+
| ((values == None) & ((values == None).cumsum() <= 5)) # noqa: E711
|
667 |
+
)
|
668 |
+
if method == "tail":
|
669 |
+
mask = mask[::-1]
|
670 |
+
expected = df[mask]
|
671 |
+
|
672 |
+
tm.assert_frame_equal(result, expected)
|
673 |
+
|
674 |
+
|
675 |
+
def test_categorical_agg():
|
676 |
+
# GH#36327
|
677 |
+
values = np.random.default_rng(2).choice([1, 2, None], 30)
|
678 |
+
df = pd.DataFrame(
|
679 |
+
{"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(len(values))}
|
680 |
+
)
|
681 |
+
gb = df.groupby("x", dropna=False, observed=False)
|
682 |
+
result = gb.agg(lambda x: x.sum())
|
683 |
+
expected = gb.sum()
|
684 |
+
tm.assert_frame_equal(result, expected)
|
685 |
+
|
686 |
+
|
687 |
+
def test_categorical_transform():
|
688 |
+
# GH#36327
|
689 |
+
values = np.random.default_rng(2).choice([1, 2, None], 30)
|
690 |
+
df = pd.DataFrame(
|
691 |
+
{"x": pd.Categorical(values, categories=[1, 2, 3]), "y": range(len(values))}
|
692 |
+
)
|
693 |
+
gb = df.groupby("x", dropna=False, observed=False)
|
694 |
+
result = gb.transform(lambda x: x.sum())
|
695 |
+
expected = gb.transform("sum")
|
696 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_groupby_subclass.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
Index,
|
9 |
+
Series,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
from pandas.tests.groupby import get_groupby_method_args
|
13 |
+
|
14 |
+
pytestmark = pytest.mark.filterwarnings(
|
15 |
+
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning"
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.mark.parametrize(
|
20 |
+
"obj",
|
21 |
+
[
|
22 |
+
tm.SubclassedDataFrame({"A": np.arange(0, 10)}),
|
23 |
+
tm.SubclassedSeries(np.arange(0, 10), name="A"),
|
24 |
+
],
|
25 |
+
)
|
26 |
+
def test_groupby_preserves_subclass(obj, groupby_func):
|
27 |
+
# GH28330 -- preserve subclass through groupby operations
|
28 |
+
|
29 |
+
if isinstance(obj, Series) and groupby_func in {"corrwith"}:
|
30 |
+
pytest.skip(f"Not applicable for Series and {groupby_func}")
|
31 |
+
|
32 |
+
grouped = obj.groupby(np.arange(0, 10))
|
33 |
+
|
34 |
+
# Groups should preserve subclass type
|
35 |
+
assert isinstance(grouped.get_group(0), type(obj))
|
36 |
+
|
37 |
+
args = get_groupby_method_args(groupby_func, obj)
|
38 |
+
|
39 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
40 |
+
msg = f"{type(grouped).__name__}.fillna is deprecated"
|
41 |
+
with tm.assert_produces_warning(warn, match=msg, raise_on_extra_warnings=False):
|
42 |
+
result1 = getattr(grouped, groupby_func)(*args)
|
43 |
+
with tm.assert_produces_warning(warn, match=msg, raise_on_extra_warnings=False):
|
44 |
+
result2 = grouped.agg(groupby_func, *args)
|
45 |
+
|
46 |
+
# Reduction or transformation kernels should preserve type
|
47 |
+
slices = {"ngroup", "cumcount", "size"}
|
48 |
+
if isinstance(obj, DataFrame) and groupby_func in slices:
|
49 |
+
assert isinstance(result1, tm.SubclassedSeries)
|
50 |
+
else:
|
51 |
+
assert isinstance(result1, type(obj))
|
52 |
+
|
53 |
+
# Confirm .agg() groupby operations return same results
|
54 |
+
if isinstance(result1, DataFrame):
|
55 |
+
tm.assert_frame_equal(result1, result2)
|
56 |
+
else:
|
57 |
+
tm.assert_series_equal(result1, result2)
|
58 |
+
|
59 |
+
|
60 |
+
def test_groupby_preserves_metadata():
|
61 |
+
# GH-37343
|
62 |
+
custom_df = tm.SubclassedDataFrame({"a": [1, 2, 3], "b": [1, 1, 2], "c": [7, 8, 9]})
|
63 |
+
assert "testattr" in custom_df._metadata
|
64 |
+
custom_df.testattr = "hello"
|
65 |
+
for _, group_df in custom_df.groupby("c"):
|
66 |
+
assert group_df.testattr == "hello"
|
67 |
+
|
68 |
+
# GH-45314
|
69 |
+
def func(group):
|
70 |
+
assert isinstance(group, tm.SubclassedDataFrame)
|
71 |
+
assert hasattr(group, "testattr")
|
72 |
+
assert group.testattr == "hello"
|
73 |
+
return group.testattr
|
74 |
+
|
75 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
76 |
+
with tm.assert_produces_warning(
|
77 |
+
DeprecationWarning,
|
78 |
+
match=msg,
|
79 |
+
raise_on_extra_warnings=False,
|
80 |
+
check_stacklevel=False,
|
81 |
+
):
|
82 |
+
result = custom_df.groupby("c").apply(func)
|
83 |
+
expected = tm.SubclassedSeries(["hello"] * 3, index=Index([7, 8, 9], name="c"))
|
84 |
+
tm.assert_series_equal(result, expected)
|
85 |
+
|
86 |
+
result = custom_df.groupby("c").apply(func, include_groups=False)
|
87 |
+
tm.assert_series_equal(result, expected)
|
88 |
+
|
89 |
+
# https://github.com/pandas-dev/pandas/pull/56761
|
90 |
+
result = custom_df.groupby("c")[["a", "b"]].apply(func)
|
91 |
+
tm.assert_series_equal(result, expected)
|
92 |
+
|
93 |
+
def func2(group):
|
94 |
+
assert isinstance(group, tm.SubclassedSeries)
|
95 |
+
assert hasattr(group, "testattr")
|
96 |
+
return group.testattr
|
97 |
+
|
98 |
+
custom_series = tm.SubclassedSeries([1, 2, 3])
|
99 |
+
custom_series.testattr = "hello"
|
100 |
+
result = custom_series.groupby(custom_df["c"]).apply(func2)
|
101 |
+
tm.assert_series_equal(result, expected)
|
102 |
+
result = custom_series.groupby(custom_df["c"]).agg(func2)
|
103 |
+
tm.assert_series_equal(result, expected)
|
104 |
+
|
105 |
+
|
106 |
+
@pytest.mark.parametrize("obj", [DataFrame, tm.SubclassedDataFrame])
|
107 |
+
def test_groupby_resample_preserves_subclass(obj):
|
108 |
+
# GH28330 -- preserve subclass through groupby.resample()
|
109 |
+
|
110 |
+
df = obj(
|
111 |
+
{
|
112 |
+
"Buyer": "Carl Carl Carl Carl Joe Carl".split(),
|
113 |
+
"Quantity": [18, 3, 5, 1, 9, 3],
|
114 |
+
"Date": [
|
115 |
+
datetime(2013, 9, 1, 13, 0),
|
116 |
+
datetime(2013, 9, 1, 13, 5),
|
117 |
+
datetime(2013, 10, 1, 20, 0),
|
118 |
+
datetime(2013, 10, 3, 10, 0),
|
119 |
+
datetime(2013, 12, 2, 12, 0),
|
120 |
+
datetime(2013, 9, 2, 14, 0),
|
121 |
+
],
|
122 |
+
}
|
123 |
+
)
|
124 |
+
df = df.set_index("Date")
|
125 |
+
|
126 |
+
# Confirm groupby.resample() preserves dataframe type
|
127 |
+
msg = "DataFrameGroupBy.resample operated on the grouping columns"
|
128 |
+
with tm.assert_produces_warning(
|
129 |
+
DeprecationWarning,
|
130 |
+
match=msg,
|
131 |
+
raise_on_extra_warnings=False,
|
132 |
+
check_stacklevel=False,
|
133 |
+
):
|
134 |
+
result = df.groupby("Buyer").resample("5D").sum()
|
135 |
+
assert isinstance(result, obj)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_grouping.py
ADDED
@@ -0,0 +1,1236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
test where we are determining what we are grouping, or getting groups
|
3 |
+
"""
|
4 |
+
from datetime import (
|
5 |
+
date,
|
6 |
+
timedelta,
|
7 |
+
)
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
from pandas import (
|
14 |
+
CategoricalIndex,
|
15 |
+
DataFrame,
|
16 |
+
Grouper,
|
17 |
+
Index,
|
18 |
+
MultiIndex,
|
19 |
+
Series,
|
20 |
+
Timestamp,
|
21 |
+
date_range,
|
22 |
+
period_range,
|
23 |
+
)
|
24 |
+
import pandas._testing as tm
|
25 |
+
from pandas.core.groupby.grouper import Grouping
|
26 |
+
|
27 |
+
# selection
|
28 |
+
# --------------------------------
|
29 |
+
|
30 |
+
|
31 |
+
class TestSelection:
|
32 |
+
def test_select_bad_cols(self):
|
33 |
+
df = DataFrame([[1, 2]], columns=["A", "B"])
|
34 |
+
g = df.groupby("A")
|
35 |
+
with pytest.raises(KeyError, match="\"Columns not found: 'C'\""):
|
36 |
+
g[["C"]]
|
37 |
+
|
38 |
+
with pytest.raises(KeyError, match="^[^A]+$"):
|
39 |
+
# A should not be referenced as a bad column...
|
40 |
+
# will have to rethink regex if you change message!
|
41 |
+
g[["A", "C"]]
|
42 |
+
|
43 |
+
def test_groupby_duplicated_column_errormsg(self):
|
44 |
+
# GH7511
|
45 |
+
df = DataFrame(
|
46 |
+
columns=["A", "B", "A", "C"], data=[range(4), range(2, 6), range(0, 8, 2)]
|
47 |
+
)
|
48 |
+
|
49 |
+
msg = "Grouper for 'A' not 1-dimensional"
|
50 |
+
with pytest.raises(ValueError, match=msg):
|
51 |
+
df.groupby("A")
|
52 |
+
with pytest.raises(ValueError, match=msg):
|
53 |
+
df.groupby(["A", "B"])
|
54 |
+
|
55 |
+
grouped = df.groupby("B")
|
56 |
+
c = grouped.count()
|
57 |
+
assert c.columns.nlevels == 1
|
58 |
+
assert c.columns.size == 3
|
59 |
+
|
60 |
+
def test_column_select_via_attr(self, df):
|
61 |
+
result = df.groupby("A").C.sum()
|
62 |
+
expected = df.groupby("A")["C"].sum()
|
63 |
+
tm.assert_series_equal(result, expected)
|
64 |
+
|
65 |
+
df["mean"] = 1.5
|
66 |
+
result = df.groupby("A").mean(numeric_only=True)
|
67 |
+
expected = df.groupby("A")[["C", "D", "mean"]].agg("mean")
|
68 |
+
tm.assert_frame_equal(result, expected)
|
69 |
+
|
70 |
+
def test_getitem_list_of_columns(self):
|
71 |
+
df = DataFrame(
|
72 |
+
{
|
73 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
74 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
75 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
76 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
77 |
+
"E": np.random.default_rng(2).standard_normal(8),
|
78 |
+
}
|
79 |
+
)
|
80 |
+
|
81 |
+
result = df.groupby("A")[["C", "D"]].mean()
|
82 |
+
result2 = df.groupby("A")[df.columns[2:4]].mean()
|
83 |
+
|
84 |
+
expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean()
|
85 |
+
|
86 |
+
tm.assert_frame_equal(result, expected)
|
87 |
+
tm.assert_frame_equal(result2, expected)
|
88 |
+
|
89 |
+
def test_getitem_numeric_column_names(self):
|
90 |
+
# GH #13731
|
91 |
+
df = DataFrame(
|
92 |
+
{
|
93 |
+
0: list("abcd") * 2,
|
94 |
+
2: np.random.default_rng(2).standard_normal(8),
|
95 |
+
4: np.random.default_rng(2).standard_normal(8),
|
96 |
+
6: np.random.default_rng(2).standard_normal(8),
|
97 |
+
}
|
98 |
+
)
|
99 |
+
result = df.groupby(0)[df.columns[1:3]].mean()
|
100 |
+
result2 = df.groupby(0)[[2, 4]].mean()
|
101 |
+
|
102 |
+
expected = df.loc[:, [0, 2, 4]].groupby(0).mean()
|
103 |
+
|
104 |
+
tm.assert_frame_equal(result, expected)
|
105 |
+
tm.assert_frame_equal(result2, expected)
|
106 |
+
|
107 |
+
# per GH 23566 enforced deprecation raises a ValueError
|
108 |
+
with pytest.raises(ValueError, match="Cannot subset columns with a tuple"):
|
109 |
+
df.groupby(0)[2, 4].mean()
|
110 |
+
|
111 |
+
def test_getitem_single_tuple_of_columns_raises(self, df):
|
112 |
+
# per GH 23566 enforced deprecation raises a ValueError
|
113 |
+
with pytest.raises(ValueError, match="Cannot subset columns with a tuple"):
|
114 |
+
df.groupby("A")["C", "D"].mean()
|
115 |
+
|
116 |
+
def test_getitem_single_column(self):
|
117 |
+
df = DataFrame(
|
118 |
+
{
|
119 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
120 |
+
"B": ["one", "one", "two", "three", "two", "two", "one", "three"],
|
121 |
+
"C": np.random.default_rng(2).standard_normal(8),
|
122 |
+
"D": np.random.default_rng(2).standard_normal(8),
|
123 |
+
"E": np.random.default_rng(2).standard_normal(8),
|
124 |
+
}
|
125 |
+
)
|
126 |
+
|
127 |
+
result = df.groupby("A")["C"].mean()
|
128 |
+
|
129 |
+
as_frame = df.loc[:, ["A", "C"]].groupby("A").mean()
|
130 |
+
as_series = as_frame.iloc[:, 0]
|
131 |
+
expected = as_series
|
132 |
+
|
133 |
+
tm.assert_series_equal(result, expected)
|
134 |
+
|
135 |
+
@pytest.mark.parametrize(
|
136 |
+
"func", [lambda x: x.sum(), lambda x: x.agg(lambda y: y.sum())]
|
137 |
+
)
|
138 |
+
def test_getitem_from_grouper(self, func):
|
139 |
+
# GH 50383
|
140 |
+
df = DataFrame({"a": [1, 1, 2], "b": 3, "c": 4, "d": 5})
|
141 |
+
gb = df.groupby(["a", "b"])[["a", "c"]]
|
142 |
+
|
143 |
+
idx = MultiIndex.from_tuples([(1, 3), (2, 3)], names=["a", "b"])
|
144 |
+
expected = DataFrame({"a": [2, 2], "c": [8, 4]}, index=idx)
|
145 |
+
result = func(gb)
|
146 |
+
|
147 |
+
tm.assert_frame_equal(result, expected)
|
148 |
+
|
149 |
+
def test_indices_grouped_by_tuple_with_lambda(self):
|
150 |
+
# GH 36158
|
151 |
+
df = DataFrame(
|
152 |
+
{
|
153 |
+
"Tuples": (
|
154 |
+
(x, y)
|
155 |
+
for x in [0, 1]
|
156 |
+
for y in np.random.default_rng(2).integers(3, 5, 5)
|
157 |
+
)
|
158 |
+
}
|
159 |
+
)
|
160 |
+
|
161 |
+
gb = df.groupby("Tuples")
|
162 |
+
gb_lambda = df.groupby(lambda x: df.iloc[x, 0])
|
163 |
+
|
164 |
+
expected = gb.indices
|
165 |
+
result = gb_lambda.indices
|
166 |
+
|
167 |
+
tm.assert_dict_equal(result, expected)
|
168 |
+
|
169 |
+
|
170 |
+
# grouping
|
171 |
+
# --------------------------------
|
172 |
+
|
173 |
+
|
174 |
+
class TestGrouping:
|
175 |
+
@pytest.mark.parametrize(
|
176 |
+
"index",
|
177 |
+
[
|
178 |
+
Index(list("abcde")),
|
179 |
+
Index(np.arange(5)),
|
180 |
+
Index(np.arange(5, dtype=float)),
|
181 |
+
date_range("2020-01-01", periods=5),
|
182 |
+
period_range("2020-01-01", periods=5),
|
183 |
+
],
|
184 |
+
)
|
185 |
+
def test_grouper_index_types(self, index):
|
186 |
+
# related GH5375
|
187 |
+
# groupby misbehaving when using a Floatlike index
|
188 |
+
df = DataFrame(np.arange(10).reshape(5, 2), columns=list("AB"), index=index)
|
189 |
+
|
190 |
+
df.groupby(list("abcde"), group_keys=False).apply(lambda x: x)
|
191 |
+
|
192 |
+
df.index = df.index[::-1]
|
193 |
+
df.groupby(list("abcde"), group_keys=False).apply(lambda x: x)
|
194 |
+
|
195 |
+
def test_grouper_multilevel_freq(self):
|
196 |
+
# GH 7885
|
197 |
+
# with level and freq specified in a Grouper
|
198 |
+
d0 = date.today() - timedelta(days=14)
|
199 |
+
dates = date_range(d0, date.today())
|
200 |
+
date_index = MultiIndex.from_product([dates, dates], names=["foo", "bar"])
|
201 |
+
df = DataFrame(np.random.default_rng(2).integers(0, 100, 225), index=date_index)
|
202 |
+
|
203 |
+
# Check string level
|
204 |
+
expected = (
|
205 |
+
df.reset_index()
|
206 |
+
.groupby([Grouper(key="foo", freq="W"), Grouper(key="bar", freq="W")])
|
207 |
+
.sum()
|
208 |
+
)
|
209 |
+
# reset index changes columns dtype to object
|
210 |
+
expected.columns = Index([0], dtype="int64")
|
211 |
+
|
212 |
+
result = df.groupby(
|
213 |
+
[Grouper(level="foo", freq="W"), Grouper(level="bar", freq="W")]
|
214 |
+
).sum()
|
215 |
+
tm.assert_frame_equal(result, expected)
|
216 |
+
|
217 |
+
# Check integer level
|
218 |
+
result = df.groupby(
|
219 |
+
[Grouper(level=0, freq="W"), Grouper(level=1, freq="W")]
|
220 |
+
).sum()
|
221 |
+
tm.assert_frame_equal(result, expected)
|
222 |
+
|
223 |
+
def test_grouper_creation_bug(self):
|
224 |
+
# GH 8795
|
225 |
+
df = DataFrame({"A": [0, 0, 1, 1, 2, 2], "B": [1, 2, 3, 4, 5, 6]})
|
226 |
+
g = df.groupby("A")
|
227 |
+
expected = g.sum()
|
228 |
+
|
229 |
+
g = df.groupby(Grouper(key="A"))
|
230 |
+
result = g.sum()
|
231 |
+
tm.assert_frame_equal(result, expected)
|
232 |
+
|
233 |
+
msg = "Grouper axis keyword is deprecated and will be removed"
|
234 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
235 |
+
gpr = Grouper(key="A", axis=0)
|
236 |
+
g = df.groupby(gpr)
|
237 |
+
result = g.sum()
|
238 |
+
tm.assert_frame_equal(result, expected)
|
239 |
+
|
240 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
241 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
242 |
+
result = g.apply(lambda x: x.sum())
|
243 |
+
expected["A"] = [0, 2, 4]
|
244 |
+
expected = expected.loc[:, ["A", "B"]]
|
245 |
+
tm.assert_frame_equal(result, expected)
|
246 |
+
|
247 |
+
def test_grouper_creation_bug2(self):
|
248 |
+
# GH14334
|
249 |
+
# Grouper(key=...) may be passed in a list
|
250 |
+
df = DataFrame(
|
251 |
+
{"A": [0, 0, 0, 1, 1, 1], "B": [1, 1, 2, 2, 3, 3], "C": [1, 2, 3, 4, 5, 6]}
|
252 |
+
)
|
253 |
+
# Group by single column
|
254 |
+
expected = df.groupby("A").sum()
|
255 |
+
g = df.groupby([Grouper(key="A")])
|
256 |
+
result = g.sum()
|
257 |
+
tm.assert_frame_equal(result, expected)
|
258 |
+
|
259 |
+
# Group by two columns
|
260 |
+
# using a combination of strings and Grouper objects
|
261 |
+
expected = df.groupby(["A", "B"]).sum()
|
262 |
+
|
263 |
+
# Group with two Grouper objects
|
264 |
+
g = df.groupby([Grouper(key="A"), Grouper(key="B")])
|
265 |
+
result = g.sum()
|
266 |
+
tm.assert_frame_equal(result, expected)
|
267 |
+
|
268 |
+
# Group with a string and a Grouper object
|
269 |
+
g = df.groupby(["A", Grouper(key="B")])
|
270 |
+
result = g.sum()
|
271 |
+
tm.assert_frame_equal(result, expected)
|
272 |
+
|
273 |
+
# Group with a Grouper object and a string
|
274 |
+
g = df.groupby([Grouper(key="A"), "B"])
|
275 |
+
result = g.sum()
|
276 |
+
tm.assert_frame_equal(result, expected)
|
277 |
+
|
278 |
+
def test_grouper_creation_bug3(self, unit):
|
279 |
+
# GH8866
|
280 |
+
dti = date_range("20130101", periods=2, unit=unit)
|
281 |
+
mi = MultiIndex.from_product(
|
282 |
+
[list("ab"), range(2), dti],
|
283 |
+
names=["one", "two", "three"],
|
284 |
+
)
|
285 |
+
ser = Series(
|
286 |
+
np.arange(8, dtype="int64"),
|
287 |
+
index=mi,
|
288 |
+
)
|
289 |
+
result = ser.groupby(Grouper(level="three", freq="ME")).sum()
|
290 |
+
exp_dti = pd.DatetimeIndex(
|
291 |
+
[Timestamp("2013-01-31")], freq="ME", name="three"
|
292 |
+
).as_unit(unit)
|
293 |
+
expected = Series(
|
294 |
+
[28],
|
295 |
+
index=exp_dti,
|
296 |
+
)
|
297 |
+
tm.assert_series_equal(result, expected)
|
298 |
+
|
299 |
+
# just specifying a level breaks
|
300 |
+
result = ser.groupby(Grouper(level="one")).sum()
|
301 |
+
expected = ser.groupby(level="one").sum()
|
302 |
+
tm.assert_series_equal(result, expected)
|
303 |
+
|
304 |
+
@pytest.mark.parametrize("func", [False, True])
|
305 |
+
def test_grouper_returning_tuples(self, func):
|
306 |
+
# GH 22257 , both with dict and with callable
|
307 |
+
df = DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})
|
308 |
+
mapping = dict(zip(range(4), [("C", 5), ("D", 6)] * 2))
|
309 |
+
|
310 |
+
if func:
|
311 |
+
gb = df.groupby(by=lambda idx: mapping[idx], sort=False)
|
312 |
+
else:
|
313 |
+
gb = df.groupby(by=mapping, sort=False)
|
314 |
+
|
315 |
+
name, expected = next(iter(gb))
|
316 |
+
assert name == ("C", 5)
|
317 |
+
result = gb.get_group(name)
|
318 |
+
|
319 |
+
tm.assert_frame_equal(result, expected)
|
320 |
+
|
321 |
+
def test_grouper_column_and_index(self):
|
322 |
+
# GH 14327
|
323 |
+
|
324 |
+
# Grouping a multi-index frame by a column and an index level should
|
325 |
+
# be equivalent to resetting the index and grouping by two columns
|
326 |
+
idx = MultiIndex.from_tuples(
|
327 |
+
[("a", 1), ("a", 2), ("a", 3), ("b", 1), ("b", 2), ("b", 3)]
|
328 |
+
)
|
329 |
+
idx.names = ["outer", "inner"]
|
330 |
+
df_multi = DataFrame(
|
331 |
+
{"A": np.arange(6), "B": ["one", "one", "two", "two", "one", "one"]},
|
332 |
+
index=idx,
|
333 |
+
)
|
334 |
+
result = df_multi.groupby(["B", Grouper(level="inner")]).mean(numeric_only=True)
|
335 |
+
expected = (
|
336 |
+
df_multi.reset_index().groupby(["B", "inner"]).mean(numeric_only=True)
|
337 |
+
)
|
338 |
+
tm.assert_frame_equal(result, expected)
|
339 |
+
|
340 |
+
# Test the reverse grouping order
|
341 |
+
result = df_multi.groupby([Grouper(level="inner"), "B"]).mean(numeric_only=True)
|
342 |
+
expected = (
|
343 |
+
df_multi.reset_index().groupby(["inner", "B"]).mean(numeric_only=True)
|
344 |
+
)
|
345 |
+
tm.assert_frame_equal(result, expected)
|
346 |
+
|
347 |
+
# Grouping a single-index frame by a column and the index should
|
348 |
+
# be equivalent to resetting the index and grouping by two columns
|
349 |
+
df_single = df_multi.reset_index("outer")
|
350 |
+
result = df_single.groupby(["B", Grouper(level="inner")]).mean(
|
351 |
+
numeric_only=True
|
352 |
+
)
|
353 |
+
expected = (
|
354 |
+
df_single.reset_index().groupby(["B", "inner"]).mean(numeric_only=True)
|
355 |
+
)
|
356 |
+
tm.assert_frame_equal(result, expected)
|
357 |
+
|
358 |
+
# Test the reverse grouping order
|
359 |
+
result = df_single.groupby([Grouper(level="inner"), "B"]).mean(
|
360 |
+
numeric_only=True
|
361 |
+
)
|
362 |
+
expected = (
|
363 |
+
df_single.reset_index().groupby(["inner", "B"]).mean(numeric_only=True)
|
364 |
+
)
|
365 |
+
tm.assert_frame_equal(result, expected)
|
366 |
+
|
367 |
+
def test_groupby_levels_and_columns(self):
|
368 |
+
# GH9344, GH9049
|
369 |
+
idx_names = ["x", "y"]
|
370 |
+
idx = MultiIndex.from_tuples([(1, 1), (1, 2), (3, 4), (5, 6)], names=idx_names)
|
371 |
+
df = DataFrame(np.arange(12).reshape(-1, 3), index=idx)
|
372 |
+
|
373 |
+
by_levels = df.groupby(level=idx_names).mean()
|
374 |
+
# reset_index changes columns dtype to object
|
375 |
+
by_columns = df.reset_index().groupby(idx_names).mean()
|
376 |
+
|
377 |
+
# without casting, by_columns.columns is object-dtype
|
378 |
+
by_columns.columns = by_columns.columns.astype(np.int64)
|
379 |
+
tm.assert_frame_equal(by_levels, by_columns)
|
380 |
+
|
381 |
+
def test_groupby_categorical_index_and_columns(self, observed):
|
382 |
+
# GH18432, adapted for GH25871
|
383 |
+
columns = ["A", "B", "A", "B"]
|
384 |
+
categories = ["B", "A"]
|
385 |
+
data = np.array(
|
386 |
+
[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]], int
|
387 |
+
)
|
388 |
+
cat_columns = CategoricalIndex(columns, categories=categories, ordered=True)
|
389 |
+
df = DataFrame(data=data, columns=cat_columns)
|
390 |
+
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
|
391 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
392 |
+
result = df.groupby(axis=1, level=0, observed=observed).sum()
|
393 |
+
expected_data = np.array([[4, 2], [4, 2], [4, 2], [4, 2], [4, 2]], int)
|
394 |
+
expected_columns = CategoricalIndex(
|
395 |
+
categories, categories=categories, ordered=True
|
396 |
+
)
|
397 |
+
expected = DataFrame(data=expected_data, columns=expected_columns)
|
398 |
+
tm.assert_frame_equal(result, expected)
|
399 |
+
|
400 |
+
# test transposed version
|
401 |
+
df = DataFrame(data.T, index=cat_columns)
|
402 |
+
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
403 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
404 |
+
result = df.groupby(axis=0, level=0, observed=observed).sum()
|
405 |
+
expected = DataFrame(data=expected_data.T, index=expected_columns)
|
406 |
+
tm.assert_frame_equal(result, expected)
|
407 |
+
|
408 |
+
def test_grouper_getting_correct_binner(self):
|
409 |
+
# GH 10063
|
410 |
+
# using a non-time-based grouper and a time-based grouper
|
411 |
+
# and specifying levels
|
412 |
+
df = DataFrame(
|
413 |
+
{"A": 1},
|
414 |
+
index=MultiIndex.from_product(
|
415 |
+
[list("ab"), date_range("20130101", periods=80)], names=["one", "two"]
|
416 |
+
),
|
417 |
+
)
|
418 |
+
result = df.groupby(
|
419 |
+
[Grouper(level="one"), Grouper(level="two", freq="ME")]
|
420 |
+
).sum()
|
421 |
+
expected = DataFrame(
|
422 |
+
{"A": [31, 28, 21, 31, 28, 21]},
|
423 |
+
index=MultiIndex.from_product(
|
424 |
+
[list("ab"), date_range("20130101", freq="ME", periods=3)],
|
425 |
+
names=["one", "two"],
|
426 |
+
),
|
427 |
+
)
|
428 |
+
tm.assert_frame_equal(result, expected)
|
429 |
+
|
430 |
+
def test_grouper_iter(self, df):
|
431 |
+
gb = df.groupby("A")
|
432 |
+
msg = "DataFrameGroupBy.grouper is deprecated"
|
433 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
434 |
+
grouper = gb.grouper
|
435 |
+
result = sorted(grouper)
|
436 |
+
expected = ["bar", "foo"]
|
437 |
+
assert result == expected
|
438 |
+
|
439 |
+
def test_empty_groups(self, df):
|
440 |
+
# see gh-1048
|
441 |
+
with pytest.raises(ValueError, match="No group keys passed!"):
|
442 |
+
df.groupby([])
|
443 |
+
|
444 |
+
def test_groupby_grouper(self, df):
|
445 |
+
grouped = df.groupby("A")
|
446 |
+
msg = "DataFrameGroupBy.grouper is deprecated"
|
447 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
448 |
+
grouper = grouped.grouper
|
449 |
+
result = df.groupby(grouper).mean(numeric_only=True)
|
450 |
+
expected = grouped.mean(numeric_only=True)
|
451 |
+
tm.assert_frame_equal(result, expected)
|
452 |
+
|
453 |
+
def test_groupby_dict_mapping(self):
|
454 |
+
# GH #679
|
455 |
+
s = Series({"T1": 5})
|
456 |
+
result = s.groupby({"T1": "T2"}).agg("sum")
|
457 |
+
expected = s.groupby(["T2"]).agg("sum")
|
458 |
+
tm.assert_series_equal(result, expected)
|
459 |
+
|
460 |
+
s = Series([1.0, 2.0, 3.0, 4.0], index=list("abcd"))
|
461 |
+
mapping = {"a": 0, "b": 0, "c": 1, "d": 1}
|
462 |
+
|
463 |
+
result = s.groupby(mapping).mean()
|
464 |
+
result2 = s.groupby(mapping).agg("mean")
|
465 |
+
exp_key = np.array([0, 0, 1, 1], dtype=np.int64)
|
466 |
+
expected = s.groupby(exp_key).mean()
|
467 |
+
expected2 = s.groupby(exp_key).mean()
|
468 |
+
tm.assert_series_equal(result, expected)
|
469 |
+
tm.assert_series_equal(result, result2)
|
470 |
+
tm.assert_series_equal(result, expected2)
|
471 |
+
|
472 |
+
@pytest.mark.parametrize(
|
473 |
+
"index",
|
474 |
+
[
|
475 |
+
[0, 1, 2, 3],
|
476 |
+
["a", "b", "c", "d"],
|
477 |
+
[Timestamp(2021, 7, 28 + i) for i in range(4)],
|
478 |
+
],
|
479 |
+
)
|
480 |
+
def test_groupby_series_named_with_tuple(self, frame_or_series, index):
|
481 |
+
# GH 42731
|
482 |
+
obj = frame_or_series([1, 2, 3, 4], index=index)
|
483 |
+
groups = Series([1, 0, 1, 0], index=index, name=("a", "a"))
|
484 |
+
result = obj.groupby(groups).last()
|
485 |
+
expected = frame_or_series([4, 3])
|
486 |
+
expected.index.name = ("a", "a")
|
487 |
+
tm.assert_equal(result, expected)
|
488 |
+
|
489 |
+
def test_groupby_grouper_f_sanity_checked(self):
|
490 |
+
dates = date_range("01-Jan-2013", periods=12, freq="MS")
|
491 |
+
ts = Series(np.random.default_rng(2).standard_normal(12), index=dates)
|
492 |
+
|
493 |
+
# GH51979
|
494 |
+
# simple check that the passed function doesn't operates on the whole index
|
495 |
+
msg = "'Timestamp' object is not subscriptable"
|
496 |
+
with pytest.raises(TypeError, match=msg):
|
497 |
+
ts.groupby(lambda key: key[0:6])
|
498 |
+
|
499 |
+
result = ts.groupby(lambda x: x).sum()
|
500 |
+
expected = ts.groupby(ts.index).sum()
|
501 |
+
expected.index.freq = None
|
502 |
+
tm.assert_series_equal(result, expected)
|
503 |
+
|
504 |
+
def test_groupby_with_datetime_key(self):
|
505 |
+
# GH 51158
|
506 |
+
df = DataFrame(
|
507 |
+
{
|
508 |
+
"id": ["a", "b"] * 3,
|
509 |
+
"b": date_range("2000-01-01", "2000-01-03", freq="9h"),
|
510 |
+
}
|
511 |
+
)
|
512 |
+
grouper = Grouper(key="b", freq="D")
|
513 |
+
gb = df.groupby([grouper, "id"])
|
514 |
+
|
515 |
+
# test number of groups
|
516 |
+
expected = {
|
517 |
+
(Timestamp("2000-01-01"), "a"): [0, 2],
|
518 |
+
(Timestamp("2000-01-01"), "b"): [1],
|
519 |
+
(Timestamp("2000-01-02"), "a"): [4],
|
520 |
+
(Timestamp("2000-01-02"), "b"): [3, 5],
|
521 |
+
}
|
522 |
+
tm.assert_dict_equal(gb.groups, expected)
|
523 |
+
|
524 |
+
# test number of group keys
|
525 |
+
assert len(gb.groups.keys()) == 4
|
526 |
+
|
527 |
+
def test_grouping_error_on_multidim_input(self, df):
|
528 |
+
msg = "Grouper for '<class 'pandas.core.frame.DataFrame'>' not 1-dimensional"
|
529 |
+
with pytest.raises(ValueError, match=msg):
|
530 |
+
Grouping(df.index, df[["A", "A"]])
|
531 |
+
|
532 |
+
def test_multiindex_passthru(self):
|
533 |
+
# GH 7997
|
534 |
+
# regression from 0.14.1
|
535 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
536 |
+
df.columns = MultiIndex.from_tuples([(0, 1), (1, 1), (2, 1)])
|
537 |
+
|
538 |
+
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
|
539 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
540 |
+
gb = df.groupby(axis=1, level=[0, 1])
|
541 |
+
result = gb.first()
|
542 |
+
tm.assert_frame_equal(result, df)
|
543 |
+
|
544 |
+
def test_multiindex_negative_level(self, multiindex_dataframe_random_data):
|
545 |
+
# GH 13901
|
546 |
+
result = multiindex_dataframe_random_data.groupby(level=-1).sum()
|
547 |
+
expected = multiindex_dataframe_random_data.groupby(level="second").sum()
|
548 |
+
tm.assert_frame_equal(result, expected)
|
549 |
+
|
550 |
+
result = multiindex_dataframe_random_data.groupby(level=-2).sum()
|
551 |
+
expected = multiindex_dataframe_random_data.groupby(level="first").sum()
|
552 |
+
tm.assert_frame_equal(result, expected)
|
553 |
+
|
554 |
+
result = multiindex_dataframe_random_data.groupby(level=[-2, -1]).sum()
|
555 |
+
expected = multiindex_dataframe_random_data.sort_index()
|
556 |
+
tm.assert_frame_equal(result, expected)
|
557 |
+
|
558 |
+
result = multiindex_dataframe_random_data.groupby(level=[-1, "first"]).sum()
|
559 |
+
expected = multiindex_dataframe_random_data.groupby(
|
560 |
+
level=["second", "first"]
|
561 |
+
).sum()
|
562 |
+
tm.assert_frame_equal(result, expected)
|
563 |
+
|
564 |
+
def test_multifunc_select_col_integer_cols(self, df):
|
565 |
+
df.columns = np.arange(len(df.columns))
|
566 |
+
|
567 |
+
# it works!
|
568 |
+
msg = "Passing a dictionary to SeriesGroupBy.agg is deprecated"
|
569 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
570 |
+
df.groupby(1, as_index=False)[2].agg({"Q": np.mean})
|
571 |
+
|
572 |
+
def test_multiindex_columns_empty_level(self):
|
573 |
+
lst = [["count", "values"], ["to filter", ""]]
|
574 |
+
midx = MultiIndex.from_tuples(lst)
|
575 |
+
|
576 |
+
df = DataFrame([[1, "A"]], columns=midx)
|
577 |
+
|
578 |
+
grouped = df.groupby("to filter").groups
|
579 |
+
assert grouped["A"] == [0]
|
580 |
+
|
581 |
+
grouped = df.groupby([("to filter", "")]).groups
|
582 |
+
assert grouped["A"] == [0]
|
583 |
+
|
584 |
+
df = DataFrame([[1, "A"], [2, "B"]], columns=midx)
|
585 |
+
|
586 |
+
expected = df.groupby("to filter").groups
|
587 |
+
result = df.groupby([("to filter", "")]).groups
|
588 |
+
assert result == expected
|
589 |
+
|
590 |
+
df = DataFrame([[1, "A"], [2, "A"]], columns=midx)
|
591 |
+
|
592 |
+
expected = df.groupby("to filter").groups
|
593 |
+
result = df.groupby([("to filter", "")]).groups
|
594 |
+
tm.assert_dict_equal(result, expected)
|
595 |
+
|
596 |
+
def test_groupby_multiindex_tuple(self):
|
597 |
+
# GH 17979
|
598 |
+
df = DataFrame(
|
599 |
+
[[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
|
600 |
+
columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]),
|
601 |
+
)
|
602 |
+
expected = df.groupby([("b", 1)]).groups
|
603 |
+
result = df.groupby(("b", 1)).groups
|
604 |
+
tm.assert_dict_equal(expected, result)
|
605 |
+
|
606 |
+
df2 = DataFrame(
|
607 |
+
df.values,
|
608 |
+
columns=MultiIndex.from_arrays(
|
609 |
+
[["a", "b", "b", "c"], ["d", "d", "e", "e"]]
|
610 |
+
),
|
611 |
+
)
|
612 |
+
expected = df2.groupby([("b", "d")]).groups
|
613 |
+
result = df.groupby(("b", 1)).groups
|
614 |
+
tm.assert_dict_equal(expected, result)
|
615 |
+
|
616 |
+
df3 = DataFrame(df.values, columns=[("a", "d"), ("b", "d"), ("b", "e"), "c"])
|
617 |
+
expected = df3.groupby([("b", "d")]).groups
|
618 |
+
result = df.groupby(("b", 1)).groups
|
619 |
+
tm.assert_dict_equal(expected, result)
|
620 |
+
|
621 |
+
def test_groupby_multiindex_partial_indexing_equivalence(self):
|
622 |
+
# GH 17977
|
623 |
+
df = DataFrame(
|
624 |
+
[[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
|
625 |
+
columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]),
|
626 |
+
)
|
627 |
+
|
628 |
+
expected_mean = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].mean()
|
629 |
+
result_mean = df.groupby([("a", 1)])["b"].mean()
|
630 |
+
tm.assert_frame_equal(expected_mean, result_mean)
|
631 |
+
|
632 |
+
expected_sum = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].sum()
|
633 |
+
result_sum = df.groupby([("a", 1)])["b"].sum()
|
634 |
+
tm.assert_frame_equal(expected_sum, result_sum)
|
635 |
+
|
636 |
+
expected_count = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].count()
|
637 |
+
result_count = df.groupby([("a", 1)])["b"].count()
|
638 |
+
tm.assert_frame_equal(expected_count, result_count)
|
639 |
+
|
640 |
+
expected_min = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].min()
|
641 |
+
result_min = df.groupby([("a", 1)])["b"].min()
|
642 |
+
tm.assert_frame_equal(expected_min, result_min)
|
643 |
+
|
644 |
+
expected_max = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].max()
|
645 |
+
result_max = df.groupby([("a", 1)])["b"].max()
|
646 |
+
tm.assert_frame_equal(expected_max, result_max)
|
647 |
+
|
648 |
+
expected_groups = df.groupby([("a", 1)])[[("b", 1), ("b", 2)]].groups
|
649 |
+
result_groups = df.groupby([("a", 1)])["b"].groups
|
650 |
+
tm.assert_dict_equal(expected_groups, result_groups)
|
651 |
+
|
652 |
+
@pytest.mark.parametrize("sort", [True, False])
|
653 |
+
def test_groupby_level(self, sort, multiindex_dataframe_random_data, df):
|
654 |
+
# GH 17537
|
655 |
+
frame = multiindex_dataframe_random_data
|
656 |
+
deleveled = frame.reset_index()
|
657 |
+
|
658 |
+
result0 = frame.groupby(level=0, sort=sort).sum()
|
659 |
+
result1 = frame.groupby(level=1, sort=sort).sum()
|
660 |
+
|
661 |
+
expected0 = frame.groupby(deleveled["first"].values, sort=sort).sum()
|
662 |
+
expected1 = frame.groupby(deleveled["second"].values, sort=sort).sum()
|
663 |
+
|
664 |
+
expected0.index.name = "first"
|
665 |
+
expected1.index.name = "second"
|
666 |
+
|
667 |
+
assert result0.index.name == "first"
|
668 |
+
assert result1.index.name == "second"
|
669 |
+
|
670 |
+
tm.assert_frame_equal(result0, expected0)
|
671 |
+
tm.assert_frame_equal(result1, expected1)
|
672 |
+
assert result0.index.name == frame.index.names[0]
|
673 |
+
assert result1.index.name == frame.index.names[1]
|
674 |
+
|
675 |
+
# groupby level name
|
676 |
+
result0 = frame.groupby(level="first", sort=sort).sum()
|
677 |
+
result1 = frame.groupby(level="second", sort=sort).sum()
|
678 |
+
tm.assert_frame_equal(result0, expected0)
|
679 |
+
tm.assert_frame_equal(result1, expected1)
|
680 |
+
|
681 |
+
# axis=1
|
682 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
683 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
684 |
+
result0 = frame.T.groupby(level=0, axis=1, sort=sort).sum()
|
685 |
+
result1 = frame.T.groupby(level=1, axis=1, sort=sort).sum()
|
686 |
+
tm.assert_frame_equal(result0, expected0.T)
|
687 |
+
tm.assert_frame_equal(result1, expected1.T)
|
688 |
+
|
689 |
+
# raise exception for non-MultiIndex
|
690 |
+
msg = "level > 0 or level < -1 only valid with MultiIndex"
|
691 |
+
with pytest.raises(ValueError, match=msg):
|
692 |
+
df.groupby(level=1)
|
693 |
+
|
694 |
+
def test_groupby_level_index_names(self, axis):
|
695 |
+
# GH4014 this used to raise ValueError since 'exp'>1 (in py2)
|
696 |
+
df = DataFrame({"exp": ["A"] * 3 + ["B"] * 3, "var1": range(6)}).set_index(
|
697 |
+
"exp"
|
698 |
+
)
|
699 |
+
if axis in (1, "columns"):
|
700 |
+
df = df.T
|
701 |
+
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
|
702 |
+
else:
|
703 |
+
depr_msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
704 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
705 |
+
df.groupby(level="exp", axis=axis)
|
706 |
+
msg = f"level name foo is not the name of the {df._get_axis_name(axis)}"
|
707 |
+
with pytest.raises(ValueError, match=msg):
|
708 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
709 |
+
df.groupby(level="foo", axis=axis)
|
710 |
+
|
711 |
+
@pytest.mark.parametrize("sort", [True, False])
|
712 |
+
def test_groupby_level_with_nas(self, sort):
|
713 |
+
# GH 17537
|
714 |
+
index = MultiIndex(
|
715 |
+
levels=[[1, 0], [0, 1, 2, 3]],
|
716 |
+
codes=[[1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
|
717 |
+
)
|
718 |
+
|
719 |
+
# factorizing doesn't confuse things
|
720 |
+
s = Series(np.arange(8.0), index=index)
|
721 |
+
result = s.groupby(level=0, sort=sort).sum()
|
722 |
+
expected = Series([6.0, 22.0], index=[0, 1])
|
723 |
+
tm.assert_series_equal(result, expected)
|
724 |
+
|
725 |
+
index = MultiIndex(
|
726 |
+
levels=[[1, 0], [0, 1, 2, 3]],
|
727 |
+
codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
|
728 |
+
)
|
729 |
+
|
730 |
+
# factorizing doesn't confuse things
|
731 |
+
s = Series(np.arange(8.0), index=index)
|
732 |
+
result = s.groupby(level=0, sort=sort).sum()
|
733 |
+
expected = Series([6.0, 18.0], index=[0.0, 1.0])
|
734 |
+
tm.assert_series_equal(result, expected)
|
735 |
+
|
736 |
+
def test_groupby_args(self, multiindex_dataframe_random_data):
|
737 |
+
# PR8618 and issue 8015
|
738 |
+
frame = multiindex_dataframe_random_data
|
739 |
+
|
740 |
+
msg = "You have to supply one of 'by' and 'level'"
|
741 |
+
with pytest.raises(TypeError, match=msg):
|
742 |
+
frame.groupby()
|
743 |
+
|
744 |
+
msg = "You have to supply one of 'by' and 'level'"
|
745 |
+
with pytest.raises(TypeError, match=msg):
|
746 |
+
frame.groupby(by=None, level=None)
|
747 |
+
|
748 |
+
@pytest.mark.parametrize(
|
749 |
+
"sort,labels",
|
750 |
+
[
|
751 |
+
[True, [2, 2, 2, 0, 0, 1, 1, 3, 3, 3]],
|
752 |
+
[False, [0, 0, 0, 1, 1, 2, 2, 3, 3, 3]],
|
753 |
+
],
|
754 |
+
)
|
755 |
+
def test_level_preserve_order(self, sort, labels, multiindex_dataframe_random_data):
|
756 |
+
# GH 17537
|
757 |
+
grouped = multiindex_dataframe_random_data.groupby(level=0, sort=sort)
|
758 |
+
exp_labels = np.array(labels, np.intp)
|
759 |
+
tm.assert_almost_equal(grouped._grouper.codes[0], exp_labels)
|
760 |
+
|
761 |
+
def test_grouping_labels(self, multiindex_dataframe_random_data):
|
762 |
+
grouped = multiindex_dataframe_random_data.groupby(
|
763 |
+
multiindex_dataframe_random_data.index.get_level_values(0)
|
764 |
+
)
|
765 |
+
exp_labels = np.array([2, 2, 2, 0, 0, 1, 1, 3, 3, 3], dtype=np.intp)
|
766 |
+
tm.assert_almost_equal(grouped._grouper.codes[0], exp_labels)
|
767 |
+
|
768 |
+
def test_list_grouper_with_nat(self):
|
769 |
+
# GH 14715
|
770 |
+
df = DataFrame({"date": date_range("1/1/2011", periods=365, freq="D")})
|
771 |
+
df.iloc[-1] = pd.NaT
|
772 |
+
grouper = Grouper(key="date", freq="YS")
|
773 |
+
|
774 |
+
# Grouper in a list grouping
|
775 |
+
result = df.groupby([grouper])
|
776 |
+
expected = {Timestamp("2011-01-01"): Index(list(range(364)))}
|
777 |
+
tm.assert_dict_equal(result.groups, expected)
|
778 |
+
|
779 |
+
# Test case without a list
|
780 |
+
result = df.groupby(grouper)
|
781 |
+
expected = {Timestamp("2011-01-01"): 365}
|
782 |
+
tm.assert_dict_equal(result.groups, expected)
|
783 |
+
|
784 |
+
@pytest.mark.parametrize(
|
785 |
+
"func,expected",
|
786 |
+
[
|
787 |
+
(
|
788 |
+
"transform",
|
789 |
+
Series(name=2, dtype=np.float64),
|
790 |
+
),
|
791 |
+
(
|
792 |
+
"agg",
|
793 |
+
Series(
|
794 |
+
name=2, dtype=np.float64, index=Index([], dtype=np.float64, name=1)
|
795 |
+
),
|
796 |
+
),
|
797 |
+
(
|
798 |
+
"apply",
|
799 |
+
Series(
|
800 |
+
name=2, dtype=np.float64, index=Index([], dtype=np.float64, name=1)
|
801 |
+
),
|
802 |
+
),
|
803 |
+
],
|
804 |
+
)
|
805 |
+
def test_evaluate_with_empty_groups(self, func, expected):
|
806 |
+
# 26208
|
807 |
+
# test transform'ing empty groups
|
808 |
+
# (not testing other agg fns, because they return
|
809 |
+
# different index objects.
|
810 |
+
df = DataFrame({1: [], 2: []})
|
811 |
+
g = df.groupby(1, group_keys=False)
|
812 |
+
result = getattr(g[2], func)(lambda x: x)
|
813 |
+
tm.assert_series_equal(result, expected)
|
814 |
+
|
815 |
+
def test_groupby_empty(self):
|
816 |
+
# https://github.com/pandas-dev/pandas/issues/27190
|
817 |
+
s = Series([], name="name", dtype="float64")
|
818 |
+
gr = s.groupby([])
|
819 |
+
|
820 |
+
result = gr.mean()
|
821 |
+
expected = s.set_axis(Index([], dtype=np.intp))
|
822 |
+
tm.assert_series_equal(result, expected)
|
823 |
+
|
824 |
+
# check group properties
|
825 |
+
assert len(gr._grouper.groupings) == 1
|
826 |
+
tm.assert_numpy_array_equal(
|
827 |
+
gr._grouper.group_info[0], np.array([], dtype=np.dtype(np.intp))
|
828 |
+
)
|
829 |
+
|
830 |
+
tm.assert_numpy_array_equal(
|
831 |
+
gr._grouper.group_info[1], np.array([], dtype=np.dtype(np.intp))
|
832 |
+
)
|
833 |
+
|
834 |
+
assert gr._grouper.group_info[2] == 0
|
835 |
+
|
836 |
+
# check name
|
837 |
+
gb = s.groupby(s)
|
838 |
+
msg = "SeriesGroupBy.grouper is deprecated"
|
839 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
840 |
+
grouper = gb.grouper
|
841 |
+
result = grouper.names
|
842 |
+
expected = ["name"]
|
843 |
+
assert result == expected
|
844 |
+
|
845 |
+
def test_groupby_level_index_value_all_na(self):
|
846 |
+
# issue 20519
|
847 |
+
df = DataFrame(
|
848 |
+
[["x", np.nan, 10], [None, np.nan, 20]], columns=["A", "B", "C"]
|
849 |
+
).set_index(["A", "B"])
|
850 |
+
result = df.groupby(level=["A", "B"]).sum()
|
851 |
+
expected = DataFrame(
|
852 |
+
data=[],
|
853 |
+
index=MultiIndex(
|
854 |
+
levels=[Index(["x"], dtype="object"), Index([], dtype="float64")],
|
855 |
+
codes=[[], []],
|
856 |
+
names=["A", "B"],
|
857 |
+
),
|
858 |
+
columns=["C"],
|
859 |
+
dtype="int64",
|
860 |
+
)
|
861 |
+
tm.assert_frame_equal(result, expected)
|
862 |
+
|
863 |
+
def test_groupby_multiindex_level_empty(self):
|
864 |
+
# https://github.com/pandas-dev/pandas/issues/31670
|
865 |
+
df = DataFrame(
|
866 |
+
[[123, "a", 1.0], [123, "b", 2.0]], columns=["id", "category", "value"]
|
867 |
+
)
|
868 |
+
df = df.set_index(["id", "category"])
|
869 |
+
empty = df[df.value < 0]
|
870 |
+
result = empty.groupby("id").sum()
|
871 |
+
expected = DataFrame(
|
872 |
+
dtype="float64",
|
873 |
+
columns=["value"],
|
874 |
+
index=Index([], dtype=np.int64, name="id"),
|
875 |
+
)
|
876 |
+
tm.assert_frame_equal(result, expected)
|
877 |
+
|
878 |
+
|
879 |
+
# get_group
|
880 |
+
# --------------------------------
|
881 |
+
|
882 |
+
|
883 |
+
class TestGetGroup:
|
884 |
+
def test_get_group(self):
|
885 |
+
# GH 5267
|
886 |
+
# be datelike friendly
|
887 |
+
df = DataFrame(
|
888 |
+
{
|
889 |
+
"DATE": pd.to_datetime(
|
890 |
+
[
|
891 |
+
"10-Oct-2013",
|
892 |
+
"10-Oct-2013",
|
893 |
+
"10-Oct-2013",
|
894 |
+
"11-Oct-2013",
|
895 |
+
"11-Oct-2013",
|
896 |
+
"11-Oct-2013",
|
897 |
+
]
|
898 |
+
),
|
899 |
+
"label": ["foo", "foo", "bar", "foo", "foo", "bar"],
|
900 |
+
"VAL": [1, 2, 3, 4, 5, 6],
|
901 |
+
}
|
902 |
+
)
|
903 |
+
|
904 |
+
g = df.groupby("DATE")
|
905 |
+
key = next(iter(g.groups))
|
906 |
+
result1 = g.get_group(key)
|
907 |
+
result2 = g.get_group(Timestamp(key).to_pydatetime())
|
908 |
+
result3 = g.get_group(str(Timestamp(key)))
|
909 |
+
tm.assert_frame_equal(result1, result2)
|
910 |
+
tm.assert_frame_equal(result1, result3)
|
911 |
+
|
912 |
+
g = df.groupby(["DATE", "label"])
|
913 |
+
|
914 |
+
key = next(iter(g.groups))
|
915 |
+
result1 = g.get_group(key)
|
916 |
+
result2 = g.get_group((Timestamp(key[0]).to_pydatetime(), key[1]))
|
917 |
+
result3 = g.get_group((str(Timestamp(key[0])), key[1]))
|
918 |
+
tm.assert_frame_equal(result1, result2)
|
919 |
+
tm.assert_frame_equal(result1, result3)
|
920 |
+
|
921 |
+
# must pass a same-length tuple with multiple keys
|
922 |
+
msg = "must supply a tuple to get_group with multiple grouping keys"
|
923 |
+
with pytest.raises(ValueError, match=msg):
|
924 |
+
g.get_group("foo")
|
925 |
+
with pytest.raises(ValueError, match=msg):
|
926 |
+
g.get_group("foo")
|
927 |
+
msg = "must supply a same-length tuple to get_group with multiple grouping keys"
|
928 |
+
with pytest.raises(ValueError, match=msg):
|
929 |
+
g.get_group(("foo", "bar", "baz"))
|
930 |
+
|
931 |
+
def test_get_group_empty_bins(self, observed):
|
932 |
+
d = DataFrame([3, 1, 7, 6])
|
933 |
+
bins = [0, 5, 10, 15]
|
934 |
+
g = d.groupby(pd.cut(d[0], bins), observed=observed)
|
935 |
+
|
936 |
+
# TODO: should prob allow a str of Interval work as well
|
937 |
+
# IOW '(0, 5]'
|
938 |
+
result = g.get_group(pd.Interval(0, 5))
|
939 |
+
expected = DataFrame([3, 1], index=[0, 1])
|
940 |
+
tm.assert_frame_equal(result, expected)
|
941 |
+
|
942 |
+
msg = r"Interval\(10, 15, closed='right'\)"
|
943 |
+
with pytest.raises(KeyError, match=msg):
|
944 |
+
g.get_group(pd.Interval(10, 15))
|
945 |
+
|
946 |
+
def test_get_group_grouped_by_tuple(self):
|
947 |
+
# GH 8121
|
948 |
+
df = DataFrame([[(1,), (1, 2), (1,), (1, 2)]], index=["ids"]).T
|
949 |
+
gr = df.groupby("ids")
|
950 |
+
expected = DataFrame({"ids": [(1,), (1,)]}, index=[0, 2])
|
951 |
+
result = gr.get_group((1,))
|
952 |
+
tm.assert_frame_equal(result, expected)
|
953 |
+
|
954 |
+
dt = pd.to_datetime(["2010-01-01", "2010-01-02", "2010-01-01", "2010-01-02"])
|
955 |
+
df = DataFrame({"ids": [(x,) for x in dt]})
|
956 |
+
gr = df.groupby("ids")
|
957 |
+
result = gr.get_group(("2010-01-01",))
|
958 |
+
expected = DataFrame({"ids": [(dt[0],), (dt[0],)]}, index=[0, 2])
|
959 |
+
tm.assert_frame_equal(result, expected)
|
960 |
+
|
961 |
+
def test_get_group_grouped_by_tuple_with_lambda(self):
|
962 |
+
# GH 36158
|
963 |
+
df = DataFrame(
|
964 |
+
{
|
965 |
+
"Tuples": (
|
966 |
+
(x, y)
|
967 |
+
for x in [0, 1]
|
968 |
+
for y in np.random.default_rng(2).integers(3, 5, 5)
|
969 |
+
)
|
970 |
+
}
|
971 |
+
)
|
972 |
+
|
973 |
+
gb = df.groupby("Tuples")
|
974 |
+
gb_lambda = df.groupby(lambda x: df.iloc[x, 0])
|
975 |
+
|
976 |
+
expected = gb.get_group(next(iter(gb.groups.keys())))
|
977 |
+
result = gb_lambda.get_group(next(iter(gb_lambda.groups.keys())))
|
978 |
+
|
979 |
+
tm.assert_frame_equal(result, expected)
|
980 |
+
|
981 |
+
def test_groupby_with_empty(self):
|
982 |
+
index = pd.DatetimeIndex(())
|
983 |
+
data = ()
|
984 |
+
series = Series(data, index, dtype=object)
|
985 |
+
grouper = Grouper(freq="D")
|
986 |
+
grouped = series.groupby(grouper)
|
987 |
+
assert next(iter(grouped), None) is None
|
988 |
+
|
989 |
+
def test_groupby_with_single_column(self):
|
990 |
+
df = DataFrame({"a": list("abssbab")})
|
991 |
+
tm.assert_frame_equal(df.groupby("a").get_group("a"), df.iloc[[0, 5]])
|
992 |
+
# GH 13530
|
993 |
+
exp = DataFrame(index=Index(["a", "b", "s"], name="a"), columns=[])
|
994 |
+
tm.assert_frame_equal(df.groupby("a").count(), exp)
|
995 |
+
tm.assert_frame_equal(df.groupby("a").sum(), exp)
|
996 |
+
|
997 |
+
exp = df.iloc[[3, 4, 5]]
|
998 |
+
tm.assert_frame_equal(df.groupby("a").nth(1), exp)
|
999 |
+
|
1000 |
+
def test_gb_key_len_equal_axis_len(self):
|
1001 |
+
# GH16843
|
1002 |
+
# test ensures that index and column keys are recognized correctly
|
1003 |
+
# when number of keys equals axis length of groupby
|
1004 |
+
df = DataFrame(
|
1005 |
+
[["foo", "bar", "B", 1], ["foo", "bar", "B", 2], ["foo", "baz", "C", 3]],
|
1006 |
+
columns=["first", "second", "third", "one"],
|
1007 |
+
)
|
1008 |
+
df = df.set_index(["first", "second"])
|
1009 |
+
df = df.groupby(["first", "second", "third"]).size()
|
1010 |
+
assert df.loc[("foo", "bar", "B")] == 2
|
1011 |
+
assert df.loc[("foo", "baz", "C")] == 1
|
1012 |
+
|
1013 |
+
|
1014 |
+
# groups & iteration
|
1015 |
+
# --------------------------------
|
1016 |
+
|
1017 |
+
|
1018 |
+
class TestIteration:
|
1019 |
+
def test_groups(self, df):
|
1020 |
+
grouped = df.groupby(["A"])
|
1021 |
+
groups = grouped.groups
|
1022 |
+
assert groups is grouped.groups # caching works
|
1023 |
+
|
1024 |
+
for k, v in grouped.groups.items():
|
1025 |
+
assert (df.loc[v]["A"] == k).all()
|
1026 |
+
|
1027 |
+
grouped = df.groupby(["A", "B"])
|
1028 |
+
groups = grouped.groups
|
1029 |
+
assert groups is grouped.groups # caching works
|
1030 |
+
|
1031 |
+
for k, v in grouped.groups.items():
|
1032 |
+
assert (df.loc[v]["A"] == k[0]).all()
|
1033 |
+
assert (df.loc[v]["B"] == k[1]).all()
|
1034 |
+
|
1035 |
+
def test_grouping_is_iterable(self, tsframe):
|
1036 |
+
# this code path isn't used anywhere else
|
1037 |
+
# not sure it's useful
|
1038 |
+
grouped = tsframe.groupby([lambda x: x.weekday(), lambda x: x.year])
|
1039 |
+
|
1040 |
+
# test it works
|
1041 |
+
for g in grouped._grouper.groupings[0]:
|
1042 |
+
pass
|
1043 |
+
|
1044 |
+
def test_multi_iter(self):
|
1045 |
+
s = Series(np.arange(6))
|
1046 |
+
k1 = np.array(["a", "a", "a", "b", "b", "b"])
|
1047 |
+
k2 = np.array(["1", "2", "1", "2", "1", "2"])
|
1048 |
+
|
1049 |
+
grouped = s.groupby([k1, k2])
|
1050 |
+
|
1051 |
+
iterated = list(grouped)
|
1052 |
+
expected = [
|
1053 |
+
("a", "1", s[[0, 2]]),
|
1054 |
+
("a", "2", s[[1]]),
|
1055 |
+
("b", "1", s[[4]]),
|
1056 |
+
("b", "2", s[[3, 5]]),
|
1057 |
+
]
|
1058 |
+
for i, ((one, two), three) in enumerate(iterated):
|
1059 |
+
e1, e2, e3 = expected[i]
|
1060 |
+
assert e1 == one
|
1061 |
+
assert e2 == two
|
1062 |
+
tm.assert_series_equal(three, e3)
|
1063 |
+
|
1064 |
+
def test_multi_iter_frame(self, three_group):
|
1065 |
+
k1 = np.array(["b", "b", "b", "a", "a", "a"])
|
1066 |
+
k2 = np.array(["1", "2", "1", "2", "1", "2"])
|
1067 |
+
df = DataFrame(
|
1068 |
+
{
|
1069 |
+
"v1": np.random.default_rng(2).standard_normal(6),
|
1070 |
+
"v2": np.random.default_rng(2).standard_normal(6),
|
1071 |
+
"k1": k1,
|
1072 |
+
"k2": k2,
|
1073 |
+
},
|
1074 |
+
index=["one", "two", "three", "four", "five", "six"],
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
grouped = df.groupby(["k1", "k2"])
|
1078 |
+
|
1079 |
+
# things get sorted!
|
1080 |
+
iterated = list(grouped)
|
1081 |
+
idx = df.index
|
1082 |
+
expected = [
|
1083 |
+
("a", "1", df.loc[idx[[4]]]),
|
1084 |
+
("a", "2", df.loc[idx[[3, 5]]]),
|
1085 |
+
("b", "1", df.loc[idx[[0, 2]]]),
|
1086 |
+
("b", "2", df.loc[idx[[1]]]),
|
1087 |
+
]
|
1088 |
+
for i, ((one, two), three) in enumerate(iterated):
|
1089 |
+
e1, e2, e3 = expected[i]
|
1090 |
+
assert e1 == one
|
1091 |
+
assert e2 == two
|
1092 |
+
tm.assert_frame_equal(three, e3)
|
1093 |
+
|
1094 |
+
# don't iterate through groups with no data
|
1095 |
+
df["k1"] = np.array(["b", "b", "b", "a", "a", "a"])
|
1096 |
+
df["k2"] = np.array(["1", "1", "1", "2", "2", "2"])
|
1097 |
+
grouped = df.groupby(["k1", "k2"])
|
1098 |
+
# calling `dict` on a DataFrameGroupBy leads to a TypeError,
|
1099 |
+
# we need to use a dictionary comprehension here
|
1100 |
+
# pylint: disable-next=unnecessary-comprehension
|
1101 |
+
groups = {key: gp for key, gp in grouped} # noqa: C416
|
1102 |
+
assert len(groups) == 2
|
1103 |
+
|
1104 |
+
# axis = 1
|
1105 |
+
three_levels = three_group.groupby(["A", "B", "C"]).mean()
|
1106 |
+
depr_msg = "DataFrame.groupby with axis=1 is deprecated"
|
1107 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
1108 |
+
grouped = three_levels.T.groupby(axis=1, level=(1, 2))
|
1109 |
+
for key, group in grouped:
|
1110 |
+
pass
|
1111 |
+
|
1112 |
+
def test_dictify(self, df):
|
1113 |
+
dict(iter(df.groupby("A")))
|
1114 |
+
dict(iter(df.groupby(["A", "B"])))
|
1115 |
+
dict(iter(df["C"].groupby(df["A"])))
|
1116 |
+
dict(iter(df["C"].groupby([df["A"], df["B"]])))
|
1117 |
+
dict(iter(df.groupby("A")["C"]))
|
1118 |
+
dict(iter(df.groupby(["A", "B"])["C"]))
|
1119 |
+
|
1120 |
+
def test_groupby_with_small_elem(self):
|
1121 |
+
# GH 8542
|
1122 |
+
# length=2
|
1123 |
+
df = DataFrame(
|
1124 |
+
{"event": ["start", "start"], "change": [1234, 5678]},
|
1125 |
+
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10"]),
|
1126 |
+
)
|
1127 |
+
grouped = df.groupby([Grouper(freq="ME"), "event"])
|
1128 |
+
assert len(grouped.groups) == 2
|
1129 |
+
assert grouped.ngroups == 2
|
1130 |
+
assert (Timestamp("2014-09-30"), "start") in grouped.groups
|
1131 |
+
assert (Timestamp("2013-10-31"), "start") in grouped.groups
|
1132 |
+
|
1133 |
+
res = grouped.get_group((Timestamp("2014-09-30"), "start"))
|
1134 |
+
tm.assert_frame_equal(res, df.iloc[[0], :])
|
1135 |
+
res = grouped.get_group((Timestamp("2013-10-31"), "start"))
|
1136 |
+
tm.assert_frame_equal(res, df.iloc[[1], :])
|
1137 |
+
|
1138 |
+
df = DataFrame(
|
1139 |
+
{"event": ["start", "start", "start"], "change": [1234, 5678, 9123]},
|
1140 |
+
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-09-15"]),
|
1141 |
+
)
|
1142 |
+
grouped = df.groupby([Grouper(freq="ME"), "event"])
|
1143 |
+
assert len(grouped.groups) == 2
|
1144 |
+
assert grouped.ngroups == 2
|
1145 |
+
assert (Timestamp("2014-09-30"), "start") in grouped.groups
|
1146 |
+
assert (Timestamp("2013-10-31"), "start") in grouped.groups
|
1147 |
+
|
1148 |
+
res = grouped.get_group((Timestamp("2014-09-30"), "start"))
|
1149 |
+
tm.assert_frame_equal(res, df.iloc[[0, 2], :])
|
1150 |
+
res = grouped.get_group((Timestamp("2013-10-31"), "start"))
|
1151 |
+
tm.assert_frame_equal(res, df.iloc[[1], :])
|
1152 |
+
|
1153 |
+
# length=3
|
1154 |
+
df = DataFrame(
|
1155 |
+
{"event": ["start", "start", "start"], "change": [1234, 5678, 9123]},
|
1156 |
+
index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-08-05"]),
|
1157 |
+
)
|
1158 |
+
grouped = df.groupby([Grouper(freq="ME"), "event"])
|
1159 |
+
assert len(grouped.groups) == 3
|
1160 |
+
assert grouped.ngroups == 3
|
1161 |
+
assert (Timestamp("2014-09-30"), "start") in grouped.groups
|
1162 |
+
assert (Timestamp("2013-10-31"), "start") in grouped.groups
|
1163 |
+
assert (Timestamp("2014-08-31"), "start") in grouped.groups
|
1164 |
+
|
1165 |
+
res = grouped.get_group((Timestamp("2014-09-30"), "start"))
|
1166 |
+
tm.assert_frame_equal(res, df.iloc[[0], :])
|
1167 |
+
res = grouped.get_group((Timestamp("2013-10-31"), "start"))
|
1168 |
+
tm.assert_frame_equal(res, df.iloc[[1], :])
|
1169 |
+
res = grouped.get_group((Timestamp("2014-08-31"), "start"))
|
1170 |
+
tm.assert_frame_equal(res, df.iloc[[2], :])
|
1171 |
+
|
1172 |
+
def test_grouping_string_repr(self):
|
1173 |
+
# GH 13394
|
1174 |
+
mi = MultiIndex.from_arrays([list("AAB"), list("aba")])
|
1175 |
+
df = DataFrame([[1, 2, 3]], columns=mi)
|
1176 |
+
gr = df.groupby(df[("A", "a")])
|
1177 |
+
|
1178 |
+
result = gr._grouper.groupings[0].__repr__()
|
1179 |
+
expected = "Grouping(('A', 'a'))"
|
1180 |
+
assert result == expected
|
1181 |
+
|
1182 |
+
|
1183 |
+
def test_grouping_by_key_is_in_axis():
|
1184 |
+
# GH#50413 - Groupers specified by key are in-axis
|
1185 |
+
df = DataFrame({"a": [1, 1, 2], "b": [1, 1, 2], "c": [3, 4, 5]}).set_index("a")
|
1186 |
+
gb = df.groupby([Grouper(level="a"), Grouper(key="b")], as_index=False)
|
1187 |
+
assert not gb._grouper.groupings[0].in_axis
|
1188 |
+
assert gb._grouper.groupings[1].in_axis
|
1189 |
+
|
1190 |
+
# Currently only in-axis groupings are including in the result when as_index=False;
|
1191 |
+
# This is likely to change in the future.
|
1192 |
+
msg = "A grouping .* was excluded from the result"
|
1193 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1194 |
+
result = gb.sum()
|
1195 |
+
expected = DataFrame({"b": [1, 2], "c": [7, 5]})
|
1196 |
+
tm.assert_frame_equal(result, expected)
|
1197 |
+
|
1198 |
+
|
1199 |
+
def test_grouper_groups():
|
1200 |
+
# GH#51182 check Grouper.groups does not raise AttributeError
|
1201 |
+
df = DataFrame({"a": [1, 2, 3], "b": 1})
|
1202 |
+
grper = Grouper(key="a")
|
1203 |
+
gb = df.groupby(grper)
|
1204 |
+
|
1205 |
+
msg = "Use GroupBy.groups instead"
|
1206 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1207 |
+
res = grper.groups
|
1208 |
+
assert res is gb.groups
|
1209 |
+
|
1210 |
+
msg = "Use GroupBy.grouper instead"
|
1211 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1212 |
+
res = grper.grouper
|
1213 |
+
assert res is gb._grouper
|
1214 |
+
|
1215 |
+
msg = "Grouper.obj is deprecated and will be removed"
|
1216 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1217 |
+
res = grper.obj
|
1218 |
+
assert res is gb.obj
|
1219 |
+
|
1220 |
+
msg = "Use Resampler.ax instead"
|
1221 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1222 |
+
grper.ax
|
1223 |
+
|
1224 |
+
msg = "Grouper.indexer is deprecated"
|
1225 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1226 |
+
grper.indexer
|
1227 |
+
|
1228 |
+
|
1229 |
+
@pytest.mark.parametrize("attr", ["group_index", "result_index", "group_arraylike"])
|
1230 |
+
def test_depr_grouping_attrs(attr):
|
1231 |
+
# GH#56148
|
1232 |
+
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]})
|
1233 |
+
gb = df.groupby("a")
|
1234 |
+
msg = f"{attr} is deprecated"
|
1235 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1236 |
+
getattr(gb._grouper.groupings[0], attr)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_index_as_string.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.fixture(params=[["inner"], ["inner", "outer"]])
|
9 |
+
def frame(request):
|
10 |
+
levels = request.param
|
11 |
+
df = pd.DataFrame(
|
12 |
+
{
|
13 |
+
"outer": ["a", "a", "a", "b", "b", "b"],
|
14 |
+
"inner": [1, 2, 3, 1, 2, 3],
|
15 |
+
"A": np.arange(6),
|
16 |
+
"B": ["one", "one", "two", "two", "one", "one"],
|
17 |
+
}
|
18 |
+
)
|
19 |
+
if levels:
|
20 |
+
df = df.set_index(levels)
|
21 |
+
|
22 |
+
return df
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.fixture()
|
26 |
+
def series():
|
27 |
+
df = pd.DataFrame(
|
28 |
+
{
|
29 |
+
"outer": ["a", "a", "a", "b", "b", "b"],
|
30 |
+
"inner": [1, 2, 3, 1, 2, 3],
|
31 |
+
"A": np.arange(6),
|
32 |
+
"B": ["one", "one", "two", "two", "one", "one"],
|
33 |
+
}
|
34 |
+
)
|
35 |
+
s = df.set_index(["outer", "inner", "B"])["A"]
|
36 |
+
|
37 |
+
return s
|
38 |
+
|
39 |
+
|
40 |
+
@pytest.mark.parametrize(
|
41 |
+
"key_strs,groupers",
|
42 |
+
[
|
43 |
+
("inner", pd.Grouper(level="inner")), # Index name
|
44 |
+
(["inner"], [pd.Grouper(level="inner")]), # List of index name
|
45 |
+
(["B", "inner"], ["B", pd.Grouper(level="inner")]), # Column and index
|
46 |
+
(["inner", "B"], [pd.Grouper(level="inner"), "B"]), # Index and column
|
47 |
+
],
|
48 |
+
)
|
49 |
+
def test_grouper_index_level_as_string(frame, key_strs, groupers):
|
50 |
+
if "B" not in key_strs or "outer" in frame.columns:
|
51 |
+
result = frame.groupby(key_strs).mean(numeric_only=True)
|
52 |
+
expected = frame.groupby(groupers).mean(numeric_only=True)
|
53 |
+
else:
|
54 |
+
result = frame.groupby(key_strs).mean()
|
55 |
+
expected = frame.groupby(groupers).mean()
|
56 |
+
tm.assert_frame_equal(result, expected)
|
57 |
+
|
58 |
+
|
59 |
+
@pytest.mark.parametrize(
|
60 |
+
"levels",
|
61 |
+
[
|
62 |
+
"inner",
|
63 |
+
"outer",
|
64 |
+
"B",
|
65 |
+
["inner"],
|
66 |
+
["outer"],
|
67 |
+
["B"],
|
68 |
+
["inner", "outer"],
|
69 |
+
["outer", "inner"],
|
70 |
+
["inner", "outer", "B"],
|
71 |
+
["B", "outer", "inner"],
|
72 |
+
],
|
73 |
+
)
|
74 |
+
def test_grouper_index_level_as_string_series(series, levels):
|
75 |
+
# Compute expected result
|
76 |
+
if isinstance(levels, list):
|
77 |
+
groupers = [pd.Grouper(level=lv) for lv in levels]
|
78 |
+
else:
|
79 |
+
groupers = pd.Grouper(level=levels)
|
80 |
+
|
81 |
+
expected = series.groupby(groupers).mean()
|
82 |
+
|
83 |
+
# Compute and check result
|
84 |
+
result = series.groupby(levels).mean()
|
85 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_indexing.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Test GroupBy._positional_selector positional grouped indexing GH#42864
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.mark.parametrize(
|
11 |
+
"arg, expected_rows",
|
12 |
+
[
|
13 |
+
[0, [0, 1, 4]],
|
14 |
+
[2, [5]],
|
15 |
+
[5, []],
|
16 |
+
[-1, [3, 4, 7]],
|
17 |
+
[-2, [1, 6]],
|
18 |
+
[-6, []],
|
19 |
+
],
|
20 |
+
)
|
21 |
+
def test_int(slice_test_df, slice_test_grouped, arg, expected_rows):
|
22 |
+
# Test single integer
|
23 |
+
result = slice_test_grouped._positional_selector[arg]
|
24 |
+
expected = slice_test_df.iloc[expected_rows]
|
25 |
+
|
26 |
+
tm.assert_frame_equal(result, expected)
|
27 |
+
|
28 |
+
|
29 |
+
def test_slice(slice_test_df, slice_test_grouped):
|
30 |
+
# Test single slice
|
31 |
+
result = slice_test_grouped._positional_selector[0:3:2]
|
32 |
+
expected = slice_test_df.iloc[[0, 1, 4, 5]]
|
33 |
+
|
34 |
+
tm.assert_frame_equal(result, expected)
|
35 |
+
|
36 |
+
|
37 |
+
@pytest.mark.parametrize(
|
38 |
+
"arg, expected_rows",
|
39 |
+
[
|
40 |
+
[[0, 2], [0, 1, 4, 5]],
|
41 |
+
[[0, 2, -1], [0, 1, 3, 4, 5, 7]],
|
42 |
+
[range(0, 3, 2), [0, 1, 4, 5]],
|
43 |
+
[{0, 2}, [0, 1, 4, 5]],
|
44 |
+
],
|
45 |
+
ids=[
|
46 |
+
"list",
|
47 |
+
"negative",
|
48 |
+
"range",
|
49 |
+
"set",
|
50 |
+
],
|
51 |
+
)
|
52 |
+
def test_list(slice_test_df, slice_test_grouped, arg, expected_rows):
|
53 |
+
# Test lists of integers and integer valued iterables
|
54 |
+
result = slice_test_grouped._positional_selector[arg]
|
55 |
+
expected = slice_test_df.iloc[expected_rows]
|
56 |
+
|
57 |
+
tm.assert_frame_equal(result, expected)
|
58 |
+
|
59 |
+
|
60 |
+
def test_ints(slice_test_df, slice_test_grouped):
|
61 |
+
# Test tuple of ints
|
62 |
+
result = slice_test_grouped._positional_selector[0, 2, -1]
|
63 |
+
expected = slice_test_df.iloc[[0, 1, 3, 4, 5, 7]]
|
64 |
+
|
65 |
+
tm.assert_frame_equal(result, expected)
|
66 |
+
|
67 |
+
|
68 |
+
def test_slices(slice_test_df, slice_test_grouped):
|
69 |
+
# Test tuple of slices
|
70 |
+
result = slice_test_grouped._positional_selector[:2, -2:]
|
71 |
+
expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]]
|
72 |
+
|
73 |
+
tm.assert_frame_equal(result, expected)
|
74 |
+
|
75 |
+
|
76 |
+
def test_mix(slice_test_df, slice_test_grouped):
|
77 |
+
# Test mixed tuple of ints and slices
|
78 |
+
result = slice_test_grouped._positional_selector[0, 1, -2:]
|
79 |
+
expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]]
|
80 |
+
|
81 |
+
tm.assert_frame_equal(result, expected)
|
82 |
+
|
83 |
+
|
84 |
+
@pytest.mark.parametrize(
|
85 |
+
"arg, expected_rows",
|
86 |
+
[
|
87 |
+
[0, [0, 1, 4]],
|
88 |
+
[[0, 2, -1], [0, 1, 3, 4, 5, 7]],
|
89 |
+
[(slice(None, 2), slice(-2, None)), [0, 1, 2, 3, 4, 6, 7]],
|
90 |
+
],
|
91 |
+
)
|
92 |
+
def test_as_index(slice_test_df, arg, expected_rows):
|
93 |
+
# Test the default as_index behaviour
|
94 |
+
result = slice_test_df.groupby("Group", sort=False)._positional_selector[arg]
|
95 |
+
expected = slice_test_df.iloc[expected_rows]
|
96 |
+
|
97 |
+
tm.assert_frame_equal(result, expected)
|
98 |
+
|
99 |
+
|
100 |
+
def test_doc_examples():
|
101 |
+
# Test the examples in the documentation
|
102 |
+
df = pd.DataFrame(
|
103 |
+
[["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]], columns=["A", "B"]
|
104 |
+
)
|
105 |
+
|
106 |
+
grouped = df.groupby("A", as_index=False)
|
107 |
+
|
108 |
+
result = grouped._positional_selector[1:2]
|
109 |
+
expected = pd.DataFrame([["a", 2], ["b", 5]], columns=["A", "B"], index=[1, 4])
|
110 |
+
|
111 |
+
tm.assert_frame_equal(result, expected)
|
112 |
+
|
113 |
+
result = grouped._positional_selector[1, -1]
|
114 |
+
expected = pd.DataFrame(
|
115 |
+
[["a", 2], ["a", 3], ["b", 5]], columns=["A", "B"], index=[1, 2, 4]
|
116 |
+
)
|
117 |
+
|
118 |
+
tm.assert_frame_equal(result, expected)
|
119 |
+
|
120 |
+
|
121 |
+
@pytest.fixture()
|
122 |
+
def multiindex_data():
|
123 |
+
rng = np.random.default_rng(2)
|
124 |
+
ndates = 100
|
125 |
+
nitems = 20
|
126 |
+
dates = pd.date_range("20130101", periods=ndates, freq="D")
|
127 |
+
items = [f"item {i}" for i in range(nitems)]
|
128 |
+
|
129 |
+
data = {}
|
130 |
+
for date in dates:
|
131 |
+
nitems_for_date = nitems - rng.integers(0, 12)
|
132 |
+
levels = [
|
133 |
+
(item, rng.integers(0, 10000) / 100, rng.integers(0, 10000) / 100)
|
134 |
+
for item in items[:nitems_for_date]
|
135 |
+
]
|
136 |
+
levels.sort(key=lambda x: x[1])
|
137 |
+
data[date] = levels
|
138 |
+
|
139 |
+
return data
|
140 |
+
|
141 |
+
|
142 |
+
def _make_df_from_data(data):
|
143 |
+
rows = {}
|
144 |
+
for date in data:
|
145 |
+
for level in data[date]:
|
146 |
+
rows[(date, level[0])] = {"A": level[1], "B": level[2]}
|
147 |
+
|
148 |
+
df = pd.DataFrame.from_dict(rows, orient="index")
|
149 |
+
df.index.names = ("Date", "Item")
|
150 |
+
return df
|
151 |
+
|
152 |
+
|
153 |
+
def test_multiindex(multiindex_data):
|
154 |
+
# Test the multiindex mentioned as the use-case in the documentation
|
155 |
+
df = _make_df_from_data(multiindex_data)
|
156 |
+
result = df.groupby("Date", as_index=False).nth(slice(3, -3))
|
157 |
+
|
158 |
+
sliced = {date: multiindex_data[date][3:-3] for date in multiindex_data}
|
159 |
+
expected = _make_df_from_data(sliced)
|
160 |
+
|
161 |
+
tm.assert_frame_equal(result, expected)
|
162 |
+
|
163 |
+
|
164 |
+
@pytest.mark.parametrize("arg", [1, 5, 30, 1000, -1, -5, -30, -1000])
|
165 |
+
@pytest.mark.parametrize("method", ["head", "tail"])
|
166 |
+
@pytest.mark.parametrize("simulated", [True, False])
|
167 |
+
def test_against_head_and_tail(arg, method, simulated):
|
168 |
+
# Test gives the same results as grouped head and tail
|
169 |
+
n_groups = 100
|
170 |
+
n_rows_per_group = 30
|
171 |
+
|
172 |
+
data = {
|
173 |
+
"group": [
|
174 |
+
f"group {g}" for j in range(n_rows_per_group) for g in range(n_groups)
|
175 |
+
],
|
176 |
+
"value": [
|
177 |
+
f"group {g} row {j}"
|
178 |
+
for j in range(n_rows_per_group)
|
179 |
+
for g in range(n_groups)
|
180 |
+
],
|
181 |
+
}
|
182 |
+
df = pd.DataFrame(data)
|
183 |
+
grouped = df.groupby("group", as_index=False)
|
184 |
+
size = arg if arg >= 0 else n_rows_per_group + arg
|
185 |
+
|
186 |
+
if method == "head":
|
187 |
+
result = grouped._positional_selector[:arg]
|
188 |
+
|
189 |
+
if simulated:
|
190 |
+
indices = [
|
191 |
+
j * n_groups + i
|
192 |
+
for j in range(size)
|
193 |
+
for i in range(n_groups)
|
194 |
+
if j * n_groups + i < n_groups * n_rows_per_group
|
195 |
+
]
|
196 |
+
expected = df.iloc[indices]
|
197 |
+
|
198 |
+
else:
|
199 |
+
expected = grouped.head(arg)
|
200 |
+
|
201 |
+
else:
|
202 |
+
result = grouped._positional_selector[-arg:]
|
203 |
+
|
204 |
+
if simulated:
|
205 |
+
indices = [
|
206 |
+
(n_rows_per_group + j - size) * n_groups + i
|
207 |
+
for j in range(size)
|
208 |
+
for i in range(n_groups)
|
209 |
+
if (n_rows_per_group + j - size) * n_groups + i >= 0
|
210 |
+
]
|
211 |
+
expected = df.iloc[indices]
|
212 |
+
|
213 |
+
else:
|
214 |
+
expected = grouped.tail(arg)
|
215 |
+
|
216 |
+
tm.assert_frame_equal(result, expected)
|
217 |
+
|
218 |
+
|
219 |
+
@pytest.mark.parametrize("start", [None, 0, 1, 10, -1, -10])
|
220 |
+
@pytest.mark.parametrize("stop", [None, 0, 1, 10, -1, -10])
|
221 |
+
@pytest.mark.parametrize("step", [None, 1, 5])
|
222 |
+
def test_against_df_iloc(start, stop, step):
|
223 |
+
# Test that a single group gives the same results as DataFrame.iloc
|
224 |
+
n_rows = 30
|
225 |
+
|
226 |
+
data = {
|
227 |
+
"group": ["group 0"] * n_rows,
|
228 |
+
"value": list(range(n_rows)),
|
229 |
+
}
|
230 |
+
df = pd.DataFrame(data)
|
231 |
+
grouped = df.groupby("group", as_index=False)
|
232 |
+
|
233 |
+
result = grouped._positional_selector[start:stop:step]
|
234 |
+
expected = df.iloc[start:stop:step]
|
235 |
+
|
236 |
+
tm.assert_frame_equal(result, expected)
|
237 |
+
|
238 |
+
|
239 |
+
def test_series():
|
240 |
+
# Test grouped Series
|
241 |
+
ser = pd.Series([1, 2, 3, 4, 5], index=["a", "a", "a", "b", "b"])
|
242 |
+
grouped = ser.groupby(level=0)
|
243 |
+
result = grouped._positional_selector[1:2]
|
244 |
+
expected = pd.Series([2, 5], index=["a", "b"])
|
245 |
+
|
246 |
+
tm.assert_series_equal(result, expected)
|
247 |
+
|
248 |
+
|
249 |
+
@pytest.mark.parametrize("step", [1, 2, 3, 4, 5])
|
250 |
+
def test_step(step):
|
251 |
+
# Test slice with various step values
|
252 |
+
data = [["x", f"x{i}"] for i in range(5)]
|
253 |
+
data += [["y", f"y{i}"] for i in range(4)]
|
254 |
+
data += [["z", f"z{i}"] for i in range(3)]
|
255 |
+
df = pd.DataFrame(data, columns=["A", "B"])
|
256 |
+
|
257 |
+
grouped = df.groupby("A", as_index=False)
|
258 |
+
|
259 |
+
result = grouped._positional_selector[::step]
|
260 |
+
|
261 |
+
data = [["x", f"x{i}"] for i in range(0, 5, step)]
|
262 |
+
data += [["y", f"y{i}"] for i in range(0, 4, step)]
|
263 |
+
data += [["z", f"z{i}"] for i in range(0, 3, step)]
|
264 |
+
|
265 |
+
index = [0 + i for i in range(0, 5, step)]
|
266 |
+
index += [5 + i for i in range(0, 4, step)]
|
267 |
+
index += [9 + i for i in range(0, 3, step)]
|
268 |
+
|
269 |
+
expected = pd.DataFrame(data, columns=["A", "B"], index=index)
|
270 |
+
|
271 |
+
tm.assert_frame_equal(result, expected)
|
272 |
+
|
273 |
+
|
274 |
+
@pytest.fixture()
|
275 |
+
def column_group_df():
|
276 |
+
return pd.DataFrame(
|
277 |
+
[[0, 1, 2, 3, 4, 5, 6], [0, 0, 1, 0, 1, 0, 2]],
|
278 |
+
columns=["A", "B", "C", "D", "E", "F", "G"],
|
279 |
+
)
|
280 |
+
|
281 |
+
|
282 |
+
def test_column_axis(column_group_df):
|
283 |
+
msg = "DataFrame.groupby with axis=1"
|
284 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
285 |
+
g = column_group_df.groupby(column_group_df.iloc[1], axis=1)
|
286 |
+
result = g._positional_selector[1:-1]
|
287 |
+
expected = column_group_df.iloc[:, [1, 3]]
|
288 |
+
|
289 |
+
tm.assert_frame_equal(result, expected)
|
290 |
+
|
291 |
+
|
292 |
+
def test_columns_on_iter():
|
293 |
+
# GitHub issue #44821
|
294 |
+
df = pd.DataFrame({k: range(10) for k in "ABC"})
|
295 |
+
|
296 |
+
# Group-by and select columns
|
297 |
+
cols = ["A", "B"]
|
298 |
+
for _, dg in df.groupby(df.A < 4)[cols]:
|
299 |
+
tm.assert_index_equal(dg.columns, pd.Index(cols))
|
300 |
+
assert "C" not in dg.columns
|
301 |
+
|
302 |
+
|
303 |
+
@pytest.mark.parametrize("func", [list, pd.Index, pd.Series, np.array])
|
304 |
+
def test_groupby_duplicated_columns(func):
|
305 |
+
# GH#44924
|
306 |
+
df = pd.DataFrame(
|
307 |
+
{
|
308 |
+
"A": [1, 2],
|
309 |
+
"B": [3, 3],
|
310 |
+
"C": ["G", "G"],
|
311 |
+
}
|
312 |
+
)
|
313 |
+
result = df.groupby("C")[func(["A", "B", "A"])].mean()
|
314 |
+
expected = pd.DataFrame(
|
315 |
+
[[1.5, 3.0, 1.5]], columns=["A", "B", "A"], index=pd.Index(["G"], name="C")
|
316 |
+
)
|
317 |
+
tm.assert_frame_equal(result, expected)
|
318 |
+
|
319 |
+
|
320 |
+
def test_groupby_get_nonexisting_groups():
|
321 |
+
# GH#32492
|
322 |
+
df = pd.DataFrame(
|
323 |
+
data={
|
324 |
+
"A": ["a1", "a2", None],
|
325 |
+
"B": ["b1", "b2", "b1"],
|
326 |
+
"val": [1, 2, 3],
|
327 |
+
}
|
328 |
+
)
|
329 |
+
grps = df.groupby(by=["A", "B"])
|
330 |
+
|
331 |
+
msg = "('a2', 'b1')"
|
332 |
+
with pytest.raises(KeyError, match=msg):
|
333 |
+
grps.get_group(("a2", "b1"))
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_libgroupby.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._libs import groupby as libgroupby
|
5 |
+
from pandas._libs.groupby import (
|
6 |
+
group_cumprod,
|
7 |
+
group_cumsum,
|
8 |
+
group_mean,
|
9 |
+
group_sum,
|
10 |
+
group_var,
|
11 |
+
)
|
12 |
+
|
13 |
+
from pandas.core.dtypes.common import ensure_platform_int
|
14 |
+
|
15 |
+
from pandas import isna
|
16 |
+
import pandas._testing as tm
|
17 |
+
|
18 |
+
|
19 |
+
class GroupVarTestMixin:
|
20 |
+
def test_group_var_generic_1d(self):
|
21 |
+
prng = np.random.default_rng(2)
|
22 |
+
|
23 |
+
out = (np.nan * np.ones((5, 1))).astype(self.dtype)
|
24 |
+
counts = np.zeros(5, dtype="int64")
|
25 |
+
values = 10 * prng.random((15, 1)).astype(self.dtype)
|
26 |
+
labels = np.tile(np.arange(5), (3,)).astype("intp")
|
27 |
+
|
28 |
+
expected_out = (
|
29 |
+
np.squeeze(values).reshape((5, 3), order="F").std(axis=1, ddof=1) ** 2
|
30 |
+
)[:, np.newaxis]
|
31 |
+
expected_counts = counts + 3
|
32 |
+
|
33 |
+
self.algo(out, counts, values, labels)
|
34 |
+
assert np.allclose(out, expected_out, self.rtol)
|
35 |
+
tm.assert_numpy_array_equal(counts, expected_counts)
|
36 |
+
|
37 |
+
def test_group_var_generic_1d_flat_labels(self):
|
38 |
+
prng = np.random.default_rng(2)
|
39 |
+
|
40 |
+
out = (np.nan * np.ones((1, 1))).astype(self.dtype)
|
41 |
+
counts = np.zeros(1, dtype="int64")
|
42 |
+
values = 10 * prng.random((5, 1)).astype(self.dtype)
|
43 |
+
labels = np.zeros(5, dtype="intp")
|
44 |
+
|
45 |
+
expected_out = np.array([[values.std(ddof=1) ** 2]])
|
46 |
+
expected_counts = counts + 5
|
47 |
+
|
48 |
+
self.algo(out, counts, values, labels)
|
49 |
+
|
50 |
+
assert np.allclose(out, expected_out, self.rtol)
|
51 |
+
tm.assert_numpy_array_equal(counts, expected_counts)
|
52 |
+
|
53 |
+
def test_group_var_generic_2d_all_finite(self):
|
54 |
+
prng = np.random.default_rng(2)
|
55 |
+
|
56 |
+
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
|
57 |
+
counts = np.zeros(5, dtype="int64")
|
58 |
+
values = 10 * prng.random((10, 2)).astype(self.dtype)
|
59 |
+
labels = np.tile(np.arange(5), (2,)).astype("intp")
|
60 |
+
|
61 |
+
expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2
|
62 |
+
expected_counts = counts + 2
|
63 |
+
|
64 |
+
self.algo(out, counts, values, labels)
|
65 |
+
assert np.allclose(out, expected_out, self.rtol)
|
66 |
+
tm.assert_numpy_array_equal(counts, expected_counts)
|
67 |
+
|
68 |
+
def test_group_var_generic_2d_some_nan(self):
|
69 |
+
prng = np.random.default_rng(2)
|
70 |
+
|
71 |
+
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
|
72 |
+
counts = np.zeros(5, dtype="int64")
|
73 |
+
values = 10 * prng.random((10, 2)).astype(self.dtype)
|
74 |
+
values[:, 1] = np.nan
|
75 |
+
labels = np.tile(np.arange(5), (2,)).astype("intp")
|
76 |
+
|
77 |
+
expected_out = np.vstack(
|
78 |
+
[
|
79 |
+
values[:, 0].reshape(5, 2, order="F").std(ddof=1, axis=1) ** 2,
|
80 |
+
np.nan * np.ones(5),
|
81 |
+
]
|
82 |
+
).T.astype(self.dtype)
|
83 |
+
expected_counts = counts + 2
|
84 |
+
|
85 |
+
self.algo(out, counts, values, labels)
|
86 |
+
tm.assert_almost_equal(out, expected_out, rtol=0.5e-06)
|
87 |
+
tm.assert_numpy_array_equal(counts, expected_counts)
|
88 |
+
|
89 |
+
def test_group_var_constant(self):
|
90 |
+
# Regression test from GH 10448.
|
91 |
+
|
92 |
+
out = np.array([[np.nan]], dtype=self.dtype)
|
93 |
+
counts = np.array([0], dtype="int64")
|
94 |
+
values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype)
|
95 |
+
labels = np.zeros(3, dtype="intp")
|
96 |
+
|
97 |
+
self.algo(out, counts, values, labels)
|
98 |
+
|
99 |
+
assert counts[0] == 3
|
100 |
+
assert out[0, 0] >= 0
|
101 |
+
tm.assert_almost_equal(out[0, 0], 0.0)
|
102 |
+
|
103 |
+
|
104 |
+
class TestGroupVarFloat64(GroupVarTestMixin):
|
105 |
+
__test__ = True
|
106 |
+
|
107 |
+
algo = staticmethod(group_var)
|
108 |
+
dtype = np.float64
|
109 |
+
rtol = 1e-5
|
110 |
+
|
111 |
+
def test_group_var_large_inputs(self):
|
112 |
+
prng = np.random.default_rng(2)
|
113 |
+
|
114 |
+
out = np.array([[np.nan]], dtype=self.dtype)
|
115 |
+
counts = np.array([0], dtype="int64")
|
116 |
+
values = (prng.random(10**6) + 10**12).astype(self.dtype)
|
117 |
+
values.shape = (10**6, 1)
|
118 |
+
labels = np.zeros(10**6, dtype="intp")
|
119 |
+
|
120 |
+
self.algo(out, counts, values, labels)
|
121 |
+
|
122 |
+
assert counts[0] == 10**6
|
123 |
+
tm.assert_almost_equal(out[0, 0], 1.0 / 12, rtol=0.5e-3)
|
124 |
+
|
125 |
+
|
126 |
+
class TestGroupVarFloat32(GroupVarTestMixin):
|
127 |
+
__test__ = True
|
128 |
+
|
129 |
+
algo = staticmethod(group_var)
|
130 |
+
dtype = np.float32
|
131 |
+
rtol = 1e-2
|
132 |
+
|
133 |
+
|
134 |
+
@pytest.mark.parametrize("dtype", ["float32", "float64"])
|
135 |
+
def test_group_ohlc(dtype):
|
136 |
+
obj = np.array(np.random.default_rng(2).standard_normal(20), dtype=dtype)
|
137 |
+
|
138 |
+
bins = np.array([6, 12, 20])
|
139 |
+
out = np.zeros((3, 4), dtype)
|
140 |
+
counts = np.zeros(len(out), dtype=np.int64)
|
141 |
+
labels = ensure_platform_int(np.repeat(np.arange(3), np.diff(np.r_[0, bins])))
|
142 |
+
|
143 |
+
func = libgroupby.group_ohlc
|
144 |
+
func(out, counts, obj[:, None], labels)
|
145 |
+
|
146 |
+
def _ohlc(group):
|
147 |
+
if isna(group).all():
|
148 |
+
return np.repeat(np.nan, 4)
|
149 |
+
return [group[0], group.max(), group.min(), group[-1]]
|
150 |
+
|
151 |
+
expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])])
|
152 |
+
|
153 |
+
tm.assert_almost_equal(out, expected)
|
154 |
+
tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64))
|
155 |
+
|
156 |
+
obj[:6] = np.nan
|
157 |
+
func(out, counts, obj[:, None], labels)
|
158 |
+
expected[0] = np.nan
|
159 |
+
tm.assert_almost_equal(out, expected)
|
160 |
+
|
161 |
+
|
162 |
+
def _check_cython_group_transform_cumulative(pd_op, np_op, dtype):
|
163 |
+
"""
|
164 |
+
Check a group transform that executes a cumulative function.
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
----------
|
168 |
+
pd_op : callable
|
169 |
+
The pandas cumulative function.
|
170 |
+
np_op : callable
|
171 |
+
The analogous one in NumPy.
|
172 |
+
dtype : type
|
173 |
+
The specified dtype of the data.
|
174 |
+
"""
|
175 |
+
is_datetimelike = False
|
176 |
+
|
177 |
+
data = np.array([[1], [2], [3], [4]], dtype=dtype)
|
178 |
+
answer = np.zeros_like(data)
|
179 |
+
|
180 |
+
labels = np.array([0, 0, 0, 0], dtype=np.intp)
|
181 |
+
ngroups = 1
|
182 |
+
pd_op(answer, data, labels, ngroups, is_datetimelike)
|
183 |
+
|
184 |
+
tm.assert_numpy_array_equal(np_op(data), answer[:, 0], check_dtype=False)
|
185 |
+
|
186 |
+
|
187 |
+
@pytest.mark.parametrize("np_dtype", ["int64", "uint64", "float32", "float64"])
|
188 |
+
def test_cython_group_transform_cumsum(np_dtype):
|
189 |
+
# see gh-4095
|
190 |
+
dtype = np.dtype(np_dtype).type
|
191 |
+
pd_op, np_op = group_cumsum, np.cumsum
|
192 |
+
_check_cython_group_transform_cumulative(pd_op, np_op, dtype)
|
193 |
+
|
194 |
+
|
195 |
+
def test_cython_group_transform_cumprod():
|
196 |
+
# see gh-4095
|
197 |
+
dtype = np.float64
|
198 |
+
pd_op, np_op = group_cumprod, np.cumprod
|
199 |
+
_check_cython_group_transform_cumulative(pd_op, np_op, dtype)
|
200 |
+
|
201 |
+
|
202 |
+
def test_cython_group_transform_algos():
|
203 |
+
# see gh-4095
|
204 |
+
is_datetimelike = False
|
205 |
+
|
206 |
+
# with nans
|
207 |
+
labels = np.array([0, 0, 0, 0, 0], dtype=np.intp)
|
208 |
+
ngroups = 1
|
209 |
+
|
210 |
+
data = np.array([[1], [2], [3], [np.nan], [4]], dtype="float64")
|
211 |
+
actual = np.zeros_like(data)
|
212 |
+
actual.fill(np.nan)
|
213 |
+
group_cumprod(actual, data, labels, ngroups, is_datetimelike)
|
214 |
+
expected = np.array([1, 2, 6, np.nan, 24], dtype="float64")
|
215 |
+
tm.assert_numpy_array_equal(actual[:, 0], expected)
|
216 |
+
|
217 |
+
actual = np.zeros_like(data)
|
218 |
+
actual.fill(np.nan)
|
219 |
+
group_cumsum(actual, data, labels, ngroups, is_datetimelike)
|
220 |
+
expected = np.array([1, 3, 6, np.nan, 10], dtype="float64")
|
221 |
+
tm.assert_numpy_array_equal(actual[:, 0], expected)
|
222 |
+
|
223 |
+
# timedelta
|
224 |
+
is_datetimelike = True
|
225 |
+
data = np.array([np.timedelta64(1, "ns")] * 5, dtype="m8[ns]")[:, None]
|
226 |
+
actual = np.zeros_like(data, dtype="int64")
|
227 |
+
group_cumsum(actual, data.view("int64"), labels, ngroups, is_datetimelike)
|
228 |
+
expected = np.array(
|
229 |
+
[
|
230 |
+
np.timedelta64(1, "ns"),
|
231 |
+
np.timedelta64(2, "ns"),
|
232 |
+
np.timedelta64(3, "ns"),
|
233 |
+
np.timedelta64(4, "ns"),
|
234 |
+
np.timedelta64(5, "ns"),
|
235 |
+
]
|
236 |
+
)
|
237 |
+
tm.assert_numpy_array_equal(actual[:, 0].view("m8[ns]"), expected)
|
238 |
+
|
239 |
+
|
240 |
+
def test_cython_group_mean_datetimelike():
|
241 |
+
actual = np.zeros(shape=(1, 1), dtype="float64")
|
242 |
+
counts = np.array([0], dtype="int64")
|
243 |
+
data = (
|
244 |
+
np.array(
|
245 |
+
[np.timedelta64(2, "ns"), np.timedelta64(4, "ns"), np.timedelta64("NaT")],
|
246 |
+
dtype="m8[ns]",
|
247 |
+
)[:, None]
|
248 |
+
.view("int64")
|
249 |
+
.astype("float64")
|
250 |
+
)
|
251 |
+
labels = np.zeros(len(data), dtype=np.intp)
|
252 |
+
|
253 |
+
group_mean(actual, counts, data, labels, is_datetimelike=True)
|
254 |
+
|
255 |
+
tm.assert_numpy_array_equal(actual[:, 0], np.array([3], dtype="float64"))
|
256 |
+
|
257 |
+
|
258 |
+
def test_cython_group_mean_wrong_min_count():
|
259 |
+
actual = np.zeros(shape=(1, 1), dtype="float64")
|
260 |
+
counts = np.zeros(1, dtype="int64")
|
261 |
+
data = np.zeros(1, dtype="float64")[:, None]
|
262 |
+
labels = np.zeros(1, dtype=np.intp)
|
263 |
+
|
264 |
+
with pytest.raises(AssertionError, match="min_count"):
|
265 |
+
group_mean(actual, counts, data, labels, is_datetimelike=True, min_count=0)
|
266 |
+
|
267 |
+
|
268 |
+
def test_cython_group_mean_not_datetimelike_but_has_NaT_values():
|
269 |
+
actual = np.zeros(shape=(1, 1), dtype="float64")
|
270 |
+
counts = np.array([0], dtype="int64")
|
271 |
+
data = (
|
272 |
+
np.array(
|
273 |
+
[np.timedelta64("NaT"), np.timedelta64("NaT")],
|
274 |
+
dtype="m8[ns]",
|
275 |
+
)[:, None]
|
276 |
+
.view("int64")
|
277 |
+
.astype("float64")
|
278 |
+
)
|
279 |
+
labels = np.zeros(len(data), dtype=np.intp)
|
280 |
+
|
281 |
+
group_mean(actual, counts, data, labels, is_datetimelike=False)
|
282 |
+
|
283 |
+
tm.assert_numpy_array_equal(
|
284 |
+
actual[:, 0], np.array(np.divide(np.add(data[0], data[1]), 2), dtype="float64")
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
def test_cython_group_mean_Inf_at_begining_and_end():
|
289 |
+
# GH 50367
|
290 |
+
actual = np.array([[np.nan, np.nan], [np.nan, np.nan]], dtype="float64")
|
291 |
+
counts = np.array([0, 0], dtype="int64")
|
292 |
+
data = np.array(
|
293 |
+
[[np.inf, 1.0], [1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0], [5, np.inf]],
|
294 |
+
dtype="float64",
|
295 |
+
)
|
296 |
+
labels = np.array([0, 1, 0, 1, 0, 1], dtype=np.intp)
|
297 |
+
|
298 |
+
group_mean(actual, counts, data, labels, is_datetimelike=False)
|
299 |
+
|
300 |
+
expected = np.array([[np.inf, 3], [3, np.inf]], dtype="float64")
|
301 |
+
|
302 |
+
tm.assert_numpy_array_equal(
|
303 |
+
actual,
|
304 |
+
expected,
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
@pytest.mark.parametrize(
|
309 |
+
"values, out",
|
310 |
+
[
|
311 |
+
([[np.inf], [np.inf], [np.inf]], [[np.inf], [np.inf]]),
|
312 |
+
([[np.inf], [np.inf], [-np.inf]], [[np.inf], [np.nan]]),
|
313 |
+
([[np.inf], [-np.inf], [np.inf]], [[np.inf], [np.nan]]),
|
314 |
+
([[np.inf], [-np.inf], [-np.inf]], [[np.inf], [-np.inf]]),
|
315 |
+
],
|
316 |
+
)
|
317 |
+
def test_cython_group_sum_Inf_at_begining_and_end(values, out):
|
318 |
+
# GH #53606
|
319 |
+
actual = np.array([[np.nan], [np.nan]], dtype="float64")
|
320 |
+
counts = np.array([0, 0], dtype="int64")
|
321 |
+
data = np.array(values, dtype="float64")
|
322 |
+
labels = np.array([0, 1, 1], dtype=np.intp)
|
323 |
+
|
324 |
+
group_sum(actual, counts, data, labels, None, is_datetimelike=False)
|
325 |
+
|
326 |
+
expected = np.array(out, dtype="float64")
|
327 |
+
|
328 |
+
tm.assert_numpy_array_equal(
|
329 |
+
actual,
|
330 |
+
expected,
|
331 |
+
)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_missing.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
Index,
|
8 |
+
date_range,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.mark.parametrize("func", ["ffill", "bfill"])
|
14 |
+
def test_groupby_column_index_name_lost_fill_funcs(func):
|
15 |
+
# GH: 29764 groupby loses index sometimes
|
16 |
+
df = DataFrame(
|
17 |
+
[[1, 1.0, -1.0], [1, np.nan, np.nan], [1, 2.0, -2.0]],
|
18 |
+
columns=Index(["type", "a", "b"], name="idx"),
|
19 |
+
)
|
20 |
+
df_grouped = df.groupby(["type"])[["a", "b"]]
|
21 |
+
result = getattr(df_grouped, func)().columns
|
22 |
+
expected = Index(["a", "b"], name="idx")
|
23 |
+
tm.assert_index_equal(result, expected)
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.mark.parametrize("func", ["ffill", "bfill"])
|
27 |
+
def test_groupby_fill_duplicate_column_names(func):
|
28 |
+
# GH: 25610 ValueError with duplicate column names
|
29 |
+
df1 = DataFrame({"field1": [1, 3, 4], "field2": [1, 3, 4]})
|
30 |
+
df2 = DataFrame({"field1": [1, np.nan, 4]})
|
31 |
+
df_grouped = pd.concat([df1, df2], axis=1).groupby(by=["field2"])
|
32 |
+
expected = DataFrame(
|
33 |
+
[[1, 1.0], [3, np.nan], [4, 4.0]], columns=["field1", "field1"]
|
34 |
+
)
|
35 |
+
result = getattr(df_grouped, func)()
|
36 |
+
tm.assert_frame_equal(result, expected)
|
37 |
+
|
38 |
+
|
39 |
+
def test_ffill_missing_arguments():
|
40 |
+
# GH 14955
|
41 |
+
df = DataFrame({"a": [1, 2], "b": [1, 1]})
|
42 |
+
msg = "DataFrameGroupBy.fillna is deprecated"
|
43 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
44 |
+
with pytest.raises(ValueError, match="Must specify a fill"):
|
45 |
+
df.groupby("b").fillna()
|
46 |
+
|
47 |
+
|
48 |
+
@pytest.mark.parametrize(
|
49 |
+
"method, expected", [("ffill", [None, "a", "a"]), ("bfill", ["a", "a", None])]
|
50 |
+
)
|
51 |
+
def test_fillna_with_string_dtype(method, expected):
|
52 |
+
# GH 40250
|
53 |
+
df = DataFrame({"a": pd.array([None, "a", None], dtype="string"), "b": [0, 0, 0]})
|
54 |
+
grp = df.groupby("b")
|
55 |
+
msg = "DataFrameGroupBy.fillna is deprecated"
|
56 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
57 |
+
result = grp.fillna(method=method)
|
58 |
+
expected = DataFrame({"a": pd.array(expected, dtype="string")})
|
59 |
+
tm.assert_frame_equal(result, expected)
|
60 |
+
|
61 |
+
|
62 |
+
def test_fill_consistency():
|
63 |
+
# GH9221
|
64 |
+
# pass thru keyword arguments to the generated wrapper
|
65 |
+
# are set if the passed kw is None (only)
|
66 |
+
df = DataFrame(
|
67 |
+
index=pd.MultiIndex.from_product(
|
68 |
+
[["value1", "value2"], date_range("2014-01-01", "2014-01-06")]
|
69 |
+
),
|
70 |
+
columns=Index(["1", "2"], name="id"),
|
71 |
+
)
|
72 |
+
df["1"] = [
|
73 |
+
np.nan,
|
74 |
+
1,
|
75 |
+
np.nan,
|
76 |
+
np.nan,
|
77 |
+
11,
|
78 |
+
np.nan,
|
79 |
+
np.nan,
|
80 |
+
2,
|
81 |
+
np.nan,
|
82 |
+
np.nan,
|
83 |
+
22,
|
84 |
+
np.nan,
|
85 |
+
]
|
86 |
+
df["2"] = [
|
87 |
+
np.nan,
|
88 |
+
3,
|
89 |
+
np.nan,
|
90 |
+
np.nan,
|
91 |
+
33,
|
92 |
+
np.nan,
|
93 |
+
np.nan,
|
94 |
+
4,
|
95 |
+
np.nan,
|
96 |
+
np.nan,
|
97 |
+
44,
|
98 |
+
np.nan,
|
99 |
+
]
|
100 |
+
|
101 |
+
msg = "The 'axis' keyword in DataFrame.groupby is deprecated"
|
102 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
103 |
+
expected = df.groupby(level=0, axis=0).fillna(method="ffill")
|
104 |
+
|
105 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
106 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
107 |
+
result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T
|
108 |
+
tm.assert_frame_equal(result, expected)
|
109 |
+
|
110 |
+
|
111 |
+
@pytest.mark.parametrize("method", ["ffill", "bfill"])
|
112 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
113 |
+
@pytest.mark.parametrize("has_nan_group", [True, False])
|
114 |
+
def test_ffill_handles_nan_groups(dropna, method, has_nan_group):
|
115 |
+
# GH 34725
|
116 |
+
|
117 |
+
df_without_nan_rows = DataFrame([(1, 0.1), (2, 0.2)])
|
118 |
+
|
119 |
+
ridx = [-1, 0, -1, -1, 1, -1]
|
120 |
+
df = df_without_nan_rows.reindex(ridx).reset_index(drop=True)
|
121 |
+
|
122 |
+
group_b = np.nan if has_nan_group else "b"
|
123 |
+
df["group_col"] = pd.Series(["a"] * 3 + [group_b] * 3)
|
124 |
+
|
125 |
+
grouped = df.groupby(by="group_col", dropna=dropna)
|
126 |
+
result = getattr(grouped, method)(limit=None)
|
127 |
+
|
128 |
+
expected_rows = {
|
129 |
+
("ffill", True, True): [-1, 0, 0, -1, -1, -1],
|
130 |
+
("ffill", True, False): [-1, 0, 0, -1, 1, 1],
|
131 |
+
("ffill", False, True): [-1, 0, 0, -1, 1, 1],
|
132 |
+
("ffill", False, False): [-1, 0, 0, -1, 1, 1],
|
133 |
+
("bfill", True, True): [0, 0, -1, -1, -1, -1],
|
134 |
+
("bfill", True, False): [0, 0, -1, 1, 1, -1],
|
135 |
+
("bfill", False, True): [0, 0, -1, 1, 1, -1],
|
136 |
+
("bfill", False, False): [0, 0, -1, 1, 1, -1],
|
137 |
+
}
|
138 |
+
|
139 |
+
ridx = expected_rows.get((method, dropna, has_nan_group))
|
140 |
+
expected = df_without_nan_rows.reindex(ridx).reset_index(drop=True)
|
141 |
+
# columns are a 'take' on df.columns, which are object dtype
|
142 |
+
expected.columns = expected.columns.astype(object)
|
143 |
+
|
144 |
+
tm.assert_frame_equal(result, expected)
|
145 |
+
|
146 |
+
|
147 |
+
@pytest.mark.parametrize("min_count, value", [(2, np.nan), (-1, 1.0)])
|
148 |
+
@pytest.mark.parametrize("func", ["first", "last", "max", "min"])
|
149 |
+
def test_min_count(func, min_count, value):
|
150 |
+
# GH#37821
|
151 |
+
df = DataFrame({"a": [1] * 3, "b": [1, np.nan, np.nan], "c": [np.nan] * 3})
|
152 |
+
result = getattr(df.groupby("a"), func)(min_count=min_count)
|
153 |
+
expected = DataFrame({"b": [value], "c": [np.nan]}, index=Index([1], name="a"))
|
154 |
+
tm.assert_frame_equal(result, expected)
|
155 |
+
|
156 |
+
|
157 |
+
def test_indices_with_missing():
|
158 |
+
# GH 9304
|
159 |
+
df = DataFrame({"a": [1, 1, np.nan], "b": [2, 3, 4], "c": [5, 6, 7]})
|
160 |
+
g = df.groupby(["a", "b"])
|
161 |
+
result = g.indices
|
162 |
+
expected = {(1.0, 2): np.array([0]), (1.0, 3): np.array([1])}
|
163 |
+
assert result == expected
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_numba.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
DataFrame,
|
5 |
+
Series,
|
6 |
+
option_context,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
pytestmark = pytest.mark.single_cpu
|
11 |
+
|
12 |
+
pytest.importorskip("numba")
|
13 |
+
|
14 |
+
|
15 |
+
@pytest.mark.filterwarnings("ignore")
|
16 |
+
# Filter warnings when parallel=True and the function can't be parallelized by Numba
|
17 |
+
class TestEngine:
|
18 |
+
def test_cython_vs_numba_frame(
|
19 |
+
self, sort, nogil, parallel, nopython, numba_supported_reductions
|
20 |
+
):
|
21 |
+
func, kwargs = numba_supported_reductions
|
22 |
+
df = DataFrame({"a": [3, 2, 3, 2], "b": range(4), "c": range(1, 5)})
|
23 |
+
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
24 |
+
gb = df.groupby("a", sort=sort)
|
25 |
+
result = getattr(gb, func)(
|
26 |
+
engine="numba", engine_kwargs=engine_kwargs, **kwargs
|
27 |
+
)
|
28 |
+
expected = getattr(gb, func)(**kwargs)
|
29 |
+
tm.assert_frame_equal(result, expected)
|
30 |
+
|
31 |
+
def test_cython_vs_numba_getitem(
|
32 |
+
self, sort, nogil, parallel, nopython, numba_supported_reductions
|
33 |
+
):
|
34 |
+
func, kwargs = numba_supported_reductions
|
35 |
+
df = DataFrame({"a": [3, 2, 3, 2], "b": range(4), "c": range(1, 5)})
|
36 |
+
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
37 |
+
gb = df.groupby("a", sort=sort)["c"]
|
38 |
+
result = getattr(gb, func)(
|
39 |
+
engine="numba", engine_kwargs=engine_kwargs, **kwargs
|
40 |
+
)
|
41 |
+
expected = getattr(gb, func)(**kwargs)
|
42 |
+
tm.assert_series_equal(result, expected)
|
43 |
+
|
44 |
+
def test_cython_vs_numba_series(
|
45 |
+
self, sort, nogil, parallel, nopython, numba_supported_reductions
|
46 |
+
):
|
47 |
+
func, kwargs = numba_supported_reductions
|
48 |
+
ser = Series(range(3), index=[1, 2, 1], name="foo")
|
49 |
+
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
|
50 |
+
gb = ser.groupby(level=0, sort=sort)
|
51 |
+
result = getattr(gb, func)(
|
52 |
+
engine="numba", engine_kwargs=engine_kwargs, **kwargs
|
53 |
+
)
|
54 |
+
expected = getattr(gb, func)(**kwargs)
|
55 |
+
tm.assert_series_equal(result, expected)
|
56 |
+
|
57 |
+
def test_as_index_false_unsupported(self, numba_supported_reductions):
|
58 |
+
func, kwargs = numba_supported_reductions
|
59 |
+
df = DataFrame({"a": [3, 2, 3, 2], "b": range(4), "c": range(1, 5)})
|
60 |
+
gb = df.groupby("a", as_index=False)
|
61 |
+
with pytest.raises(NotImplementedError, match="as_index=False"):
|
62 |
+
getattr(gb, func)(engine="numba", **kwargs)
|
63 |
+
|
64 |
+
def test_axis_1_unsupported(self, numba_supported_reductions):
|
65 |
+
func, kwargs = numba_supported_reductions
|
66 |
+
df = DataFrame({"a": [3, 2, 3, 2], "b": range(4), "c": range(1, 5)})
|
67 |
+
gb = df.groupby("a", axis=1)
|
68 |
+
with pytest.raises(NotImplementedError, match="axis=1"):
|
69 |
+
getattr(gb, func)(engine="numba", **kwargs)
|
70 |
+
|
71 |
+
def test_no_engine_doesnt_raise(self):
|
72 |
+
# GH55520
|
73 |
+
df = DataFrame({"a": [3, 2, 3, 2], "b": range(4), "c": range(1, 5)})
|
74 |
+
gb = df.groupby("a")
|
75 |
+
# Make sure behavior of functions w/out engine argument don't raise
|
76 |
+
# when the global use_numba option is set
|
77 |
+
with option_context("compute.use_numba", True):
|
78 |
+
res = gb.agg({"b": "first"})
|
79 |
+
expected = gb.agg({"b": "first"})
|
80 |
+
tm.assert_frame_equal(res, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_numeric_only.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas._libs import lib
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
Index,
|
12 |
+
Series,
|
13 |
+
Timestamp,
|
14 |
+
date_range,
|
15 |
+
)
|
16 |
+
import pandas._testing as tm
|
17 |
+
from pandas.tests.groupby import get_groupby_method_args
|
18 |
+
|
19 |
+
|
20 |
+
class TestNumericOnly:
|
21 |
+
# make sure that we are passing thru kwargs to our agg functions
|
22 |
+
|
23 |
+
@pytest.fixture
|
24 |
+
def df(self):
|
25 |
+
# GH3668
|
26 |
+
# GH5724
|
27 |
+
df = DataFrame(
|
28 |
+
{
|
29 |
+
"group": [1, 1, 2],
|
30 |
+
"int": [1, 2, 3],
|
31 |
+
"float": [4.0, 5.0, 6.0],
|
32 |
+
"string": list("abc"),
|
33 |
+
"category_string": Series(list("abc")).astype("category"),
|
34 |
+
"category_int": [7, 8, 9],
|
35 |
+
"datetime": date_range("20130101", periods=3),
|
36 |
+
"datetimetz": date_range("20130101", periods=3, tz="US/Eastern"),
|
37 |
+
"timedelta": pd.timedelta_range("1 s", periods=3, freq="s"),
|
38 |
+
},
|
39 |
+
columns=[
|
40 |
+
"group",
|
41 |
+
"int",
|
42 |
+
"float",
|
43 |
+
"string",
|
44 |
+
"category_string",
|
45 |
+
"category_int",
|
46 |
+
"datetime",
|
47 |
+
"datetimetz",
|
48 |
+
"timedelta",
|
49 |
+
],
|
50 |
+
)
|
51 |
+
return df
|
52 |
+
|
53 |
+
@pytest.mark.parametrize("method", ["mean", "median"])
|
54 |
+
def test_averages(self, df, method):
|
55 |
+
# mean / median
|
56 |
+
expected_columns_numeric = Index(["int", "float", "category_int"])
|
57 |
+
|
58 |
+
gb = df.groupby("group")
|
59 |
+
expected = DataFrame(
|
60 |
+
{
|
61 |
+
"category_int": [7.5, 9],
|
62 |
+
"float": [4.5, 6.0],
|
63 |
+
"timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")],
|
64 |
+
"int": [1.5, 3],
|
65 |
+
"datetime": [
|
66 |
+
Timestamp("2013-01-01 12:00:00"),
|
67 |
+
Timestamp("2013-01-03 00:00:00"),
|
68 |
+
],
|
69 |
+
"datetimetz": [
|
70 |
+
Timestamp("2013-01-01 12:00:00", tz="US/Eastern"),
|
71 |
+
Timestamp("2013-01-03 00:00:00", tz="US/Eastern"),
|
72 |
+
],
|
73 |
+
},
|
74 |
+
index=Index([1, 2], name="group"),
|
75 |
+
columns=[
|
76 |
+
"int",
|
77 |
+
"float",
|
78 |
+
"category_int",
|
79 |
+
],
|
80 |
+
)
|
81 |
+
|
82 |
+
result = getattr(gb, method)(numeric_only=True)
|
83 |
+
tm.assert_frame_equal(result.reindex_like(expected), expected)
|
84 |
+
|
85 |
+
expected_columns = expected.columns
|
86 |
+
|
87 |
+
self._check(df, method, expected_columns, expected_columns_numeric)
|
88 |
+
|
89 |
+
@pytest.mark.parametrize("method", ["min", "max"])
|
90 |
+
def test_extrema(self, df, method):
|
91 |
+
# TODO: min, max *should* handle
|
92 |
+
# categorical (ordered) dtype
|
93 |
+
|
94 |
+
expected_columns = Index(
|
95 |
+
[
|
96 |
+
"int",
|
97 |
+
"float",
|
98 |
+
"string",
|
99 |
+
"category_int",
|
100 |
+
"datetime",
|
101 |
+
"datetimetz",
|
102 |
+
"timedelta",
|
103 |
+
]
|
104 |
+
)
|
105 |
+
expected_columns_numeric = expected_columns
|
106 |
+
|
107 |
+
self._check(df, method, expected_columns, expected_columns_numeric)
|
108 |
+
|
109 |
+
@pytest.mark.parametrize("method", ["first", "last"])
|
110 |
+
def test_first_last(self, df, method):
|
111 |
+
expected_columns = Index(
|
112 |
+
[
|
113 |
+
"int",
|
114 |
+
"float",
|
115 |
+
"string",
|
116 |
+
"category_string",
|
117 |
+
"category_int",
|
118 |
+
"datetime",
|
119 |
+
"datetimetz",
|
120 |
+
"timedelta",
|
121 |
+
]
|
122 |
+
)
|
123 |
+
expected_columns_numeric = expected_columns
|
124 |
+
|
125 |
+
self._check(df, method, expected_columns, expected_columns_numeric)
|
126 |
+
|
127 |
+
@pytest.mark.parametrize("method", ["sum", "cumsum"])
|
128 |
+
def test_sum_cumsum(self, df, method):
|
129 |
+
expected_columns_numeric = Index(["int", "float", "category_int"])
|
130 |
+
expected_columns = Index(
|
131 |
+
["int", "float", "string", "category_int", "timedelta"]
|
132 |
+
)
|
133 |
+
if method == "cumsum":
|
134 |
+
# cumsum loses string
|
135 |
+
expected_columns = Index(["int", "float", "category_int", "timedelta"])
|
136 |
+
|
137 |
+
self._check(df, method, expected_columns, expected_columns_numeric)
|
138 |
+
|
139 |
+
@pytest.mark.parametrize("method", ["prod", "cumprod"])
|
140 |
+
def test_prod_cumprod(self, df, method):
|
141 |
+
expected_columns = Index(["int", "float", "category_int"])
|
142 |
+
expected_columns_numeric = expected_columns
|
143 |
+
|
144 |
+
self._check(df, method, expected_columns, expected_columns_numeric)
|
145 |
+
|
146 |
+
@pytest.mark.parametrize("method", ["cummin", "cummax"])
|
147 |
+
def test_cummin_cummax(self, df, method):
|
148 |
+
# like min, max, but don't include strings
|
149 |
+
expected_columns = Index(
|
150 |
+
["int", "float", "category_int", "datetime", "datetimetz", "timedelta"]
|
151 |
+
)
|
152 |
+
|
153 |
+
# GH#15561: numeric_only=False set by default like min/max
|
154 |
+
expected_columns_numeric = expected_columns
|
155 |
+
|
156 |
+
self._check(df, method, expected_columns, expected_columns_numeric)
|
157 |
+
|
158 |
+
def _check(self, df, method, expected_columns, expected_columns_numeric):
|
159 |
+
gb = df.groupby("group")
|
160 |
+
|
161 |
+
# object dtypes for transformations are not implemented in Cython and
|
162 |
+
# have no Python fallback
|
163 |
+
exception = NotImplementedError if method.startswith("cum") else TypeError
|
164 |
+
|
165 |
+
if method in ("min", "max", "cummin", "cummax", "cumsum", "cumprod"):
|
166 |
+
# The methods default to numeric_only=False and raise TypeError
|
167 |
+
msg = "|".join(
|
168 |
+
[
|
169 |
+
"Categorical is not ordered",
|
170 |
+
f"Cannot perform {method} with non-ordered Categorical",
|
171 |
+
re.escape(f"agg function failed [how->{method},dtype->object]"),
|
172 |
+
# cumsum/cummin/cummax/cumprod
|
173 |
+
"function is not implemented for this dtype",
|
174 |
+
]
|
175 |
+
)
|
176 |
+
with pytest.raises(exception, match=msg):
|
177 |
+
getattr(gb, method)()
|
178 |
+
elif method in ("sum", "mean", "median", "prod"):
|
179 |
+
msg = "|".join(
|
180 |
+
[
|
181 |
+
"category type does not support sum operations",
|
182 |
+
re.escape(f"agg function failed [how->{method},dtype->object]"),
|
183 |
+
re.escape(f"agg function failed [how->{method},dtype->string]"),
|
184 |
+
]
|
185 |
+
)
|
186 |
+
with pytest.raises(exception, match=msg):
|
187 |
+
getattr(gb, method)()
|
188 |
+
else:
|
189 |
+
result = getattr(gb, method)()
|
190 |
+
tm.assert_index_equal(result.columns, expected_columns_numeric)
|
191 |
+
|
192 |
+
if method not in ("first", "last"):
|
193 |
+
msg = "|".join(
|
194 |
+
[
|
195 |
+
"Categorical is not ordered",
|
196 |
+
"category type does not support",
|
197 |
+
"function is not implemented for this dtype",
|
198 |
+
f"Cannot perform {method} with non-ordered Categorical",
|
199 |
+
re.escape(f"agg function failed [how->{method},dtype->object]"),
|
200 |
+
re.escape(f"agg function failed [how->{method},dtype->string]"),
|
201 |
+
]
|
202 |
+
)
|
203 |
+
with pytest.raises(exception, match=msg):
|
204 |
+
getattr(gb, method)(numeric_only=False)
|
205 |
+
else:
|
206 |
+
result = getattr(gb, method)(numeric_only=False)
|
207 |
+
tm.assert_index_equal(result.columns, expected_columns)
|
208 |
+
|
209 |
+
|
210 |
+
@pytest.mark.parametrize("numeric_only", [True, False, None])
|
211 |
+
def test_axis1_numeric_only(request, groupby_func, numeric_only, using_infer_string):
|
212 |
+
if groupby_func in ("idxmax", "idxmin"):
|
213 |
+
pytest.skip("idxmax and idx_min tested in test_idxmin_idxmax_axis1")
|
214 |
+
if groupby_func in ("corrwith", "skew"):
|
215 |
+
msg = "GH#47723 groupby.corrwith and skew do not correctly implement axis=1"
|
216 |
+
request.applymarker(pytest.mark.xfail(reason=msg))
|
217 |
+
|
218 |
+
df = DataFrame(
|
219 |
+
np.random.default_rng(2).standard_normal((10, 4)), columns=["A", "B", "C", "D"]
|
220 |
+
)
|
221 |
+
df["E"] = "x"
|
222 |
+
groups = [1, 2, 3, 1, 2, 3, 1, 2, 3, 4]
|
223 |
+
gb = df.groupby(groups)
|
224 |
+
method = getattr(gb, groupby_func)
|
225 |
+
args = get_groupby_method_args(groupby_func, df)
|
226 |
+
kwargs = {"axis": 1}
|
227 |
+
if numeric_only is not None:
|
228 |
+
# when numeric_only is None we don't pass any argument
|
229 |
+
kwargs["numeric_only"] = numeric_only
|
230 |
+
|
231 |
+
# Functions without numeric_only and axis args
|
232 |
+
no_args = ("cumprod", "cumsum", "diff", "fillna", "pct_change", "rank", "shift")
|
233 |
+
# Functions with axis args
|
234 |
+
has_axis = (
|
235 |
+
"cumprod",
|
236 |
+
"cumsum",
|
237 |
+
"diff",
|
238 |
+
"pct_change",
|
239 |
+
"rank",
|
240 |
+
"shift",
|
241 |
+
"cummax",
|
242 |
+
"cummin",
|
243 |
+
"idxmin",
|
244 |
+
"idxmax",
|
245 |
+
"fillna",
|
246 |
+
)
|
247 |
+
warn_msg = f"DataFrameGroupBy.{groupby_func} with axis=1 is deprecated"
|
248 |
+
if numeric_only is not None and groupby_func in no_args:
|
249 |
+
msg = "got an unexpected keyword argument 'numeric_only'"
|
250 |
+
if groupby_func in ["cumprod", "cumsum"]:
|
251 |
+
with pytest.raises(TypeError, match=msg):
|
252 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
253 |
+
method(*args, **kwargs)
|
254 |
+
else:
|
255 |
+
with pytest.raises(TypeError, match=msg):
|
256 |
+
method(*args, **kwargs)
|
257 |
+
elif groupby_func not in has_axis:
|
258 |
+
msg = "got an unexpected keyword argument 'axis'"
|
259 |
+
with pytest.raises(TypeError, match=msg):
|
260 |
+
method(*args, **kwargs)
|
261 |
+
# fillna and shift are successful even on object dtypes
|
262 |
+
elif (numeric_only is None or not numeric_only) and groupby_func not in (
|
263 |
+
"fillna",
|
264 |
+
"shift",
|
265 |
+
):
|
266 |
+
msgs = (
|
267 |
+
# cummax, cummin, rank
|
268 |
+
"not supported between instances of",
|
269 |
+
# cumprod
|
270 |
+
"can't multiply sequence by non-int of type 'float'",
|
271 |
+
# cumsum, diff, pct_change
|
272 |
+
"unsupported operand type",
|
273 |
+
"has no kernel",
|
274 |
+
)
|
275 |
+
if using_infer_string:
|
276 |
+
import pyarrow as pa
|
277 |
+
|
278 |
+
errs = (TypeError, pa.lib.ArrowNotImplementedError)
|
279 |
+
else:
|
280 |
+
errs = TypeError
|
281 |
+
with pytest.raises(errs, match=f"({'|'.join(msgs)})"):
|
282 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
283 |
+
method(*args, **kwargs)
|
284 |
+
else:
|
285 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
286 |
+
result = method(*args, **kwargs)
|
287 |
+
|
288 |
+
df_expected = df.drop(columns="E").T if numeric_only else df.T
|
289 |
+
expected = getattr(df_expected, groupby_func)(*args).T
|
290 |
+
if groupby_func == "shift" and not numeric_only:
|
291 |
+
# shift with axis=1 leaves the leftmost column as numeric
|
292 |
+
# but transposing for expected gives us object dtype
|
293 |
+
expected = expected.astype(float)
|
294 |
+
|
295 |
+
tm.assert_equal(result, expected)
|
296 |
+
|
297 |
+
|
298 |
+
@pytest.mark.parametrize(
|
299 |
+
"kernel, has_arg",
|
300 |
+
[
|
301 |
+
("all", False),
|
302 |
+
("any", False),
|
303 |
+
("bfill", False),
|
304 |
+
("corr", True),
|
305 |
+
("corrwith", True),
|
306 |
+
("cov", True),
|
307 |
+
("cummax", True),
|
308 |
+
("cummin", True),
|
309 |
+
("cumprod", True),
|
310 |
+
("cumsum", True),
|
311 |
+
("diff", False),
|
312 |
+
("ffill", False),
|
313 |
+
("fillna", False),
|
314 |
+
("first", True),
|
315 |
+
("idxmax", True),
|
316 |
+
("idxmin", True),
|
317 |
+
("last", True),
|
318 |
+
("max", True),
|
319 |
+
("mean", True),
|
320 |
+
("median", True),
|
321 |
+
("min", True),
|
322 |
+
("nth", False),
|
323 |
+
("nunique", False),
|
324 |
+
("pct_change", False),
|
325 |
+
("prod", True),
|
326 |
+
("quantile", True),
|
327 |
+
("sem", True),
|
328 |
+
("skew", True),
|
329 |
+
("std", True),
|
330 |
+
("sum", True),
|
331 |
+
("var", True),
|
332 |
+
],
|
333 |
+
)
|
334 |
+
@pytest.mark.parametrize("numeric_only", [True, False, lib.no_default])
|
335 |
+
@pytest.mark.parametrize("keys", [["a1"], ["a1", "a2"]])
|
336 |
+
def test_numeric_only(kernel, has_arg, numeric_only, keys):
|
337 |
+
# GH#46072
|
338 |
+
# drops_nuisance: Whether the op drops nuisance columns even when numeric_only=False
|
339 |
+
# has_arg: Whether the op has a numeric_only arg
|
340 |
+
df = DataFrame({"a1": [1, 1], "a2": [2, 2], "a3": [5, 6], "b": 2 * [object]})
|
341 |
+
|
342 |
+
args = get_groupby_method_args(kernel, df)
|
343 |
+
kwargs = {} if numeric_only is lib.no_default else {"numeric_only": numeric_only}
|
344 |
+
|
345 |
+
gb = df.groupby(keys)
|
346 |
+
method = getattr(gb, kernel)
|
347 |
+
if has_arg and numeric_only is True:
|
348 |
+
# Cases where b does not appear in the result
|
349 |
+
result = method(*args, **kwargs)
|
350 |
+
assert "b" not in result.columns
|
351 |
+
elif (
|
352 |
+
# kernels that work on any dtype and have numeric_only arg
|
353 |
+
kernel in ("first", "last")
|
354 |
+
or (
|
355 |
+
# kernels that work on any dtype and don't have numeric_only arg
|
356 |
+
kernel in ("any", "all", "bfill", "ffill", "fillna", "nth", "nunique")
|
357 |
+
and numeric_only is lib.no_default
|
358 |
+
)
|
359 |
+
):
|
360 |
+
warn = FutureWarning if kernel == "fillna" else None
|
361 |
+
msg = "DataFrameGroupBy.fillna is deprecated"
|
362 |
+
with tm.assert_produces_warning(warn, match=msg):
|
363 |
+
result = method(*args, **kwargs)
|
364 |
+
assert "b" in result.columns
|
365 |
+
elif has_arg:
|
366 |
+
assert numeric_only is not True
|
367 |
+
# kernels that are successful on any dtype were above; this will fail
|
368 |
+
|
369 |
+
# object dtypes for transformations are not implemented in Cython and
|
370 |
+
# have no Python fallback
|
371 |
+
exception = NotImplementedError if kernel.startswith("cum") else TypeError
|
372 |
+
|
373 |
+
msg = "|".join(
|
374 |
+
[
|
375 |
+
"not allowed for this dtype",
|
376 |
+
"cannot be performed against 'object' dtypes",
|
377 |
+
# On PY39 message is "a number"; on PY310 and after is "a real number"
|
378 |
+
"must be a string or a.* number",
|
379 |
+
"unsupported operand type",
|
380 |
+
"function is not implemented for this dtype",
|
381 |
+
re.escape(f"agg function failed [how->{kernel},dtype->object]"),
|
382 |
+
]
|
383 |
+
)
|
384 |
+
if kernel == "idxmin":
|
385 |
+
msg = "'<' not supported between instances of 'type' and 'type'"
|
386 |
+
elif kernel == "idxmax":
|
387 |
+
msg = "'>' not supported between instances of 'type' and 'type'"
|
388 |
+
with pytest.raises(exception, match=msg):
|
389 |
+
method(*args, **kwargs)
|
390 |
+
elif not has_arg and numeric_only is not lib.no_default:
|
391 |
+
with pytest.raises(
|
392 |
+
TypeError, match="got an unexpected keyword argument 'numeric_only'"
|
393 |
+
):
|
394 |
+
method(*args, **kwargs)
|
395 |
+
else:
|
396 |
+
assert kernel in ("diff", "pct_change")
|
397 |
+
assert numeric_only is lib.no_default
|
398 |
+
# Doesn't have numeric_only argument and fails on nuisance columns
|
399 |
+
with pytest.raises(TypeError, match=r"unsupported operand type"):
|
400 |
+
method(*args, **kwargs)
|
401 |
+
|
402 |
+
|
403 |
+
@pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
|
404 |
+
@pytest.mark.parametrize("dtype", [bool, int, float, object])
|
405 |
+
def test_deprecate_numeric_only_series(dtype, groupby_func, request):
|
406 |
+
# GH#46560
|
407 |
+
grouper = [0, 0, 1]
|
408 |
+
|
409 |
+
ser = Series([1, 0, 0], dtype=dtype)
|
410 |
+
gb = ser.groupby(grouper)
|
411 |
+
|
412 |
+
if groupby_func == "corrwith":
|
413 |
+
# corrwith is not implemented on SeriesGroupBy
|
414 |
+
assert not hasattr(gb, groupby_func)
|
415 |
+
return
|
416 |
+
|
417 |
+
method = getattr(gb, groupby_func)
|
418 |
+
|
419 |
+
expected_ser = Series([1, 0, 0])
|
420 |
+
expected_gb = expected_ser.groupby(grouper)
|
421 |
+
expected_method = getattr(expected_gb, groupby_func)
|
422 |
+
|
423 |
+
args = get_groupby_method_args(groupby_func, ser)
|
424 |
+
|
425 |
+
fails_on_numeric_object = (
|
426 |
+
"corr",
|
427 |
+
"cov",
|
428 |
+
"cummax",
|
429 |
+
"cummin",
|
430 |
+
"cumprod",
|
431 |
+
"cumsum",
|
432 |
+
"quantile",
|
433 |
+
)
|
434 |
+
# ops that give an object result on object input
|
435 |
+
obj_result = (
|
436 |
+
"first",
|
437 |
+
"last",
|
438 |
+
"nth",
|
439 |
+
"bfill",
|
440 |
+
"ffill",
|
441 |
+
"shift",
|
442 |
+
"sum",
|
443 |
+
"diff",
|
444 |
+
"pct_change",
|
445 |
+
"var",
|
446 |
+
"mean",
|
447 |
+
"median",
|
448 |
+
"min",
|
449 |
+
"max",
|
450 |
+
"prod",
|
451 |
+
"skew",
|
452 |
+
)
|
453 |
+
|
454 |
+
# Test default behavior; kernels that fail may be enabled in the future but kernels
|
455 |
+
# that succeed should not be allowed to fail (without deprecation, at least)
|
456 |
+
if groupby_func in fails_on_numeric_object and dtype is object:
|
457 |
+
if groupby_func == "quantile":
|
458 |
+
msg = "cannot be performed against 'object' dtypes"
|
459 |
+
else:
|
460 |
+
msg = "is not supported for object dtype"
|
461 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
462 |
+
warn_msg = "DataFrameGroupBy.fillna is deprecated"
|
463 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
464 |
+
with pytest.raises(TypeError, match=msg):
|
465 |
+
method(*args)
|
466 |
+
elif dtype is object:
|
467 |
+
warn = FutureWarning if groupby_func == "fillna" else None
|
468 |
+
warn_msg = "SeriesGroupBy.fillna is deprecated"
|
469 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
470 |
+
result = method(*args)
|
471 |
+
with tm.assert_produces_warning(warn, match=warn_msg):
|
472 |
+
expected = expected_method(*args)
|
473 |
+
if groupby_func in obj_result:
|
474 |
+
expected = expected.astype(object)
|
475 |
+
tm.assert_series_equal(result, expected)
|
476 |
+
|
477 |
+
has_numeric_only = (
|
478 |
+
"first",
|
479 |
+
"last",
|
480 |
+
"max",
|
481 |
+
"mean",
|
482 |
+
"median",
|
483 |
+
"min",
|
484 |
+
"prod",
|
485 |
+
"quantile",
|
486 |
+
"sem",
|
487 |
+
"skew",
|
488 |
+
"std",
|
489 |
+
"sum",
|
490 |
+
"var",
|
491 |
+
"cummax",
|
492 |
+
"cummin",
|
493 |
+
"cumprod",
|
494 |
+
"cumsum",
|
495 |
+
)
|
496 |
+
if groupby_func not in has_numeric_only:
|
497 |
+
msg = "got an unexpected keyword argument 'numeric_only'"
|
498 |
+
with pytest.raises(TypeError, match=msg):
|
499 |
+
method(*args, numeric_only=True)
|
500 |
+
elif dtype is object:
|
501 |
+
msg = "|".join(
|
502 |
+
[
|
503 |
+
"SeriesGroupBy.sem called with numeric_only=True and dtype object",
|
504 |
+
"Series.skew does not allow numeric_only=True with non-numeric",
|
505 |
+
"cum(sum|prod|min|max) is not supported for object dtype",
|
506 |
+
r"Cannot use numeric_only=True with SeriesGroupBy\..* and non-numeric",
|
507 |
+
]
|
508 |
+
)
|
509 |
+
with pytest.raises(TypeError, match=msg):
|
510 |
+
method(*args, numeric_only=True)
|
511 |
+
elif dtype == bool and groupby_func == "quantile":
|
512 |
+
msg = "Allowing bool dtype in SeriesGroupBy.quantile"
|
513 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
514 |
+
# GH#51424
|
515 |
+
result = method(*args, numeric_only=True)
|
516 |
+
expected = method(*args, numeric_only=False)
|
517 |
+
tm.assert_series_equal(result, expected)
|
518 |
+
else:
|
519 |
+
result = method(*args, numeric_only=True)
|
520 |
+
expected = method(*args, numeric_only=False)
|
521 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_pipe.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from pandas import (
|
5 |
+
DataFrame,
|
6 |
+
Index,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
def test_pipe():
|
12 |
+
# Test the pipe method of DataFrameGroupBy.
|
13 |
+
# Issue #17871
|
14 |
+
|
15 |
+
random_state = np.random.default_rng(2)
|
16 |
+
|
17 |
+
df = DataFrame(
|
18 |
+
{
|
19 |
+
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
|
20 |
+
"B": random_state.standard_normal(8),
|
21 |
+
"C": random_state.standard_normal(8),
|
22 |
+
}
|
23 |
+
)
|
24 |
+
|
25 |
+
def f(dfgb):
|
26 |
+
return dfgb.B.max() - dfgb.C.min().min()
|
27 |
+
|
28 |
+
def square(srs):
|
29 |
+
return srs**2
|
30 |
+
|
31 |
+
# Note that the transformations are
|
32 |
+
# GroupBy -> Series
|
33 |
+
# Series -> Series
|
34 |
+
# This then chains the GroupBy.pipe and the
|
35 |
+
# NDFrame.pipe methods
|
36 |
+
result = df.groupby("A").pipe(f).pipe(square)
|
37 |
+
|
38 |
+
index = Index(["bar", "foo"], dtype="object", name="A")
|
39 |
+
expected = pd.Series([3.749306591013693, 6.717707873081384], name="B", index=index)
|
40 |
+
|
41 |
+
tm.assert_series_equal(expected, result)
|
42 |
+
|
43 |
+
|
44 |
+
def test_pipe_args():
|
45 |
+
# Test passing args to the pipe method of DataFrameGroupBy.
|
46 |
+
# Issue #17871
|
47 |
+
|
48 |
+
df = DataFrame(
|
49 |
+
{
|
50 |
+
"group": ["A", "A", "B", "B", "C"],
|
51 |
+
"x": [1.0, 2.0, 3.0, 2.0, 5.0],
|
52 |
+
"y": [10.0, 100.0, 1000.0, -100.0, -1000.0],
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
def f(dfgb, arg1):
|
57 |
+
filtered = dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False)
|
58 |
+
return filtered.groupby("group")
|
59 |
+
|
60 |
+
def g(dfgb, arg2):
|
61 |
+
return dfgb.sum() / dfgb.sum().sum() + arg2
|
62 |
+
|
63 |
+
def h(df, arg3):
|
64 |
+
return df.x + df.y - arg3
|
65 |
+
|
66 |
+
result = df.groupby("group").pipe(f, 0).pipe(g, 10).pipe(h, 100)
|
67 |
+
|
68 |
+
# Assert the results here
|
69 |
+
index = Index(["A", "B"], name="group")
|
70 |
+
expected = pd.Series([-79.5160891089, -78.4839108911], index=index)
|
71 |
+
|
72 |
+
tm.assert_series_equal(result, expected)
|
73 |
+
|
74 |
+
# test SeriesGroupby.pipe
|
75 |
+
ser = pd.Series([1, 1, 2, 2, 3, 3])
|
76 |
+
result = ser.groupby(ser).pipe(lambda grp: grp.sum() * grp.count())
|
77 |
+
|
78 |
+
expected = pd.Series([4, 8, 12], index=Index([1, 2, 3], dtype=np.int64))
|
79 |
+
|
80 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_raises.py
ADDED
@@ -0,0 +1,716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Only tests that raise an error and have no better location should go here.
|
2 |
+
# Tests for specific groupby methods should go in their respective
|
3 |
+
# test file.
|
4 |
+
|
5 |
+
import datetime
|
6 |
+
import re
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pytest
|
10 |
+
|
11 |
+
from pandas import (
|
12 |
+
Categorical,
|
13 |
+
DataFrame,
|
14 |
+
Grouper,
|
15 |
+
Series,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
from pandas.tests.groupby import get_groupby_method_args
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.fixture(
|
22 |
+
params=[
|
23 |
+
"a",
|
24 |
+
["a"],
|
25 |
+
["a", "b"],
|
26 |
+
Grouper(key="a"),
|
27 |
+
lambda x: x % 2,
|
28 |
+
[0, 0, 0, 1, 2, 2, 2, 3, 3],
|
29 |
+
np.array([0, 0, 0, 1, 2, 2, 2, 3, 3]),
|
30 |
+
dict(zip(range(9), [0, 0, 0, 1, 2, 2, 2, 3, 3])),
|
31 |
+
Series([1, 1, 1, 1, 1, 2, 2, 2, 2]),
|
32 |
+
[Series([1, 1, 1, 1, 1, 2, 2, 2, 2]), Series([3, 3, 4, 4, 4, 4, 4, 3, 3])],
|
33 |
+
]
|
34 |
+
)
|
35 |
+
def by(request):
|
36 |
+
return request.param
|
37 |
+
|
38 |
+
|
39 |
+
@pytest.fixture(params=[True, False])
|
40 |
+
def groupby_series(request):
|
41 |
+
return request.param
|
42 |
+
|
43 |
+
|
44 |
+
@pytest.fixture
|
45 |
+
def df_with_string_col():
|
46 |
+
df = DataFrame(
|
47 |
+
{
|
48 |
+
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
|
49 |
+
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
|
50 |
+
"c": range(9),
|
51 |
+
"d": list("xyzwtyuio"),
|
52 |
+
}
|
53 |
+
)
|
54 |
+
return df
|
55 |
+
|
56 |
+
|
57 |
+
@pytest.fixture
|
58 |
+
def df_with_datetime_col():
|
59 |
+
df = DataFrame(
|
60 |
+
{
|
61 |
+
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
|
62 |
+
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
|
63 |
+
"c": range(9),
|
64 |
+
"d": datetime.datetime(2005, 1, 1, 10, 30, 23, 540000),
|
65 |
+
}
|
66 |
+
)
|
67 |
+
return df
|
68 |
+
|
69 |
+
|
70 |
+
@pytest.fixture
|
71 |
+
def df_with_timedelta_col():
|
72 |
+
df = DataFrame(
|
73 |
+
{
|
74 |
+
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
|
75 |
+
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
|
76 |
+
"c": range(9),
|
77 |
+
"d": datetime.timedelta(days=1),
|
78 |
+
}
|
79 |
+
)
|
80 |
+
return df
|
81 |
+
|
82 |
+
|
83 |
+
@pytest.fixture
|
84 |
+
def df_with_cat_col():
|
85 |
+
df = DataFrame(
|
86 |
+
{
|
87 |
+
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2],
|
88 |
+
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3],
|
89 |
+
"c": range(9),
|
90 |
+
"d": Categorical(
|
91 |
+
["a", "a", "a", "a", "b", "b", "b", "b", "c"],
|
92 |
+
categories=["a", "b", "c", "d"],
|
93 |
+
ordered=True,
|
94 |
+
),
|
95 |
+
}
|
96 |
+
)
|
97 |
+
return df
|
98 |
+
|
99 |
+
|
100 |
+
def _call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg=""):
|
101 |
+
warn_klass = None if warn_msg == "" else FutureWarning
|
102 |
+
with tm.assert_produces_warning(warn_klass, match=warn_msg):
|
103 |
+
if klass is None:
|
104 |
+
if how == "method":
|
105 |
+
getattr(gb, groupby_func)(*args)
|
106 |
+
elif how == "agg":
|
107 |
+
gb.agg(groupby_func, *args)
|
108 |
+
else:
|
109 |
+
gb.transform(groupby_func, *args)
|
110 |
+
else:
|
111 |
+
with pytest.raises(klass, match=msg):
|
112 |
+
if how == "method":
|
113 |
+
getattr(gb, groupby_func)(*args)
|
114 |
+
elif how == "agg":
|
115 |
+
gb.agg(groupby_func, *args)
|
116 |
+
else:
|
117 |
+
gb.transform(groupby_func, *args)
|
118 |
+
|
119 |
+
|
120 |
+
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
|
121 |
+
def test_groupby_raises_string(
|
122 |
+
how, by, groupby_series, groupby_func, df_with_string_col
|
123 |
+
):
|
124 |
+
df = df_with_string_col
|
125 |
+
args = get_groupby_method_args(groupby_func, df)
|
126 |
+
gb = df.groupby(by=by)
|
127 |
+
|
128 |
+
if groupby_series:
|
129 |
+
gb = gb["d"]
|
130 |
+
|
131 |
+
if groupby_func == "corrwith":
|
132 |
+
assert not hasattr(gb, "corrwith")
|
133 |
+
return
|
134 |
+
|
135 |
+
klass, msg = {
|
136 |
+
"all": (None, ""),
|
137 |
+
"any": (None, ""),
|
138 |
+
"bfill": (None, ""),
|
139 |
+
"corrwith": (TypeError, "Could not convert"),
|
140 |
+
"count": (None, ""),
|
141 |
+
"cumcount": (None, ""),
|
142 |
+
"cummax": (
|
143 |
+
(NotImplementedError, TypeError),
|
144 |
+
"(function|cummax) is not (implemented|supported) for (this|object) dtype",
|
145 |
+
),
|
146 |
+
"cummin": (
|
147 |
+
(NotImplementedError, TypeError),
|
148 |
+
"(function|cummin) is not (implemented|supported) for (this|object) dtype",
|
149 |
+
),
|
150 |
+
"cumprod": (
|
151 |
+
(NotImplementedError, TypeError),
|
152 |
+
"(function|cumprod) is not (implemented|supported) for (this|object) dtype",
|
153 |
+
),
|
154 |
+
"cumsum": (
|
155 |
+
(NotImplementedError, TypeError),
|
156 |
+
"(function|cumsum) is not (implemented|supported) for (this|object) dtype",
|
157 |
+
),
|
158 |
+
"diff": (TypeError, "unsupported operand type"),
|
159 |
+
"ffill": (None, ""),
|
160 |
+
"fillna": (None, ""),
|
161 |
+
"first": (None, ""),
|
162 |
+
"idxmax": (None, ""),
|
163 |
+
"idxmin": (None, ""),
|
164 |
+
"last": (None, ""),
|
165 |
+
"max": (None, ""),
|
166 |
+
"mean": (
|
167 |
+
TypeError,
|
168 |
+
re.escape("agg function failed [how->mean,dtype->object]"),
|
169 |
+
),
|
170 |
+
"median": (
|
171 |
+
TypeError,
|
172 |
+
re.escape("agg function failed [how->median,dtype->object]"),
|
173 |
+
),
|
174 |
+
"min": (None, ""),
|
175 |
+
"ngroup": (None, ""),
|
176 |
+
"nunique": (None, ""),
|
177 |
+
"pct_change": (TypeError, "unsupported operand type"),
|
178 |
+
"prod": (
|
179 |
+
TypeError,
|
180 |
+
re.escape("agg function failed [how->prod,dtype->object]"),
|
181 |
+
),
|
182 |
+
"quantile": (TypeError, "cannot be performed against 'object' dtypes!"),
|
183 |
+
"rank": (None, ""),
|
184 |
+
"sem": (ValueError, "could not convert string to float"),
|
185 |
+
"shift": (None, ""),
|
186 |
+
"size": (None, ""),
|
187 |
+
"skew": (ValueError, "could not convert string to float"),
|
188 |
+
"std": (ValueError, "could not convert string to float"),
|
189 |
+
"sum": (None, ""),
|
190 |
+
"var": (
|
191 |
+
TypeError,
|
192 |
+
re.escape("agg function failed [how->var,dtype->"),
|
193 |
+
),
|
194 |
+
}[groupby_func]
|
195 |
+
|
196 |
+
if groupby_func == "fillna":
|
197 |
+
kind = "Series" if groupby_series else "DataFrame"
|
198 |
+
warn_msg = f"{kind}GroupBy.fillna is deprecated"
|
199 |
+
else:
|
200 |
+
warn_msg = ""
|
201 |
+
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg)
|
202 |
+
|
203 |
+
|
204 |
+
@pytest.mark.parametrize("how", ["agg", "transform"])
|
205 |
+
def test_groupby_raises_string_udf(how, by, groupby_series, df_with_string_col):
|
206 |
+
df = df_with_string_col
|
207 |
+
gb = df.groupby(by=by)
|
208 |
+
|
209 |
+
if groupby_series:
|
210 |
+
gb = gb["d"]
|
211 |
+
|
212 |
+
def func(x):
|
213 |
+
raise TypeError("Test error message")
|
214 |
+
|
215 |
+
with pytest.raises(TypeError, match="Test error message"):
|
216 |
+
getattr(gb, how)(func)
|
217 |
+
|
218 |
+
|
219 |
+
@pytest.mark.parametrize("how", ["agg", "transform"])
|
220 |
+
@pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean])
|
221 |
+
def test_groupby_raises_string_np(
|
222 |
+
how, by, groupby_series, groupby_func_np, df_with_string_col
|
223 |
+
):
|
224 |
+
# GH#50749
|
225 |
+
df = df_with_string_col
|
226 |
+
gb = df.groupby(by=by)
|
227 |
+
|
228 |
+
if groupby_series:
|
229 |
+
gb = gb["d"]
|
230 |
+
|
231 |
+
klass, msg = {
|
232 |
+
np.sum: (None, ""),
|
233 |
+
np.mean: (
|
234 |
+
TypeError,
|
235 |
+
re.escape("agg function failed [how->mean,dtype->object]"),
|
236 |
+
),
|
237 |
+
}[groupby_func_np]
|
238 |
+
|
239 |
+
if groupby_series:
|
240 |
+
warn_msg = "using SeriesGroupBy.[sum|mean]"
|
241 |
+
else:
|
242 |
+
warn_msg = "using DataFrameGroupBy.[sum|mean]"
|
243 |
+
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg)
|
244 |
+
|
245 |
+
|
246 |
+
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
|
247 |
+
def test_groupby_raises_datetime(
|
248 |
+
how, by, groupby_series, groupby_func, df_with_datetime_col
|
249 |
+
):
|
250 |
+
df = df_with_datetime_col
|
251 |
+
args = get_groupby_method_args(groupby_func, df)
|
252 |
+
gb = df.groupby(by=by)
|
253 |
+
|
254 |
+
if groupby_series:
|
255 |
+
gb = gb["d"]
|
256 |
+
|
257 |
+
if groupby_func == "corrwith":
|
258 |
+
assert not hasattr(gb, "corrwith")
|
259 |
+
return
|
260 |
+
|
261 |
+
klass, msg = {
|
262 |
+
"all": (None, ""),
|
263 |
+
"any": (None, ""),
|
264 |
+
"bfill": (None, ""),
|
265 |
+
"corrwith": (TypeError, "cannot perform __mul__ with this index type"),
|
266 |
+
"count": (None, ""),
|
267 |
+
"cumcount": (None, ""),
|
268 |
+
"cummax": (None, ""),
|
269 |
+
"cummin": (None, ""),
|
270 |
+
"cumprod": (TypeError, "datetime64 type does not support cumprod operations"),
|
271 |
+
"cumsum": (TypeError, "datetime64 type does not support cumsum operations"),
|
272 |
+
"diff": (None, ""),
|
273 |
+
"ffill": (None, ""),
|
274 |
+
"fillna": (None, ""),
|
275 |
+
"first": (None, ""),
|
276 |
+
"idxmax": (None, ""),
|
277 |
+
"idxmin": (None, ""),
|
278 |
+
"last": (None, ""),
|
279 |
+
"max": (None, ""),
|
280 |
+
"mean": (None, ""),
|
281 |
+
"median": (None, ""),
|
282 |
+
"min": (None, ""),
|
283 |
+
"ngroup": (None, ""),
|
284 |
+
"nunique": (None, ""),
|
285 |
+
"pct_change": (TypeError, "cannot perform __truediv__ with this index type"),
|
286 |
+
"prod": (TypeError, "datetime64 type does not support prod"),
|
287 |
+
"quantile": (None, ""),
|
288 |
+
"rank": (None, ""),
|
289 |
+
"sem": (None, ""),
|
290 |
+
"shift": (None, ""),
|
291 |
+
"size": (None, ""),
|
292 |
+
"skew": (
|
293 |
+
TypeError,
|
294 |
+
"|".join(
|
295 |
+
[
|
296 |
+
r"dtype datetime64\[ns\] does not support reduction",
|
297 |
+
"datetime64 type does not support skew operations",
|
298 |
+
]
|
299 |
+
),
|
300 |
+
),
|
301 |
+
"std": (None, ""),
|
302 |
+
"sum": (TypeError, "datetime64 type does not support sum operations"),
|
303 |
+
"var": (TypeError, "datetime64 type does not support var operations"),
|
304 |
+
}[groupby_func]
|
305 |
+
|
306 |
+
if groupby_func in ["any", "all"]:
|
307 |
+
warn_msg = f"'{groupby_func}' with datetime64 dtypes is deprecated"
|
308 |
+
elif groupby_func == "fillna":
|
309 |
+
kind = "Series" if groupby_series else "DataFrame"
|
310 |
+
warn_msg = f"{kind}GroupBy.fillna is deprecated"
|
311 |
+
else:
|
312 |
+
warn_msg = ""
|
313 |
+
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg=warn_msg)
|
314 |
+
|
315 |
+
|
316 |
+
@pytest.mark.parametrize("how", ["agg", "transform"])
|
317 |
+
def test_groupby_raises_datetime_udf(how, by, groupby_series, df_with_datetime_col):
|
318 |
+
df = df_with_datetime_col
|
319 |
+
gb = df.groupby(by=by)
|
320 |
+
|
321 |
+
if groupby_series:
|
322 |
+
gb = gb["d"]
|
323 |
+
|
324 |
+
def func(x):
|
325 |
+
raise TypeError("Test error message")
|
326 |
+
|
327 |
+
with pytest.raises(TypeError, match="Test error message"):
|
328 |
+
getattr(gb, how)(func)
|
329 |
+
|
330 |
+
|
331 |
+
@pytest.mark.parametrize("how", ["agg", "transform"])
|
332 |
+
@pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean])
|
333 |
+
def test_groupby_raises_datetime_np(
|
334 |
+
how, by, groupby_series, groupby_func_np, df_with_datetime_col
|
335 |
+
):
|
336 |
+
# GH#50749
|
337 |
+
df = df_with_datetime_col
|
338 |
+
gb = df.groupby(by=by)
|
339 |
+
|
340 |
+
if groupby_series:
|
341 |
+
gb = gb["d"]
|
342 |
+
|
343 |
+
klass, msg = {
|
344 |
+
np.sum: (TypeError, "datetime64 type does not support sum operations"),
|
345 |
+
np.mean: (None, ""),
|
346 |
+
}[groupby_func_np]
|
347 |
+
|
348 |
+
if groupby_series:
|
349 |
+
warn_msg = "using SeriesGroupBy.[sum|mean]"
|
350 |
+
else:
|
351 |
+
warn_msg = "using DataFrameGroupBy.[sum|mean]"
|
352 |
+
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg)
|
353 |
+
|
354 |
+
|
355 |
+
@pytest.mark.parametrize("func", ["prod", "cumprod", "skew", "var"])
|
356 |
+
def test_groupby_raises_timedelta(func, df_with_timedelta_col):
|
357 |
+
df = df_with_timedelta_col
|
358 |
+
gb = df.groupby(by="a")
|
359 |
+
|
360 |
+
_call_and_check(
|
361 |
+
TypeError,
|
362 |
+
"timedelta64 type does not support .* operations",
|
363 |
+
"method",
|
364 |
+
gb,
|
365 |
+
func,
|
366 |
+
[],
|
367 |
+
)
|
368 |
+
|
369 |
+
|
370 |
+
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
|
371 |
+
def test_groupby_raises_category(
|
372 |
+
how, by, groupby_series, groupby_func, using_copy_on_write, df_with_cat_col
|
373 |
+
):
|
374 |
+
# GH#50749
|
375 |
+
df = df_with_cat_col
|
376 |
+
args = get_groupby_method_args(groupby_func, df)
|
377 |
+
gb = df.groupby(by=by)
|
378 |
+
|
379 |
+
if groupby_series:
|
380 |
+
gb = gb["d"]
|
381 |
+
|
382 |
+
if groupby_func == "corrwith":
|
383 |
+
assert not hasattr(gb, "corrwith")
|
384 |
+
return
|
385 |
+
|
386 |
+
klass, msg = {
|
387 |
+
"all": (None, ""),
|
388 |
+
"any": (None, ""),
|
389 |
+
"bfill": (None, ""),
|
390 |
+
"corrwith": (
|
391 |
+
TypeError,
|
392 |
+
r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'",
|
393 |
+
),
|
394 |
+
"count": (None, ""),
|
395 |
+
"cumcount": (None, ""),
|
396 |
+
"cummax": (
|
397 |
+
(NotImplementedError, TypeError),
|
398 |
+
"(category type does not support cummax operations|"
|
399 |
+
"category dtype not supported|"
|
400 |
+
"cummax is not supported for category dtype)",
|
401 |
+
),
|
402 |
+
"cummin": (
|
403 |
+
(NotImplementedError, TypeError),
|
404 |
+
"(category type does not support cummin operations|"
|
405 |
+
"category dtype not supported|"
|
406 |
+
"cummin is not supported for category dtype)",
|
407 |
+
),
|
408 |
+
"cumprod": (
|
409 |
+
(NotImplementedError, TypeError),
|
410 |
+
"(category type does not support cumprod operations|"
|
411 |
+
"category dtype not supported|"
|
412 |
+
"cumprod is not supported for category dtype)",
|
413 |
+
),
|
414 |
+
"cumsum": (
|
415 |
+
(NotImplementedError, TypeError),
|
416 |
+
"(category type does not support cumsum operations|"
|
417 |
+
"category dtype not supported|"
|
418 |
+
"cumsum is not supported for category dtype)",
|
419 |
+
),
|
420 |
+
"diff": (
|
421 |
+
TypeError,
|
422 |
+
r"unsupported operand type\(s\) for -: 'Categorical' and 'Categorical'",
|
423 |
+
),
|
424 |
+
"ffill": (None, ""),
|
425 |
+
"fillna": (
|
426 |
+
TypeError,
|
427 |
+
r"Cannot setitem on a Categorical with a new category \(0\), "
|
428 |
+
"set the categories first",
|
429 |
+
)
|
430 |
+
if not using_copy_on_write
|
431 |
+
else (None, ""), # no-op with CoW
|
432 |
+
"first": (None, ""),
|
433 |
+
"idxmax": (None, ""),
|
434 |
+
"idxmin": (None, ""),
|
435 |
+
"last": (None, ""),
|
436 |
+
"max": (None, ""),
|
437 |
+
"mean": (
|
438 |
+
TypeError,
|
439 |
+
"|".join(
|
440 |
+
[
|
441 |
+
"'Categorical' .* does not support reduction 'mean'",
|
442 |
+
"category dtype does not support aggregation 'mean'",
|
443 |
+
]
|
444 |
+
),
|
445 |
+
),
|
446 |
+
"median": (
|
447 |
+
TypeError,
|
448 |
+
"|".join(
|
449 |
+
[
|
450 |
+
"'Categorical' .* does not support reduction 'median'",
|
451 |
+
"category dtype does not support aggregation 'median'",
|
452 |
+
]
|
453 |
+
),
|
454 |
+
),
|
455 |
+
"min": (None, ""),
|
456 |
+
"ngroup": (None, ""),
|
457 |
+
"nunique": (None, ""),
|
458 |
+
"pct_change": (
|
459 |
+
TypeError,
|
460 |
+
r"unsupported operand type\(s\) for /: 'Categorical' and 'Categorical'",
|
461 |
+
),
|
462 |
+
"prod": (TypeError, "category type does not support prod operations"),
|
463 |
+
"quantile": (TypeError, "No matching signature found"),
|
464 |
+
"rank": (None, ""),
|
465 |
+
"sem": (
|
466 |
+
TypeError,
|
467 |
+
"|".join(
|
468 |
+
[
|
469 |
+
"'Categorical' .* does not support reduction 'sem'",
|
470 |
+
"category dtype does not support aggregation 'sem'",
|
471 |
+
]
|
472 |
+
),
|
473 |
+
),
|
474 |
+
"shift": (None, ""),
|
475 |
+
"size": (None, ""),
|
476 |
+
"skew": (
|
477 |
+
TypeError,
|
478 |
+
"|".join(
|
479 |
+
[
|
480 |
+
"dtype category does not support reduction 'skew'",
|
481 |
+
"category type does not support skew operations",
|
482 |
+
]
|
483 |
+
),
|
484 |
+
),
|
485 |
+
"std": (
|
486 |
+
TypeError,
|
487 |
+
"|".join(
|
488 |
+
[
|
489 |
+
"'Categorical' .* does not support reduction 'std'",
|
490 |
+
"category dtype does not support aggregation 'std'",
|
491 |
+
]
|
492 |
+
),
|
493 |
+
),
|
494 |
+
"sum": (TypeError, "category type does not support sum operations"),
|
495 |
+
"var": (
|
496 |
+
TypeError,
|
497 |
+
"|".join(
|
498 |
+
[
|
499 |
+
"'Categorical' .* does not support reduction 'var'",
|
500 |
+
"category dtype does not support aggregation 'var'",
|
501 |
+
]
|
502 |
+
),
|
503 |
+
),
|
504 |
+
}[groupby_func]
|
505 |
+
|
506 |
+
if groupby_func == "fillna":
|
507 |
+
kind = "Series" if groupby_series else "DataFrame"
|
508 |
+
warn_msg = f"{kind}GroupBy.fillna is deprecated"
|
509 |
+
else:
|
510 |
+
warn_msg = ""
|
511 |
+
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg)
|
512 |
+
|
513 |
+
|
514 |
+
@pytest.mark.parametrize("how", ["agg", "transform"])
|
515 |
+
def test_groupby_raises_category_udf(how, by, groupby_series, df_with_cat_col):
|
516 |
+
# GH#50749
|
517 |
+
df = df_with_cat_col
|
518 |
+
gb = df.groupby(by=by)
|
519 |
+
|
520 |
+
if groupby_series:
|
521 |
+
gb = gb["d"]
|
522 |
+
|
523 |
+
def func(x):
|
524 |
+
raise TypeError("Test error message")
|
525 |
+
|
526 |
+
with pytest.raises(TypeError, match="Test error message"):
|
527 |
+
getattr(gb, how)(func)
|
528 |
+
|
529 |
+
|
530 |
+
@pytest.mark.parametrize("how", ["agg", "transform"])
|
531 |
+
@pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean])
|
532 |
+
def test_groupby_raises_category_np(
|
533 |
+
how, by, groupby_series, groupby_func_np, df_with_cat_col
|
534 |
+
):
|
535 |
+
# GH#50749
|
536 |
+
df = df_with_cat_col
|
537 |
+
gb = df.groupby(by=by)
|
538 |
+
|
539 |
+
if groupby_series:
|
540 |
+
gb = gb["d"]
|
541 |
+
|
542 |
+
klass, msg = {
|
543 |
+
np.sum: (TypeError, "category type does not support sum operations"),
|
544 |
+
np.mean: (
|
545 |
+
TypeError,
|
546 |
+
"category dtype does not support aggregation 'mean'",
|
547 |
+
),
|
548 |
+
}[groupby_func_np]
|
549 |
+
|
550 |
+
if groupby_series:
|
551 |
+
warn_msg = "using SeriesGroupBy.[sum|mean]"
|
552 |
+
else:
|
553 |
+
warn_msg = "using DataFrameGroupBy.[sum|mean]"
|
554 |
+
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg)
|
555 |
+
|
556 |
+
|
557 |
+
@pytest.mark.parametrize("how", ["method", "agg", "transform"])
|
558 |
+
def test_groupby_raises_category_on_category(
|
559 |
+
how,
|
560 |
+
by,
|
561 |
+
groupby_series,
|
562 |
+
groupby_func,
|
563 |
+
observed,
|
564 |
+
using_copy_on_write,
|
565 |
+
df_with_cat_col,
|
566 |
+
):
|
567 |
+
# GH#50749
|
568 |
+
df = df_with_cat_col
|
569 |
+
df["a"] = Categorical(
|
570 |
+
["a", "a", "a", "a", "b", "b", "b", "b", "c"],
|
571 |
+
categories=["a", "b", "c", "d"],
|
572 |
+
ordered=True,
|
573 |
+
)
|
574 |
+
args = get_groupby_method_args(groupby_func, df)
|
575 |
+
gb = df.groupby(by=by, observed=observed)
|
576 |
+
|
577 |
+
if groupby_series:
|
578 |
+
gb = gb["d"]
|
579 |
+
|
580 |
+
if groupby_func == "corrwith":
|
581 |
+
assert not hasattr(gb, "corrwith")
|
582 |
+
return
|
583 |
+
|
584 |
+
empty_groups = not observed and any(group.empty for group in gb.groups.values())
|
585 |
+
if (
|
586 |
+
not observed
|
587 |
+
and how != "transform"
|
588 |
+
and isinstance(by, list)
|
589 |
+
and isinstance(by[0], str)
|
590 |
+
and by == ["a", "b"]
|
591 |
+
):
|
592 |
+
assert not empty_groups
|
593 |
+
# TODO: empty_groups should be true due to unobserved categorical combinations
|
594 |
+
empty_groups = True
|
595 |
+
if how == "transform":
|
596 |
+
# empty groups will be ignored
|
597 |
+
empty_groups = False
|
598 |
+
|
599 |
+
klass, msg = {
|
600 |
+
"all": (None, ""),
|
601 |
+
"any": (None, ""),
|
602 |
+
"bfill": (None, ""),
|
603 |
+
"corrwith": (
|
604 |
+
TypeError,
|
605 |
+
r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'",
|
606 |
+
),
|
607 |
+
"count": (None, ""),
|
608 |
+
"cumcount": (None, ""),
|
609 |
+
"cummax": (
|
610 |
+
(NotImplementedError, TypeError),
|
611 |
+
"(cummax is not supported for category dtype|"
|
612 |
+
"category dtype not supported|"
|
613 |
+
"category type does not support cummax operations)",
|
614 |
+
),
|
615 |
+
"cummin": (
|
616 |
+
(NotImplementedError, TypeError),
|
617 |
+
"(cummin is not supported for category dtype|"
|
618 |
+
"category dtype not supported|"
|
619 |
+
"category type does not support cummin operations)",
|
620 |
+
),
|
621 |
+
"cumprod": (
|
622 |
+
(NotImplementedError, TypeError),
|
623 |
+
"(cumprod is not supported for category dtype|"
|
624 |
+
"category dtype not supported|"
|
625 |
+
"category type does not support cumprod operations)",
|
626 |
+
),
|
627 |
+
"cumsum": (
|
628 |
+
(NotImplementedError, TypeError),
|
629 |
+
"(cumsum is not supported for category dtype|"
|
630 |
+
"category dtype not supported|"
|
631 |
+
"category type does not support cumsum operations)",
|
632 |
+
),
|
633 |
+
"diff": (TypeError, "unsupported operand type"),
|
634 |
+
"ffill": (None, ""),
|
635 |
+
"fillna": (
|
636 |
+
TypeError,
|
637 |
+
r"Cannot setitem on a Categorical with a new category \(0\), "
|
638 |
+
"set the categories first",
|
639 |
+
)
|
640 |
+
if not using_copy_on_write
|
641 |
+
else (None, ""), # no-op with CoW
|
642 |
+
"first": (None, ""),
|
643 |
+
"idxmax": (ValueError, "empty group due to unobserved categories")
|
644 |
+
if empty_groups
|
645 |
+
else (None, ""),
|
646 |
+
"idxmin": (ValueError, "empty group due to unobserved categories")
|
647 |
+
if empty_groups
|
648 |
+
else (None, ""),
|
649 |
+
"last": (None, ""),
|
650 |
+
"max": (None, ""),
|
651 |
+
"mean": (TypeError, "category dtype does not support aggregation 'mean'"),
|
652 |
+
"median": (TypeError, "category dtype does not support aggregation 'median'"),
|
653 |
+
"min": (None, ""),
|
654 |
+
"ngroup": (None, ""),
|
655 |
+
"nunique": (None, ""),
|
656 |
+
"pct_change": (TypeError, "unsupported operand type"),
|
657 |
+
"prod": (TypeError, "category type does not support prod operations"),
|
658 |
+
"quantile": (TypeError, ""),
|
659 |
+
"rank": (None, ""),
|
660 |
+
"sem": (
|
661 |
+
TypeError,
|
662 |
+
"|".join(
|
663 |
+
[
|
664 |
+
"'Categorical' .* does not support reduction 'sem'",
|
665 |
+
"category dtype does not support aggregation 'sem'",
|
666 |
+
]
|
667 |
+
),
|
668 |
+
),
|
669 |
+
"shift": (None, ""),
|
670 |
+
"size": (None, ""),
|
671 |
+
"skew": (
|
672 |
+
TypeError,
|
673 |
+
"|".join(
|
674 |
+
[
|
675 |
+
"category type does not support skew operations",
|
676 |
+
"dtype category does not support reduction 'skew'",
|
677 |
+
]
|
678 |
+
),
|
679 |
+
),
|
680 |
+
"std": (
|
681 |
+
TypeError,
|
682 |
+
"|".join(
|
683 |
+
[
|
684 |
+
"'Categorical' .* does not support reduction 'std'",
|
685 |
+
"category dtype does not support aggregation 'std'",
|
686 |
+
]
|
687 |
+
),
|
688 |
+
),
|
689 |
+
"sum": (TypeError, "category type does not support sum operations"),
|
690 |
+
"var": (
|
691 |
+
TypeError,
|
692 |
+
"|".join(
|
693 |
+
[
|
694 |
+
"'Categorical' .* does not support reduction 'var'",
|
695 |
+
"category dtype does not support aggregation 'var'",
|
696 |
+
]
|
697 |
+
),
|
698 |
+
),
|
699 |
+
}[groupby_func]
|
700 |
+
|
701 |
+
if groupby_func == "fillna":
|
702 |
+
kind = "Series" if groupby_series else "DataFrame"
|
703 |
+
warn_msg = f"{kind}GroupBy.fillna is deprecated"
|
704 |
+
else:
|
705 |
+
warn_msg = ""
|
706 |
+
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg)
|
707 |
+
|
708 |
+
|
709 |
+
def test_subsetting_columns_axis_1_raises():
|
710 |
+
# GH 35443
|
711 |
+
df = DataFrame({"a": [1], "b": [2], "c": [3]})
|
712 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
713 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
714 |
+
gb = df.groupby("a", axis=1)
|
715 |
+
with pytest.raises(ValueError, match="Cannot subset columns when using axis=1"):
|
716 |
+
gb["b"]
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_reductions.py
ADDED
@@ -0,0 +1,1176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import builtins
|
2 |
+
import datetime as dt
|
3 |
+
from string import ascii_lowercase
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from pandas._libs.tslibs import iNaT
|
9 |
+
|
10 |
+
from pandas.core.dtypes.common import pandas_dtype
|
11 |
+
from pandas.core.dtypes.missing import na_value_for_dtype
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from pandas import (
|
15 |
+
DataFrame,
|
16 |
+
MultiIndex,
|
17 |
+
Series,
|
18 |
+
Timestamp,
|
19 |
+
date_range,
|
20 |
+
isna,
|
21 |
+
)
|
22 |
+
import pandas._testing as tm
|
23 |
+
from pandas.util import _test_decorators as td
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.mark.parametrize("agg_func", ["any", "all"])
|
27 |
+
@pytest.mark.parametrize(
|
28 |
+
"vals",
|
29 |
+
[
|
30 |
+
["foo", "bar", "baz"],
|
31 |
+
["foo", "", ""],
|
32 |
+
["", "", ""],
|
33 |
+
[1, 2, 3],
|
34 |
+
[1, 0, 0],
|
35 |
+
[0, 0, 0],
|
36 |
+
[1.0, 2.0, 3.0],
|
37 |
+
[1.0, 0.0, 0.0],
|
38 |
+
[0.0, 0.0, 0.0],
|
39 |
+
[True, True, True],
|
40 |
+
[True, False, False],
|
41 |
+
[False, False, False],
|
42 |
+
[np.nan, np.nan, np.nan],
|
43 |
+
],
|
44 |
+
)
|
45 |
+
def test_groupby_bool_aggs(skipna, agg_func, vals):
|
46 |
+
df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
|
47 |
+
|
48 |
+
# Figure out expectation using Python builtin
|
49 |
+
exp = getattr(builtins, agg_func)(vals)
|
50 |
+
|
51 |
+
# edge case for missing data with skipna and 'any'
|
52 |
+
if skipna and all(isna(vals)) and agg_func == "any":
|
53 |
+
exp = False
|
54 |
+
|
55 |
+
expected = DataFrame(
|
56 |
+
[exp] * 2, columns=["val"], index=pd.Index(["a", "b"], name="key")
|
57 |
+
)
|
58 |
+
result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
|
59 |
+
tm.assert_frame_equal(result, expected)
|
60 |
+
|
61 |
+
|
62 |
+
def test_any():
|
63 |
+
df = DataFrame(
|
64 |
+
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
|
65 |
+
columns=["A", "B", "C"],
|
66 |
+
)
|
67 |
+
expected = DataFrame(
|
68 |
+
[[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
|
69 |
+
)
|
70 |
+
expected.index.name = "A"
|
71 |
+
result = df.groupby("A").any()
|
72 |
+
tm.assert_frame_equal(result, expected)
|
73 |
+
|
74 |
+
|
75 |
+
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
76 |
+
def test_bool_aggs_dup_column_labels(bool_agg_func):
|
77 |
+
# GH#21668
|
78 |
+
df = DataFrame([[True, True]], columns=["a", "a"])
|
79 |
+
grp_by = df.groupby([0])
|
80 |
+
result = getattr(grp_by, bool_agg_func)()
|
81 |
+
|
82 |
+
expected = df.set_axis(np.array([0]))
|
83 |
+
tm.assert_frame_equal(result, expected)
|
84 |
+
|
85 |
+
|
86 |
+
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
87 |
+
@pytest.mark.parametrize(
|
88 |
+
"data",
|
89 |
+
[
|
90 |
+
[False, False, False],
|
91 |
+
[True, True, True],
|
92 |
+
[pd.NA, pd.NA, pd.NA],
|
93 |
+
[False, pd.NA, False],
|
94 |
+
[True, pd.NA, True],
|
95 |
+
[True, pd.NA, False],
|
96 |
+
],
|
97 |
+
)
|
98 |
+
def test_masked_kleene_logic(bool_agg_func, skipna, data):
|
99 |
+
# GH#37506
|
100 |
+
ser = Series(data, dtype="boolean")
|
101 |
+
|
102 |
+
# The result should match aggregating on the whole series. Correctness
|
103 |
+
# there is verified in test_reductions.py::test_any_all_boolean_kleene_logic
|
104 |
+
expected_data = getattr(ser, bool_agg_func)(skipna=skipna)
|
105 |
+
expected = Series(expected_data, index=np.array([0]), dtype="boolean")
|
106 |
+
|
107 |
+
result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna)
|
108 |
+
tm.assert_series_equal(result, expected)
|
109 |
+
|
110 |
+
|
111 |
+
@pytest.mark.parametrize(
|
112 |
+
"dtype1,dtype2,exp_col1,exp_col2",
|
113 |
+
[
|
114 |
+
(
|
115 |
+
"float",
|
116 |
+
"Float64",
|
117 |
+
np.array([True], dtype=bool),
|
118 |
+
pd.array([pd.NA], dtype="boolean"),
|
119 |
+
),
|
120 |
+
(
|
121 |
+
"Int64",
|
122 |
+
"float",
|
123 |
+
pd.array([pd.NA], dtype="boolean"),
|
124 |
+
np.array([True], dtype=bool),
|
125 |
+
),
|
126 |
+
(
|
127 |
+
"Int64",
|
128 |
+
"Int64",
|
129 |
+
pd.array([pd.NA], dtype="boolean"),
|
130 |
+
pd.array([pd.NA], dtype="boolean"),
|
131 |
+
),
|
132 |
+
(
|
133 |
+
"Float64",
|
134 |
+
"boolean",
|
135 |
+
pd.array([pd.NA], dtype="boolean"),
|
136 |
+
pd.array([pd.NA], dtype="boolean"),
|
137 |
+
),
|
138 |
+
],
|
139 |
+
)
|
140 |
+
def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2):
|
141 |
+
# GH#37506
|
142 |
+
data = [1.0, np.nan]
|
143 |
+
df = DataFrame(
|
144 |
+
{"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)}
|
145 |
+
)
|
146 |
+
result = df.groupby([1, 1]).agg("all", skipna=False)
|
147 |
+
|
148 |
+
expected = DataFrame({"col1": exp_col1, "col2": exp_col2}, index=np.array([1]))
|
149 |
+
tm.assert_frame_equal(result, expected)
|
150 |
+
|
151 |
+
|
152 |
+
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
153 |
+
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
|
154 |
+
def test_masked_bool_aggs_skipna(bool_agg_func, dtype, skipna, frame_or_series):
|
155 |
+
# GH#40585
|
156 |
+
obj = frame_or_series([pd.NA, 1], dtype=dtype)
|
157 |
+
expected_res = True
|
158 |
+
if not skipna and bool_agg_func == "all":
|
159 |
+
expected_res = pd.NA
|
160 |
+
expected = frame_or_series([expected_res], index=np.array([1]), dtype="boolean")
|
161 |
+
|
162 |
+
result = obj.groupby([1, 1]).agg(bool_agg_func, skipna=skipna)
|
163 |
+
tm.assert_equal(result, expected)
|
164 |
+
|
165 |
+
|
166 |
+
@pytest.mark.parametrize(
|
167 |
+
"bool_agg_func,data,expected_res",
|
168 |
+
[
|
169 |
+
("any", [pd.NA, np.nan], False),
|
170 |
+
("any", [pd.NA, 1, np.nan], True),
|
171 |
+
("all", [pd.NA, pd.NaT], True),
|
172 |
+
("all", [pd.NA, False, pd.NaT], False),
|
173 |
+
],
|
174 |
+
)
|
175 |
+
def test_object_type_missing_vals(bool_agg_func, data, expected_res, frame_or_series):
|
176 |
+
# GH#37501
|
177 |
+
obj = frame_or_series(data, dtype=object)
|
178 |
+
result = obj.groupby([1] * len(data)).agg(bool_agg_func)
|
179 |
+
expected = frame_or_series([expected_res], index=np.array([1]), dtype="bool")
|
180 |
+
tm.assert_equal(result, expected)
|
181 |
+
|
182 |
+
|
183 |
+
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
184 |
+
def test_object_NA_raises_with_skipna_false(bool_agg_func):
|
185 |
+
# GH#37501
|
186 |
+
ser = Series([pd.NA], dtype=object)
|
187 |
+
with pytest.raises(TypeError, match="boolean value of NA is ambiguous"):
|
188 |
+
ser.groupby([1]).agg(bool_agg_func, skipna=False)
|
189 |
+
|
190 |
+
|
191 |
+
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
|
192 |
+
def test_empty(frame_or_series, bool_agg_func):
|
193 |
+
# GH 45231
|
194 |
+
kwargs = {"columns": ["a"]} if frame_or_series is DataFrame else {"name": "a"}
|
195 |
+
obj = frame_or_series(**kwargs, dtype=object)
|
196 |
+
result = getattr(obj.groupby(obj.index), bool_agg_func)()
|
197 |
+
expected = frame_or_series(**kwargs, dtype=bool)
|
198 |
+
tm.assert_equal(result, expected)
|
199 |
+
|
200 |
+
|
201 |
+
@pytest.mark.parametrize("how", ["idxmin", "idxmax"])
|
202 |
+
def test_idxmin_idxmax_extremes(how, any_real_numpy_dtype):
|
203 |
+
# GH#57040
|
204 |
+
if any_real_numpy_dtype is int or any_real_numpy_dtype is float:
|
205 |
+
# No need to test
|
206 |
+
return
|
207 |
+
info = np.iinfo if "int" in any_real_numpy_dtype else np.finfo
|
208 |
+
min_value = info(any_real_numpy_dtype).min
|
209 |
+
max_value = info(any_real_numpy_dtype).max
|
210 |
+
df = DataFrame(
|
211 |
+
{"a": [2, 1, 1, 2], "b": [min_value, max_value, max_value, min_value]},
|
212 |
+
dtype=any_real_numpy_dtype,
|
213 |
+
)
|
214 |
+
gb = df.groupby("a")
|
215 |
+
result = getattr(gb, how)()
|
216 |
+
expected = DataFrame(
|
217 |
+
{"b": [1, 0]}, index=pd.Index([1, 2], name="a", dtype=any_real_numpy_dtype)
|
218 |
+
)
|
219 |
+
tm.assert_frame_equal(result, expected)
|
220 |
+
|
221 |
+
|
222 |
+
@pytest.mark.parametrize("how", ["idxmin", "idxmax"])
|
223 |
+
def test_idxmin_idxmax_extremes_skipna(skipna, how, float_numpy_dtype):
|
224 |
+
# GH#57040
|
225 |
+
min_value = np.finfo(float_numpy_dtype).min
|
226 |
+
max_value = np.finfo(float_numpy_dtype).max
|
227 |
+
df = DataFrame(
|
228 |
+
{
|
229 |
+
"a": Series(np.repeat(range(1, 6), repeats=2), dtype="intp"),
|
230 |
+
"b": Series(
|
231 |
+
[
|
232 |
+
np.nan,
|
233 |
+
min_value,
|
234 |
+
np.nan,
|
235 |
+
max_value,
|
236 |
+
min_value,
|
237 |
+
np.nan,
|
238 |
+
max_value,
|
239 |
+
np.nan,
|
240 |
+
np.nan,
|
241 |
+
np.nan,
|
242 |
+
],
|
243 |
+
dtype=float_numpy_dtype,
|
244 |
+
),
|
245 |
+
},
|
246 |
+
)
|
247 |
+
gb = df.groupby("a")
|
248 |
+
|
249 |
+
warn = None if skipna else FutureWarning
|
250 |
+
msg = f"The behavior of DataFrameGroupBy.{how} with all-NA values"
|
251 |
+
with tm.assert_produces_warning(warn, match=msg):
|
252 |
+
result = getattr(gb, how)(skipna=skipna)
|
253 |
+
if skipna:
|
254 |
+
values = [1, 3, 4, 6, np.nan]
|
255 |
+
else:
|
256 |
+
values = np.nan
|
257 |
+
expected = DataFrame(
|
258 |
+
{"b": values}, index=pd.Index(range(1, 6), name="a", dtype="intp")
|
259 |
+
)
|
260 |
+
tm.assert_frame_equal(result, expected)
|
261 |
+
|
262 |
+
|
263 |
+
@pytest.mark.parametrize(
|
264 |
+
"func, values",
|
265 |
+
[
|
266 |
+
("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}),
|
267 |
+
("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}),
|
268 |
+
],
|
269 |
+
)
|
270 |
+
@pytest.mark.parametrize("numeric_only", [True, False])
|
271 |
+
def test_idxmin_idxmax_returns_int_types(func, values, numeric_only):
|
272 |
+
# GH 25444
|
273 |
+
df = DataFrame(
|
274 |
+
{
|
275 |
+
"name": ["A", "A", "B", "B"],
|
276 |
+
"c_int": [1, 2, 3, 4],
|
277 |
+
"c_float": [4.02, 3.03, 2.04, 1.05],
|
278 |
+
"c_date": ["2019", "2018", "2016", "2017"],
|
279 |
+
}
|
280 |
+
)
|
281 |
+
df["c_date"] = pd.to_datetime(df["c_date"])
|
282 |
+
df["c_date_tz"] = df["c_date"].dt.tz_localize("US/Pacific")
|
283 |
+
df["c_timedelta"] = df["c_date"] - df["c_date"].iloc[0]
|
284 |
+
df["c_period"] = df["c_date"].dt.to_period("W")
|
285 |
+
df["c_Integer"] = df["c_int"].astype("Int64")
|
286 |
+
df["c_Floating"] = df["c_float"].astype("Float64")
|
287 |
+
|
288 |
+
result = getattr(df.groupby("name"), func)(numeric_only=numeric_only)
|
289 |
+
|
290 |
+
expected = DataFrame(values, index=pd.Index(["A", "B"], name="name"))
|
291 |
+
if numeric_only:
|
292 |
+
expected = expected.drop(columns=["c_date"])
|
293 |
+
else:
|
294 |
+
expected["c_date_tz"] = expected["c_date"]
|
295 |
+
expected["c_timedelta"] = expected["c_date"]
|
296 |
+
expected["c_period"] = expected["c_date"]
|
297 |
+
expected["c_Integer"] = expected["c_int"]
|
298 |
+
expected["c_Floating"] = expected["c_float"]
|
299 |
+
|
300 |
+
tm.assert_frame_equal(result, expected)
|
301 |
+
|
302 |
+
|
303 |
+
@pytest.mark.parametrize(
|
304 |
+
"data",
|
305 |
+
[
|
306 |
+
(
|
307 |
+
Timestamp("2011-01-15 12:50:28.502376"),
|
308 |
+
Timestamp("2011-01-20 12:50:28.593448"),
|
309 |
+
),
|
310 |
+
(24650000000000001, 24650000000000002),
|
311 |
+
],
|
312 |
+
)
|
313 |
+
@pytest.mark.parametrize("method", ["count", "min", "max", "first", "last"])
|
314 |
+
def test_groupby_non_arithmetic_agg_int_like_precision(method, data):
|
315 |
+
# GH#6620, GH#9311
|
316 |
+
df = DataFrame({"a": [1, 1], "b": data})
|
317 |
+
|
318 |
+
grouped = df.groupby("a")
|
319 |
+
result = getattr(grouped, method)()
|
320 |
+
if method == "count":
|
321 |
+
expected_value = 2
|
322 |
+
elif method == "first":
|
323 |
+
expected_value = data[0]
|
324 |
+
elif method == "last":
|
325 |
+
expected_value = data[1]
|
326 |
+
else:
|
327 |
+
expected_value = getattr(df["b"], method)()
|
328 |
+
expected = DataFrame({"b": [expected_value]}, index=pd.Index([1], name="a"))
|
329 |
+
|
330 |
+
tm.assert_frame_equal(result, expected)
|
331 |
+
|
332 |
+
|
333 |
+
@pytest.mark.parametrize("how", ["first", "last"])
|
334 |
+
def test_first_last_skipna(any_real_nullable_dtype, sort, skipna, how):
|
335 |
+
# GH#57019
|
336 |
+
na_value = na_value_for_dtype(pandas_dtype(any_real_nullable_dtype))
|
337 |
+
df = DataFrame(
|
338 |
+
{
|
339 |
+
"a": [2, 1, 1, 2, 3, 3],
|
340 |
+
"b": [na_value, 3.0, na_value, 4.0, np.nan, np.nan],
|
341 |
+
"c": [na_value, 3.0, na_value, 4.0, np.nan, np.nan],
|
342 |
+
},
|
343 |
+
dtype=any_real_nullable_dtype,
|
344 |
+
)
|
345 |
+
gb = df.groupby("a", sort=sort)
|
346 |
+
method = getattr(gb, how)
|
347 |
+
result = method(skipna=skipna)
|
348 |
+
|
349 |
+
ilocs = {
|
350 |
+
("first", True): [3, 1, 4],
|
351 |
+
("first", False): [0, 1, 4],
|
352 |
+
("last", True): [3, 1, 5],
|
353 |
+
("last", False): [3, 2, 5],
|
354 |
+
}[how, skipna]
|
355 |
+
expected = df.iloc[ilocs].set_index("a")
|
356 |
+
if sort:
|
357 |
+
expected = expected.sort_index()
|
358 |
+
tm.assert_frame_equal(result, expected)
|
359 |
+
|
360 |
+
|
361 |
+
def test_idxmin_idxmax_axis1():
|
362 |
+
df = DataFrame(
|
363 |
+
np.random.default_rng(2).standard_normal((10, 4)), columns=["A", "B", "C", "D"]
|
364 |
+
)
|
365 |
+
df["A"] = [1, 2, 3, 1, 2, 3, 1, 2, 3, 4]
|
366 |
+
|
367 |
+
gb = df.groupby("A")
|
368 |
+
|
369 |
+
warn_msg = "DataFrameGroupBy.idxmax with axis=1 is deprecated"
|
370 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
371 |
+
res = gb.idxmax(axis=1)
|
372 |
+
|
373 |
+
alt = df.iloc[:, 1:].idxmax(axis=1)
|
374 |
+
indexer = res.index.get_level_values(1)
|
375 |
+
|
376 |
+
tm.assert_series_equal(alt[indexer], res.droplevel("A"))
|
377 |
+
|
378 |
+
df["E"] = date_range("2016-01-01", periods=10)
|
379 |
+
gb2 = df.groupby("A")
|
380 |
+
|
381 |
+
msg = "'>' not supported between instances of 'Timestamp' and 'float'"
|
382 |
+
with pytest.raises(TypeError, match=msg):
|
383 |
+
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
|
384 |
+
gb2.idxmax(axis=1)
|
385 |
+
|
386 |
+
|
387 |
+
def test_groupby_mean_no_overflow():
|
388 |
+
# Regression test for (#22487)
|
389 |
+
df = DataFrame(
|
390 |
+
{
|
391 |
+
"user": ["A", "A", "A", "A", "A"],
|
392 |
+
"connections": [4970, 4749, 4719, 4704, 18446744073699999744],
|
393 |
+
}
|
394 |
+
)
|
395 |
+
assert df.groupby("user")["connections"].mean()["A"] == 3689348814740003840
|
396 |
+
|
397 |
+
|
398 |
+
def test_mean_on_timedelta():
|
399 |
+
# GH 17382
|
400 |
+
df = DataFrame({"time": pd.to_timedelta(range(10)), "cat": ["A", "B"] * 5})
|
401 |
+
result = df.groupby("cat")["time"].mean()
|
402 |
+
expected = Series(
|
403 |
+
pd.to_timedelta([4, 5]), name="time", index=pd.Index(["A", "B"], name="cat")
|
404 |
+
)
|
405 |
+
tm.assert_series_equal(result, expected)
|
406 |
+
|
407 |
+
|
408 |
+
def test_cython_median():
|
409 |
+
arr = np.random.default_rng(2).standard_normal(1000)
|
410 |
+
arr[::2] = np.nan
|
411 |
+
df = DataFrame(arr)
|
412 |
+
|
413 |
+
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
|
414 |
+
labels[::17] = np.nan
|
415 |
+
|
416 |
+
result = df.groupby(labels).median()
|
417 |
+
msg = "using DataFrameGroupBy.median"
|
418 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
419 |
+
exp = df.groupby(labels).agg(np.nanmedian)
|
420 |
+
tm.assert_frame_equal(result, exp)
|
421 |
+
|
422 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1000, 5)))
|
423 |
+
msg = "using DataFrameGroupBy.median"
|
424 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
425 |
+
rs = df.groupby(labels).agg(np.median)
|
426 |
+
xp = df.groupby(labels).median()
|
427 |
+
tm.assert_frame_equal(rs, xp)
|
428 |
+
|
429 |
+
|
430 |
+
def test_median_empty_bins(observed):
|
431 |
+
df = DataFrame(np.random.default_rng(2).integers(0, 44, 500))
|
432 |
+
|
433 |
+
grps = range(0, 55, 5)
|
434 |
+
bins = pd.cut(df[0], grps)
|
435 |
+
|
436 |
+
result = df.groupby(bins, observed=observed).median()
|
437 |
+
expected = df.groupby(bins, observed=observed).agg(lambda x: x.median())
|
438 |
+
tm.assert_frame_equal(result, expected)
|
439 |
+
|
440 |
+
|
441 |
+
def test_max_min_non_numeric():
|
442 |
+
# #2700
|
443 |
+
aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]})
|
444 |
+
|
445 |
+
result = aa.groupby("nn").max()
|
446 |
+
assert "ss" in result
|
447 |
+
|
448 |
+
result = aa.groupby("nn").max(numeric_only=False)
|
449 |
+
assert "ss" in result
|
450 |
+
|
451 |
+
result = aa.groupby("nn").min()
|
452 |
+
assert "ss" in result
|
453 |
+
|
454 |
+
result = aa.groupby("nn").min(numeric_only=False)
|
455 |
+
assert "ss" in result
|
456 |
+
|
457 |
+
|
458 |
+
def test_max_min_object_multiple_columns(using_array_manager):
|
459 |
+
# GH#41111 case where the aggregation is valid for some columns but not
|
460 |
+
# others; we split object blocks column-wise, consistent with
|
461 |
+
# DataFrame._reduce
|
462 |
+
|
463 |
+
df = DataFrame(
|
464 |
+
{
|
465 |
+
"A": [1, 1, 2, 2, 3],
|
466 |
+
"B": [1, "foo", 2, "bar", False],
|
467 |
+
"C": ["a", "b", "c", "d", "e"],
|
468 |
+
}
|
469 |
+
)
|
470 |
+
df._consolidate_inplace() # should already be consolidate, but double-check
|
471 |
+
if not using_array_manager:
|
472 |
+
assert len(df._mgr.blocks) == 2
|
473 |
+
|
474 |
+
gb = df.groupby("A")
|
475 |
+
|
476 |
+
result = gb[["C"]].max()
|
477 |
+
# "max" is valid for column "C" but not for "B"
|
478 |
+
ei = pd.Index([1, 2, 3], name="A")
|
479 |
+
expected = DataFrame({"C": ["b", "d", "e"]}, index=ei)
|
480 |
+
tm.assert_frame_equal(result, expected)
|
481 |
+
|
482 |
+
result = gb[["C"]].min()
|
483 |
+
# "min" is valid for column "C" but not for "B"
|
484 |
+
ei = pd.Index([1, 2, 3], name="A")
|
485 |
+
expected = DataFrame({"C": ["a", "c", "e"]}, index=ei)
|
486 |
+
tm.assert_frame_equal(result, expected)
|
487 |
+
|
488 |
+
|
489 |
+
def test_min_date_with_nans():
|
490 |
+
# GH26321
|
491 |
+
dates = pd.to_datetime(
|
492 |
+
Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d"
|
493 |
+
).dt.date
|
494 |
+
df = DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates})
|
495 |
+
|
496 |
+
result = df.groupby("b", as_index=False)["c"].min()["c"]
|
497 |
+
expected = pd.to_datetime(
|
498 |
+
Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d"
|
499 |
+
).dt.date
|
500 |
+
tm.assert_series_equal(result, expected)
|
501 |
+
|
502 |
+
result = df.groupby("b")["c"].min()
|
503 |
+
expected.index.name = "b"
|
504 |
+
tm.assert_series_equal(result, expected)
|
505 |
+
|
506 |
+
|
507 |
+
def test_max_inat():
|
508 |
+
# GH#40767 dont interpret iNaT as NaN
|
509 |
+
ser = Series([1, iNaT])
|
510 |
+
key = np.array([1, 1], dtype=np.int64)
|
511 |
+
gb = ser.groupby(key)
|
512 |
+
|
513 |
+
result = gb.max(min_count=2)
|
514 |
+
expected = Series({1: 1}, dtype=np.int64)
|
515 |
+
tm.assert_series_equal(result, expected, check_exact=True)
|
516 |
+
|
517 |
+
result = gb.min(min_count=2)
|
518 |
+
expected = Series({1: iNaT}, dtype=np.int64)
|
519 |
+
tm.assert_series_equal(result, expected, check_exact=True)
|
520 |
+
|
521 |
+
# not enough entries -> gets masked to NaN
|
522 |
+
result = gb.min(min_count=3)
|
523 |
+
expected = Series({1: np.nan})
|
524 |
+
tm.assert_series_equal(result, expected, check_exact=True)
|
525 |
+
|
526 |
+
|
527 |
+
def test_max_inat_not_all_na():
|
528 |
+
# GH#40767 dont interpret iNaT as NaN
|
529 |
+
|
530 |
+
# make sure we dont round iNaT+1 to iNaT
|
531 |
+
ser = Series([1, iNaT, 2, iNaT + 1])
|
532 |
+
gb = ser.groupby([1, 2, 3, 3])
|
533 |
+
result = gb.min(min_count=2)
|
534 |
+
|
535 |
+
# Note: in converting to float64, the iNaT + 1 maps to iNaT, i.e. is lossy
|
536 |
+
expected = Series({1: np.nan, 2: np.nan, 3: iNaT + 1})
|
537 |
+
expected.index = expected.index.astype(int)
|
538 |
+
tm.assert_series_equal(result, expected, check_exact=True)
|
539 |
+
|
540 |
+
|
541 |
+
@pytest.mark.parametrize("func", ["min", "max"])
|
542 |
+
def test_groupby_aggregate_period_column(func):
|
543 |
+
# GH 31471
|
544 |
+
groups = [1, 2]
|
545 |
+
periods = pd.period_range("2020", periods=2, freq="Y")
|
546 |
+
df = DataFrame({"a": groups, "b": periods})
|
547 |
+
|
548 |
+
result = getattr(df.groupby("a")["b"], func)()
|
549 |
+
idx = pd.Index([1, 2], name="a")
|
550 |
+
expected = Series(periods, index=idx, name="b")
|
551 |
+
|
552 |
+
tm.assert_series_equal(result, expected)
|
553 |
+
|
554 |
+
|
555 |
+
@pytest.mark.parametrize("func", ["min", "max"])
|
556 |
+
def test_groupby_aggregate_period_frame(func):
|
557 |
+
# GH 31471
|
558 |
+
groups = [1, 2]
|
559 |
+
periods = pd.period_range("2020", periods=2, freq="Y")
|
560 |
+
df = DataFrame({"a": groups, "b": periods})
|
561 |
+
|
562 |
+
result = getattr(df.groupby("a"), func)()
|
563 |
+
idx = pd.Index([1, 2], name="a")
|
564 |
+
expected = DataFrame({"b": periods}, index=idx)
|
565 |
+
|
566 |
+
tm.assert_frame_equal(result, expected)
|
567 |
+
|
568 |
+
|
569 |
+
def test_aggregate_numeric_object_dtype():
|
570 |
+
# https://github.com/pandas-dev/pandas/issues/39329
|
571 |
+
# simplified case: multiple object columns where one is all-NaN
|
572 |
+
# -> gets split as the all-NaN is inferred as float
|
573 |
+
df = DataFrame(
|
574 |
+
{"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": [np.nan] * 4},
|
575 |
+
).astype(object)
|
576 |
+
result = df.groupby("key").min()
|
577 |
+
expected = (
|
578 |
+
DataFrame(
|
579 |
+
{"key": ["A", "B"], "col1": ["a", "c"], "col2": [np.nan, np.nan]},
|
580 |
+
)
|
581 |
+
.set_index("key")
|
582 |
+
.astype(object)
|
583 |
+
)
|
584 |
+
tm.assert_frame_equal(result, expected)
|
585 |
+
|
586 |
+
# same but with numbers
|
587 |
+
df = DataFrame(
|
588 |
+
{"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": range(4)},
|
589 |
+
).astype(object)
|
590 |
+
result = df.groupby("key").min()
|
591 |
+
expected = (
|
592 |
+
DataFrame({"key": ["A", "B"], "col1": ["a", "c"], "col2": [0, 2]})
|
593 |
+
.set_index("key")
|
594 |
+
.astype(object)
|
595 |
+
)
|
596 |
+
tm.assert_frame_equal(result, expected)
|
597 |
+
|
598 |
+
|
599 |
+
@pytest.mark.parametrize("func", ["min", "max"])
|
600 |
+
def test_aggregate_categorical_lost_index(func: str):
|
601 |
+
# GH: 28641 groupby drops index, when grouping over categorical column with min/max
|
602 |
+
ds = Series(["b"], dtype="category").cat.as_ordered()
|
603 |
+
df = DataFrame({"A": [1997], "B": ds})
|
604 |
+
result = df.groupby("A").agg({"B": func})
|
605 |
+
expected = DataFrame({"B": ["b"]}, index=pd.Index([1997], name="A"))
|
606 |
+
|
607 |
+
# ordered categorical dtype should be preserved
|
608 |
+
expected["B"] = expected["B"].astype(ds.dtype)
|
609 |
+
|
610 |
+
tm.assert_frame_equal(result, expected)
|
611 |
+
|
612 |
+
|
613 |
+
@pytest.mark.parametrize("dtype", ["Int64", "Int32", "Float64", "Float32", "boolean"])
|
614 |
+
def test_groupby_min_max_nullable(dtype):
|
615 |
+
if dtype == "Int64":
|
616 |
+
# GH#41743 avoid precision loss
|
617 |
+
ts = 1618556707013635762
|
618 |
+
elif dtype == "boolean":
|
619 |
+
ts = 0
|
620 |
+
else:
|
621 |
+
ts = 4.0
|
622 |
+
|
623 |
+
df = DataFrame({"id": [2, 2], "ts": [ts, ts + 1]})
|
624 |
+
df["ts"] = df["ts"].astype(dtype)
|
625 |
+
|
626 |
+
gb = df.groupby("id")
|
627 |
+
|
628 |
+
result = gb.min()
|
629 |
+
expected = df.iloc[:1].set_index("id")
|
630 |
+
tm.assert_frame_equal(result, expected)
|
631 |
+
|
632 |
+
res_max = gb.max()
|
633 |
+
expected_max = df.iloc[1:].set_index("id")
|
634 |
+
tm.assert_frame_equal(res_max, expected_max)
|
635 |
+
|
636 |
+
result2 = gb.min(min_count=3)
|
637 |
+
expected2 = DataFrame({"ts": [pd.NA]}, index=expected.index, dtype=dtype)
|
638 |
+
tm.assert_frame_equal(result2, expected2)
|
639 |
+
|
640 |
+
res_max2 = gb.max(min_count=3)
|
641 |
+
tm.assert_frame_equal(res_max2, expected2)
|
642 |
+
|
643 |
+
# Case with NA values
|
644 |
+
df2 = DataFrame({"id": [2, 2, 2], "ts": [ts, pd.NA, ts + 1]})
|
645 |
+
df2["ts"] = df2["ts"].astype(dtype)
|
646 |
+
gb2 = df2.groupby("id")
|
647 |
+
|
648 |
+
result3 = gb2.min()
|
649 |
+
tm.assert_frame_equal(result3, expected)
|
650 |
+
|
651 |
+
res_max3 = gb2.max()
|
652 |
+
tm.assert_frame_equal(res_max3, expected_max)
|
653 |
+
|
654 |
+
result4 = gb2.min(min_count=100)
|
655 |
+
tm.assert_frame_equal(result4, expected2)
|
656 |
+
|
657 |
+
res_max4 = gb2.max(min_count=100)
|
658 |
+
tm.assert_frame_equal(res_max4, expected2)
|
659 |
+
|
660 |
+
|
661 |
+
def test_min_max_nullable_uint64_empty_group():
|
662 |
+
# don't raise NotImplementedError from libgroupby
|
663 |
+
cat = pd.Categorical([0] * 10, categories=[0, 1])
|
664 |
+
df = DataFrame({"A": cat, "B": pd.array(np.arange(10, dtype=np.uint64))})
|
665 |
+
gb = df.groupby("A", observed=False)
|
666 |
+
|
667 |
+
res = gb.min()
|
668 |
+
|
669 |
+
idx = pd.CategoricalIndex([0, 1], dtype=cat.dtype, name="A")
|
670 |
+
expected = DataFrame({"B": pd.array([0, pd.NA], dtype="UInt64")}, index=idx)
|
671 |
+
tm.assert_frame_equal(res, expected)
|
672 |
+
|
673 |
+
res = gb.max()
|
674 |
+
expected.iloc[0, 0] = 9
|
675 |
+
tm.assert_frame_equal(res, expected)
|
676 |
+
|
677 |
+
|
678 |
+
@pytest.mark.parametrize("func", ["first", "last", "min", "max"])
|
679 |
+
def test_groupby_min_max_categorical(func):
|
680 |
+
# GH: 52151
|
681 |
+
df = DataFrame(
|
682 |
+
{
|
683 |
+
"col1": pd.Categorical(["A"], categories=list("AB"), ordered=True),
|
684 |
+
"col2": pd.Categorical([1], categories=[1, 2], ordered=True),
|
685 |
+
"value": 0.1,
|
686 |
+
}
|
687 |
+
)
|
688 |
+
result = getattr(df.groupby("col1", observed=False), func)()
|
689 |
+
|
690 |
+
idx = pd.CategoricalIndex(data=["A", "B"], name="col1", ordered=True)
|
691 |
+
expected = DataFrame(
|
692 |
+
{
|
693 |
+
"col2": pd.Categorical([1, None], categories=[1, 2], ordered=True),
|
694 |
+
"value": [0.1, None],
|
695 |
+
},
|
696 |
+
index=idx,
|
697 |
+
)
|
698 |
+
tm.assert_frame_equal(result, expected)
|
699 |
+
|
700 |
+
|
701 |
+
@pytest.mark.parametrize("func", ["min", "max"])
|
702 |
+
def test_min_empty_string_dtype(func):
|
703 |
+
# GH#55619
|
704 |
+
pytest.importorskip("pyarrow")
|
705 |
+
dtype = "string[pyarrow_numpy]"
|
706 |
+
df = DataFrame({"a": ["a"], "b": "a", "c": "a"}, dtype=dtype).iloc[:0]
|
707 |
+
result = getattr(df.groupby("a"), func)()
|
708 |
+
expected = DataFrame(
|
709 |
+
columns=["b", "c"], dtype=dtype, index=pd.Index([], dtype=dtype, name="a")
|
710 |
+
)
|
711 |
+
tm.assert_frame_equal(result, expected)
|
712 |
+
|
713 |
+
|
714 |
+
def test_max_nan_bug():
|
715 |
+
df = DataFrame(
|
716 |
+
{
|
717 |
+
"Unnamed: 0": ["-04-23", "-05-06", "-05-07"],
|
718 |
+
"Date": [
|
719 |
+
"2013-04-23 00:00:00",
|
720 |
+
"2013-05-06 00:00:00",
|
721 |
+
"2013-05-07 00:00:00",
|
722 |
+
],
|
723 |
+
"app": Series([np.nan, np.nan, "OE"]),
|
724 |
+
"File": ["log080001.log", "log.log", "xlsx"],
|
725 |
+
}
|
726 |
+
)
|
727 |
+
gb = df.groupby("Date")
|
728 |
+
r = gb[["File"]].max()
|
729 |
+
e = gb["File"].max().to_frame()
|
730 |
+
tm.assert_frame_equal(r, e)
|
731 |
+
assert not r["File"].isna().any()
|
732 |
+
|
733 |
+
|
734 |
+
@pytest.mark.slow
|
735 |
+
@pytest.mark.parametrize("sort", [False, True])
|
736 |
+
@pytest.mark.parametrize("dropna", [False, True])
|
737 |
+
@pytest.mark.parametrize("as_index", [True, False])
|
738 |
+
@pytest.mark.parametrize("with_nan", [True, False])
|
739 |
+
@pytest.mark.parametrize("keys", [["joe"], ["joe", "jim"]])
|
740 |
+
def test_series_groupby_nunique(sort, dropna, as_index, with_nan, keys):
|
741 |
+
n = 100
|
742 |
+
m = 10
|
743 |
+
days = date_range("2015-08-23", periods=10)
|
744 |
+
df = DataFrame(
|
745 |
+
{
|
746 |
+
"jim": np.random.default_rng(2).choice(list(ascii_lowercase), n),
|
747 |
+
"joe": np.random.default_rng(2).choice(days, n),
|
748 |
+
"julie": np.random.default_rng(2).integers(0, m, n),
|
749 |
+
}
|
750 |
+
)
|
751 |
+
if with_nan:
|
752 |
+
df = df.astype({"julie": float}) # Explicit cast to avoid implicit cast below
|
753 |
+
df.loc[1::17, "jim"] = None
|
754 |
+
df.loc[3::37, "joe"] = None
|
755 |
+
df.loc[7::19, "julie"] = None
|
756 |
+
df.loc[8::19, "julie"] = None
|
757 |
+
df.loc[9::19, "julie"] = None
|
758 |
+
original_df = df.copy()
|
759 |
+
gr = df.groupby(keys, as_index=as_index, sort=sort)
|
760 |
+
left = gr["julie"].nunique(dropna=dropna)
|
761 |
+
|
762 |
+
gr = df.groupby(keys, as_index=as_index, sort=sort)
|
763 |
+
right = gr["julie"].apply(Series.nunique, dropna=dropna)
|
764 |
+
if not as_index:
|
765 |
+
right = right.reset_index(drop=True)
|
766 |
+
|
767 |
+
if as_index:
|
768 |
+
tm.assert_series_equal(left, right, check_names=False)
|
769 |
+
else:
|
770 |
+
tm.assert_frame_equal(left, right, check_names=False)
|
771 |
+
tm.assert_frame_equal(df, original_df)
|
772 |
+
|
773 |
+
|
774 |
+
def test_nunique():
|
775 |
+
df = DataFrame({"A": list("abbacc"), "B": list("abxacc"), "C": list("abbacx")})
|
776 |
+
|
777 |
+
expected = DataFrame({"A": list("abc"), "B": [1, 2, 1], "C": [1, 1, 2]})
|
778 |
+
result = df.groupby("A", as_index=False).nunique()
|
779 |
+
tm.assert_frame_equal(result, expected)
|
780 |
+
|
781 |
+
# as_index
|
782 |
+
expected.index = list("abc")
|
783 |
+
expected.index.name = "A"
|
784 |
+
expected = expected.drop(columns="A")
|
785 |
+
result = df.groupby("A").nunique()
|
786 |
+
tm.assert_frame_equal(result, expected)
|
787 |
+
|
788 |
+
# with na
|
789 |
+
result = df.replace({"x": None}).groupby("A").nunique(dropna=False)
|
790 |
+
tm.assert_frame_equal(result, expected)
|
791 |
+
|
792 |
+
# dropna
|
793 |
+
expected = DataFrame({"B": [1] * 3, "C": [1] * 3}, index=list("abc"))
|
794 |
+
expected.index.name = "A"
|
795 |
+
result = df.replace({"x": None}).groupby("A").nunique()
|
796 |
+
tm.assert_frame_equal(result, expected)
|
797 |
+
|
798 |
+
|
799 |
+
def test_nunique_with_object():
|
800 |
+
# GH 11077
|
801 |
+
data = DataFrame(
|
802 |
+
[
|
803 |
+
[100, 1, "Alice"],
|
804 |
+
[200, 2, "Bob"],
|
805 |
+
[300, 3, "Charlie"],
|
806 |
+
[-400, 4, "Dan"],
|
807 |
+
[500, 5, "Edith"],
|
808 |
+
],
|
809 |
+
columns=["amount", "id", "name"],
|
810 |
+
)
|
811 |
+
|
812 |
+
result = data.groupby(["id", "amount"])["name"].nunique()
|
813 |
+
index = MultiIndex.from_arrays([data.id, data.amount])
|
814 |
+
expected = Series([1] * 5, name="name", index=index)
|
815 |
+
tm.assert_series_equal(result, expected)
|
816 |
+
|
817 |
+
|
818 |
+
def test_nunique_with_empty_series():
|
819 |
+
# GH 12553
|
820 |
+
data = Series(name="name", dtype=object)
|
821 |
+
result = data.groupby(level=0).nunique()
|
822 |
+
expected = Series(name="name", dtype="int64")
|
823 |
+
tm.assert_series_equal(result, expected)
|
824 |
+
|
825 |
+
|
826 |
+
def test_nunique_with_timegrouper():
|
827 |
+
# GH 13453
|
828 |
+
test = DataFrame(
|
829 |
+
{
|
830 |
+
"time": [
|
831 |
+
Timestamp("2016-06-28 09:35:35"),
|
832 |
+
Timestamp("2016-06-28 16:09:30"),
|
833 |
+
Timestamp("2016-06-28 16:46:28"),
|
834 |
+
],
|
835 |
+
"data": ["1", "2", "3"],
|
836 |
+
}
|
837 |
+
).set_index("time")
|
838 |
+
result = test.groupby(pd.Grouper(freq="h"))["data"].nunique()
|
839 |
+
expected = test.groupby(pd.Grouper(freq="h"))["data"].apply(Series.nunique)
|
840 |
+
tm.assert_series_equal(result, expected)
|
841 |
+
|
842 |
+
|
843 |
+
@pytest.mark.parametrize(
|
844 |
+
"key, data, dropna, expected",
|
845 |
+
[
|
846 |
+
(
|
847 |
+
["x", "x", "x"],
|
848 |
+
[Timestamp("2019-01-01"), pd.NaT, Timestamp("2019-01-01")],
|
849 |
+
True,
|
850 |
+
Series([1], index=pd.Index(["x"], name="key"), name="data"),
|
851 |
+
),
|
852 |
+
(
|
853 |
+
["x", "x", "x"],
|
854 |
+
[dt.date(2019, 1, 1), pd.NaT, dt.date(2019, 1, 1)],
|
855 |
+
True,
|
856 |
+
Series([1], index=pd.Index(["x"], name="key"), name="data"),
|
857 |
+
),
|
858 |
+
(
|
859 |
+
["x", "x", "x", "y", "y"],
|
860 |
+
[
|
861 |
+
dt.date(2019, 1, 1),
|
862 |
+
pd.NaT,
|
863 |
+
dt.date(2019, 1, 1),
|
864 |
+
pd.NaT,
|
865 |
+
dt.date(2019, 1, 1),
|
866 |
+
],
|
867 |
+
False,
|
868 |
+
Series([2, 2], index=pd.Index(["x", "y"], name="key"), name="data"),
|
869 |
+
),
|
870 |
+
(
|
871 |
+
["x", "x", "x", "x", "y"],
|
872 |
+
[
|
873 |
+
dt.date(2019, 1, 1),
|
874 |
+
pd.NaT,
|
875 |
+
dt.date(2019, 1, 1),
|
876 |
+
pd.NaT,
|
877 |
+
dt.date(2019, 1, 1),
|
878 |
+
],
|
879 |
+
False,
|
880 |
+
Series([2, 1], index=pd.Index(["x", "y"], name="key"), name="data"),
|
881 |
+
),
|
882 |
+
],
|
883 |
+
)
|
884 |
+
def test_nunique_with_NaT(key, data, dropna, expected):
|
885 |
+
# GH 27951
|
886 |
+
df = DataFrame({"key": key, "data": data})
|
887 |
+
result = df.groupby(["key"])["data"].nunique(dropna=dropna)
|
888 |
+
tm.assert_series_equal(result, expected)
|
889 |
+
|
890 |
+
|
891 |
+
def test_nunique_preserves_column_level_names():
|
892 |
+
# GH 23222
|
893 |
+
test = DataFrame([1, 2, 2], columns=pd.Index(["A"], name="level_0"))
|
894 |
+
result = test.groupby([0, 0, 0]).nunique()
|
895 |
+
expected = DataFrame([2], index=np.array([0]), columns=test.columns)
|
896 |
+
tm.assert_frame_equal(result, expected)
|
897 |
+
|
898 |
+
|
899 |
+
def test_nunique_transform_with_datetime():
|
900 |
+
# GH 35109 - transform with nunique on datetimes results in integers
|
901 |
+
df = DataFrame(date_range("2008-12-31", "2009-01-02"), columns=["date"])
|
902 |
+
result = df.groupby([0, 0, 1])["date"].transform("nunique")
|
903 |
+
expected = Series([2, 2, 1], name="date")
|
904 |
+
tm.assert_series_equal(result, expected)
|
905 |
+
|
906 |
+
|
907 |
+
def test_empty_categorical(observed):
|
908 |
+
# GH#21334
|
909 |
+
cat = Series([1]).astype("category")
|
910 |
+
ser = cat[:0]
|
911 |
+
gb = ser.groupby(ser, observed=observed)
|
912 |
+
result = gb.nunique()
|
913 |
+
if observed:
|
914 |
+
expected = Series([], index=cat[:0], dtype="int64")
|
915 |
+
else:
|
916 |
+
expected = Series([0], index=cat, dtype="int64")
|
917 |
+
tm.assert_series_equal(result, expected)
|
918 |
+
|
919 |
+
|
920 |
+
def test_intercept_builtin_sum():
|
921 |
+
s = Series([1.0, 2.0, np.nan, 3.0])
|
922 |
+
grouped = s.groupby([0, 1, 2, 2])
|
923 |
+
|
924 |
+
msg = "using SeriesGroupBy.sum"
|
925 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
926 |
+
# GH#53425
|
927 |
+
result = grouped.agg(builtins.sum)
|
928 |
+
msg = "using np.sum"
|
929 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
930 |
+
# GH#53425
|
931 |
+
result2 = grouped.apply(builtins.sum)
|
932 |
+
expected = grouped.sum()
|
933 |
+
tm.assert_series_equal(result, expected)
|
934 |
+
tm.assert_series_equal(result2, expected)
|
935 |
+
|
936 |
+
|
937 |
+
@pytest.mark.parametrize("min_count", [0, 10])
|
938 |
+
def test_groupby_sum_mincount_boolean(min_count):
|
939 |
+
b = True
|
940 |
+
a = False
|
941 |
+
na = np.nan
|
942 |
+
dfg = pd.array([b, b, na, na, a, a, b], dtype="boolean")
|
943 |
+
|
944 |
+
df = DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": dfg})
|
945 |
+
result = df.groupby("A").sum(min_count=min_count)
|
946 |
+
if min_count == 0:
|
947 |
+
expected = DataFrame(
|
948 |
+
{"B": pd.array([3, 0, 0], dtype="Int64")},
|
949 |
+
index=pd.Index([1, 2, 3], name="A"),
|
950 |
+
)
|
951 |
+
tm.assert_frame_equal(result, expected)
|
952 |
+
else:
|
953 |
+
expected = DataFrame(
|
954 |
+
{"B": pd.array([pd.NA] * 3, dtype="Int64")},
|
955 |
+
index=pd.Index([1, 2, 3], name="A"),
|
956 |
+
)
|
957 |
+
tm.assert_frame_equal(result, expected)
|
958 |
+
|
959 |
+
|
960 |
+
def test_groupby_sum_below_mincount_nullable_integer():
|
961 |
+
# https://github.com/pandas-dev/pandas/issues/32861
|
962 |
+
df = DataFrame({"a": [0, 1, 2], "b": [0, 1, 2], "c": [0, 1, 2]}, dtype="Int64")
|
963 |
+
grouped = df.groupby("a")
|
964 |
+
idx = pd.Index([0, 1, 2], name="a", dtype="Int64")
|
965 |
+
|
966 |
+
result = grouped["b"].sum(min_count=2)
|
967 |
+
expected = Series([pd.NA] * 3, dtype="Int64", index=idx, name="b")
|
968 |
+
tm.assert_series_equal(result, expected)
|
969 |
+
|
970 |
+
result = grouped.sum(min_count=2)
|
971 |
+
expected = DataFrame({"b": [pd.NA] * 3, "c": [pd.NA] * 3}, dtype="Int64", index=idx)
|
972 |
+
tm.assert_frame_equal(result, expected)
|
973 |
+
|
974 |
+
|
975 |
+
def test_groupby_sum_timedelta_with_nat():
|
976 |
+
# GH#42659
|
977 |
+
df = DataFrame(
|
978 |
+
{
|
979 |
+
"a": [1, 1, 2, 2],
|
980 |
+
"b": [pd.Timedelta("1d"), pd.Timedelta("2d"), pd.Timedelta("3d"), pd.NaT],
|
981 |
+
}
|
982 |
+
)
|
983 |
+
td3 = pd.Timedelta(days=3)
|
984 |
+
|
985 |
+
gb = df.groupby("a")
|
986 |
+
|
987 |
+
res = gb.sum()
|
988 |
+
expected = DataFrame({"b": [td3, td3]}, index=pd.Index([1, 2], name="a"))
|
989 |
+
tm.assert_frame_equal(res, expected)
|
990 |
+
|
991 |
+
res = gb["b"].sum()
|
992 |
+
tm.assert_series_equal(res, expected["b"])
|
993 |
+
|
994 |
+
res = gb["b"].sum(min_count=2)
|
995 |
+
expected = Series([td3, pd.NaT], dtype="m8[ns]", name="b", index=expected.index)
|
996 |
+
tm.assert_series_equal(res, expected)
|
997 |
+
|
998 |
+
|
999 |
+
@pytest.mark.parametrize(
|
1000 |
+
"dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"]
|
1001 |
+
)
|
1002 |
+
@pytest.mark.parametrize(
|
1003 |
+
"method,data",
|
1004 |
+
[
|
1005 |
+
("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
|
1006 |
+
("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
|
1007 |
+
("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
|
1008 |
+
("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
|
1009 |
+
("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}),
|
1010 |
+
],
|
1011 |
+
)
|
1012 |
+
def test_groupby_non_arithmetic_agg_types(dtype, method, data):
|
1013 |
+
# GH9311, GH6620
|
1014 |
+
df = DataFrame(
|
1015 |
+
[{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}]
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
df["b"] = df.b.astype(dtype)
|
1019 |
+
|
1020 |
+
if "args" not in data:
|
1021 |
+
data["args"] = []
|
1022 |
+
|
1023 |
+
if "out_type" in data:
|
1024 |
+
out_type = data["out_type"]
|
1025 |
+
else:
|
1026 |
+
out_type = dtype
|
1027 |
+
|
1028 |
+
exp = data["df"]
|
1029 |
+
df_out = DataFrame(exp)
|
1030 |
+
|
1031 |
+
df_out["b"] = df_out.b.astype(out_type)
|
1032 |
+
df_out.set_index("a", inplace=True)
|
1033 |
+
|
1034 |
+
grpd = df.groupby("a")
|
1035 |
+
t = getattr(grpd, method)(*data["args"])
|
1036 |
+
tm.assert_frame_equal(t, df_out)
|
1037 |
+
|
1038 |
+
|
1039 |
+
def scipy_sem(*args, **kwargs):
|
1040 |
+
from scipy.stats import sem
|
1041 |
+
|
1042 |
+
return sem(*args, ddof=1, **kwargs)
|
1043 |
+
|
1044 |
+
|
1045 |
+
@pytest.mark.parametrize(
|
1046 |
+
"op,targop",
|
1047 |
+
[
|
1048 |
+
("mean", np.mean),
|
1049 |
+
("median", np.median),
|
1050 |
+
("std", np.std),
|
1051 |
+
("var", np.var),
|
1052 |
+
("sum", np.sum),
|
1053 |
+
("prod", np.prod),
|
1054 |
+
("min", np.min),
|
1055 |
+
("max", np.max),
|
1056 |
+
("first", lambda x: x.iloc[0]),
|
1057 |
+
("last", lambda x: x.iloc[-1]),
|
1058 |
+
("count", np.size),
|
1059 |
+
pytest.param("sem", scipy_sem, marks=td.skip_if_no("scipy")),
|
1060 |
+
],
|
1061 |
+
)
|
1062 |
+
def test_ops_general(op, targop):
|
1063 |
+
df = DataFrame(np.random.default_rng(2).standard_normal(1000))
|
1064 |
+
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
|
1065 |
+
|
1066 |
+
result = getattr(df.groupby(labels), op)()
|
1067 |
+
warn = None if op in ("first", "last", "count", "sem") else FutureWarning
|
1068 |
+
msg = f"using DataFrameGroupBy.{op}"
|
1069 |
+
with tm.assert_produces_warning(warn, match=msg):
|
1070 |
+
expected = df.groupby(labels).agg(targop)
|
1071 |
+
tm.assert_frame_equal(result, expected)
|
1072 |
+
|
1073 |
+
|
1074 |
+
@pytest.mark.parametrize(
|
1075 |
+
"values",
|
1076 |
+
[
|
1077 |
+
{
|
1078 |
+
"a": [1, 1, 1, 2, 2, 2, 3, 3, 3],
|
1079 |
+
"b": [1, pd.NA, 2, 1, pd.NA, 2, 1, pd.NA, 2],
|
1080 |
+
},
|
1081 |
+
{"a": [1, 1, 2, 2, 3, 3], "b": [1, 2, 1, 2, 1, 2]},
|
1082 |
+
],
|
1083 |
+
)
|
1084 |
+
@pytest.mark.parametrize("function", ["mean", "median", "var"])
|
1085 |
+
def test_apply_to_nullable_integer_returns_float(values, function):
|
1086 |
+
# https://github.com/pandas-dev/pandas/issues/32219
|
1087 |
+
output = 0.5 if function == "var" else 1.5
|
1088 |
+
arr = np.array([output] * 3, dtype=float)
|
1089 |
+
idx = pd.Index([1, 2, 3], name="a", dtype="Int64")
|
1090 |
+
expected = DataFrame({"b": arr}, index=idx).astype("Float64")
|
1091 |
+
|
1092 |
+
groups = DataFrame(values, dtype="Int64").groupby("a")
|
1093 |
+
|
1094 |
+
result = getattr(groups, function)()
|
1095 |
+
tm.assert_frame_equal(result, expected)
|
1096 |
+
|
1097 |
+
result = groups.agg(function)
|
1098 |
+
tm.assert_frame_equal(result, expected)
|
1099 |
+
|
1100 |
+
result = groups.agg([function])
|
1101 |
+
expected.columns = MultiIndex.from_tuples([("b", function)])
|
1102 |
+
tm.assert_frame_equal(result, expected)
|
1103 |
+
|
1104 |
+
|
1105 |
+
@pytest.mark.parametrize(
|
1106 |
+
"op",
|
1107 |
+
[
|
1108 |
+
"sum",
|
1109 |
+
"prod",
|
1110 |
+
"min",
|
1111 |
+
"max",
|
1112 |
+
"median",
|
1113 |
+
"mean",
|
1114 |
+
"skew",
|
1115 |
+
"std",
|
1116 |
+
"var",
|
1117 |
+
"sem",
|
1118 |
+
],
|
1119 |
+
)
|
1120 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
1121 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
1122 |
+
@pytest.mark.parametrize("sort", [True, False])
|
1123 |
+
def test_regression_allowlist_methods(op, axis, skipna, sort):
|
1124 |
+
# GH6944
|
1125 |
+
# GH 17537
|
1126 |
+
# explicitly test the allowlist methods
|
1127 |
+
raw_frame = DataFrame([0])
|
1128 |
+
if axis == 0:
|
1129 |
+
frame = raw_frame
|
1130 |
+
msg = "The 'axis' keyword in DataFrame.groupby is deprecated and will be"
|
1131 |
+
else:
|
1132 |
+
frame = raw_frame.T
|
1133 |
+
msg = "DataFrame.groupby with axis=1 is deprecated"
|
1134 |
+
|
1135 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
1136 |
+
grouped = frame.groupby(level=0, axis=axis, sort=sort)
|
1137 |
+
|
1138 |
+
if op == "skew":
|
1139 |
+
# skew has skipna
|
1140 |
+
result = getattr(grouped, op)(skipna=skipna)
|
1141 |
+
expected = frame.groupby(level=0).apply(
|
1142 |
+
lambda h: getattr(h, op)(axis=axis, skipna=skipna)
|
1143 |
+
)
|
1144 |
+
if sort:
|
1145 |
+
expected = expected.sort_index(axis=axis)
|
1146 |
+
tm.assert_frame_equal(result, expected)
|
1147 |
+
else:
|
1148 |
+
result = getattr(grouped, op)()
|
1149 |
+
expected = frame.groupby(level=0).apply(lambda h: getattr(h, op)(axis=axis))
|
1150 |
+
if sort:
|
1151 |
+
expected = expected.sort_index(axis=axis)
|
1152 |
+
tm.assert_frame_equal(result, expected)
|
1153 |
+
|
1154 |
+
|
1155 |
+
def test_groupby_prod_with_int64_dtype():
|
1156 |
+
# GH#46573
|
1157 |
+
data = [
|
1158 |
+
[1, 11],
|
1159 |
+
[1, 41],
|
1160 |
+
[1, 17],
|
1161 |
+
[1, 37],
|
1162 |
+
[1, 7],
|
1163 |
+
[1, 29],
|
1164 |
+
[1, 31],
|
1165 |
+
[1, 2],
|
1166 |
+
[1, 3],
|
1167 |
+
[1, 43],
|
1168 |
+
[1, 5],
|
1169 |
+
[1, 47],
|
1170 |
+
[1, 19],
|
1171 |
+
[1, 88],
|
1172 |
+
]
|
1173 |
+
df = DataFrame(data, columns=["A", "B"], dtype="int64")
|
1174 |
+
result = df.groupby(["A"]).prod().reset_index()
|
1175 |
+
expected = DataFrame({"A": [1], "B": [180970905912331920]}, dtype="int64")
|
1176 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/groupby/test_timegrouper.py
ADDED
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
test with the TimeGrouper / grouping with datetimes
|
3 |
+
"""
|
4 |
+
from datetime import (
|
5 |
+
datetime,
|
6 |
+
timedelta,
|
7 |
+
)
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pytest
|
11 |
+
import pytz
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from pandas import (
|
15 |
+
DataFrame,
|
16 |
+
DatetimeIndex,
|
17 |
+
Index,
|
18 |
+
MultiIndex,
|
19 |
+
Series,
|
20 |
+
Timestamp,
|
21 |
+
date_range,
|
22 |
+
offsets,
|
23 |
+
)
|
24 |
+
import pandas._testing as tm
|
25 |
+
from pandas.core.groupby.grouper import Grouper
|
26 |
+
from pandas.core.groupby.ops import BinGrouper
|
27 |
+
|
28 |
+
|
29 |
+
@pytest.fixture
|
30 |
+
def frame_for_truncated_bingrouper():
|
31 |
+
"""
|
32 |
+
DataFrame used by groupby_with_truncated_bingrouper, made into
|
33 |
+
a separate fixture for easier reuse in
|
34 |
+
test_groupby_apply_timegrouper_with_nat_apply_squeeze
|
35 |
+
"""
|
36 |
+
df = DataFrame(
|
37 |
+
{
|
38 |
+
"Quantity": [18, 3, 5, 1, 9, 3],
|
39 |
+
"Date": [
|
40 |
+
Timestamp(2013, 9, 1, 13, 0),
|
41 |
+
Timestamp(2013, 9, 1, 13, 5),
|
42 |
+
Timestamp(2013, 10, 1, 20, 0),
|
43 |
+
Timestamp(2013, 10, 3, 10, 0),
|
44 |
+
pd.NaT,
|
45 |
+
Timestamp(2013, 9, 2, 14, 0),
|
46 |
+
],
|
47 |
+
}
|
48 |
+
)
|
49 |
+
return df
|
50 |
+
|
51 |
+
|
52 |
+
@pytest.fixture
|
53 |
+
def groupby_with_truncated_bingrouper(frame_for_truncated_bingrouper):
|
54 |
+
"""
|
55 |
+
GroupBy object such that gb._grouper is a BinGrouper and
|
56 |
+
len(gb._grouper.result_index) < len(gb._grouper.group_keys_seq)
|
57 |
+
|
58 |
+
Aggregations on this groupby should have
|
59 |
+
|
60 |
+
dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date")
|
61 |
+
|
62 |
+
As either the index or an index level.
|
63 |
+
"""
|
64 |
+
df = frame_for_truncated_bingrouper
|
65 |
+
|
66 |
+
tdg = Grouper(key="Date", freq="5D")
|
67 |
+
gb = df.groupby(tdg)
|
68 |
+
|
69 |
+
# check we're testing the case we're interested in
|
70 |
+
assert len(gb._grouper.result_index) != len(gb._grouper.group_keys_seq)
|
71 |
+
|
72 |
+
return gb
|
73 |
+
|
74 |
+
|
75 |
+
class TestGroupBy:
|
76 |
+
def test_groupby_with_timegrouper(self):
|
77 |
+
# GH 4161
|
78 |
+
# TimeGrouper requires a sorted index
|
79 |
+
# also verifies that the resultant index has the correct name
|
80 |
+
df_original = DataFrame(
|
81 |
+
{
|
82 |
+
"Buyer": "Carl Carl Carl Carl Joe Carl".split(),
|
83 |
+
"Quantity": [18, 3, 5, 1, 9, 3],
|
84 |
+
"Date": [
|
85 |
+
datetime(2013, 9, 1, 13, 0),
|
86 |
+
datetime(2013, 9, 1, 13, 5),
|
87 |
+
datetime(2013, 10, 1, 20, 0),
|
88 |
+
datetime(2013, 10, 3, 10, 0),
|
89 |
+
datetime(2013, 12, 2, 12, 0),
|
90 |
+
datetime(2013, 9, 2, 14, 0),
|
91 |
+
],
|
92 |
+
}
|
93 |
+
)
|
94 |
+
|
95 |
+
# GH 6908 change target column's order
|
96 |
+
df_reordered = df_original.sort_values(by="Quantity")
|
97 |
+
|
98 |
+
for df in [df_original, df_reordered]:
|
99 |
+
df = df.set_index(["Date"])
|
100 |
+
|
101 |
+
exp_dti = date_range(
|
102 |
+
"20130901",
|
103 |
+
"20131205",
|
104 |
+
freq="5D",
|
105 |
+
name="Date",
|
106 |
+
inclusive="left",
|
107 |
+
unit=df.index.unit,
|
108 |
+
)
|
109 |
+
expected = DataFrame(
|
110 |
+
{"Buyer": 0, "Quantity": 0},
|
111 |
+
index=exp_dti,
|
112 |
+
)
|
113 |
+
# Cast to object to avoid implicit cast when setting entry to "CarlCarlCarl"
|
114 |
+
expected = expected.astype({"Buyer": object})
|
115 |
+
expected.iloc[0, 0] = "CarlCarlCarl"
|
116 |
+
expected.iloc[6, 0] = "CarlCarl"
|
117 |
+
expected.iloc[18, 0] = "Joe"
|
118 |
+
expected.iloc[[0, 6, 18], 1] = np.array([24, 6, 9], dtype="int64")
|
119 |
+
|
120 |
+
result1 = df.resample("5D").sum()
|
121 |
+
tm.assert_frame_equal(result1, expected)
|
122 |
+
|
123 |
+
df_sorted = df.sort_index()
|
124 |
+
result2 = df_sorted.groupby(Grouper(freq="5D")).sum()
|
125 |
+
tm.assert_frame_equal(result2, expected)
|
126 |
+
|
127 |
+
result3 = df.groupby(Grouper(freq="5D")).sum()
|
128 |
+
tm.assert_frame_equal(result3, expected)
|
129 |
+
|
130 |
+
@pytest.mark.parametrize("should_sort", [True, False])
|
131 |
+
def test_groupby_with_timegrouper_methods(self, should_sort):
|
132 |
+
# GH 3881
|
133 |
+
# make sure API of timegrouper conforms
|
134 |
+
|
135 |
+
df = DataFrame(
|
136 |
+
{
|
137 |
+
"Branch": "A A A A A B".split(),
|
138 |
+
"Buyer": "Carl Mark Carl Joe Joe Carl".split(),
|
139 |
+
"Quantity": [1, 3, 5, 8, 9, 3],
|
140 |
+
"Date": [
|
141 |
+
datetime(2013, 1, 1, 13, 0),
|
142 |
+
datetime(2013, 1, 1, 13, 5),
|
143 |
+
datetime(2013, 10, 1, 20, 0),
|
144 |
+
datetime(2013, 10, 2, 10, 0),
|
145 |
+
datetime(2013, 12, 2, 12, 0),
|
146 |
+
datetime(2013, 12, 2, 14, 0),
|
147 |
+
],
|
148 |
+
}
|
149 |
+
)
|
150 |
+
|
151 |
+
if should_sort:
|
152 |
+
df = df.sort_values(by="Quantity", ascending=False)
|
153 |
+
|
154 |
+
df = df.set_index("Date", drop=False)
|
155 |
+
g = df.groupby(Grouper(freq="6ME"))
|
156 |
+
assert g.group_keys
|
157 |
+
|
158 |
+
assert isinstance(g._grouper, BinGrouper)
|
159 |
+
groups = g.groups
|
160 |
+
assert isinstance(groups, dict)
|
161 |
+
assert len(groups) == 3
|
162 |
+
|
163 |
+
def test_timegrouper_with_reg_groups(self):
|
164 |
+
# GH 3794
|
165 |
+
# allow combination of timegrouper/reg groups
|
166 |
+
|
167 |
+
df_original = DataFrame(
|
168 |
+
{
|
169 |
+
"Branch": "A A A A A A A B".split(),
|
170 |
+
"Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(),
|
171 |
+
"Quantity": [1, 3, 5, 1, 8, 1, 9, 3],
|
172 |
+
"Date": [
|
173 |
+
datetime(2013, 1, 1, 13, 0),
|
174 |
+
datetime(2013, 1, 1, 13, 5),
|
175 |
+
datetime(2013, 10, 1, 20, 0),
|
176 |
+
datetime(2013, 10, 2, 10, 0),
|
177 |
+
datetime(2013, 10, 1, 20, 0),
|
178 |
+
datetime(2013, 10, 2, 10, 0),
|
179 |
+
datetime(2013, 12, 2, 12, 0),
|
180 |
+
datetime(2013, 12, 2, 14, 0),
|
181 |
+
],
|
182 |
+
}
|
183 |
+
).set_index("Date")
|
184 |
+
|
185 |
+
df_sorted = df_original.sort_values(by="Quantity", ascending=False)
|
186 |
+
|
187 |
+
for df in [df_original, df_sorted]:
|
188 |
+
expected = DataFrame(
|
189 |
+
{
|
190 |
+
"Buyer": "Carl Joe Mark".split(),
|
191 |
+
"Quantity": [10, 18, 3],
|
192 |
+
"Date": [
|
193 |
+
datetime(2013, 12, 31, 0, 0),
|
194 |
+
datetime(2013, 12, 31, 0, 0),
|
195 |
+
datetime(2013, 12, 31, 0, 0),
|
196 |
+
],
|
197 |
+
}
|
198 |
+
).set_index(["Date", "Buyer"])
|
199 |
+
|
200 |
+
msg = "The default value of numeric_only"
|
201 |
+
result = df.groupby([Grouper(freq="YE"), "Buyer"]).sum(numeric_only=True)
|
202 |
+
tm.assert_frame_equal(result, expected)
|
203 |
+
|
204 |
+
expected = DataFrame(
|
205 |
+
{
|
206 |
+
"Buyer": "Carl Mark Carl Joe".split(),
|
207 |
+
"Quantity": [1, 3, 9, 18],
|
208 |
+
"Date": [
|
209 |
+
datetime(2013, 1, 1, 0, 0),
|
210 |
+
datetime(2013, 1, 1, 0, 0),
|
211 |
+
datetime(2013, 7, 1, 0, 0),
|
212 |
+
datetime(2013, 7, 1, 0, 0),
|
213 |
+
],
|
214 |
+
}
|
215 |
+
).set_index(["Date", "Buyer"])
|
216 |
+
result = df.groupby([Grouper(freq="6MS"), "Buyer"]).sum(numeric_only=True)
|
217 |
+
tm.assert_frame_equal(result, expected)
|
218 |
+
|
219 |
+
df_original = DataFrame(
|
220 |
+
{
|
221 |
+
"Branch": "A A A A A A A B".split(),
|
222 |
+
"Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(),
|
223 |
+
"Quantity": [1, 3, 5, 1, 8, 1, 9, 3],
|
224 |
+
"Date": [
|
225 |
+
datetime(2013, 10, 1, 13, 0),
|
226 |
+
datetime(2013, 10, 1, 13, 5),
|
227 |
+
datetime(2013, 10, 1, 20, 0),
|
228 |
+
datetime(2013, 10, 2, 10, 0),
|
229 |
+
datetime(2013, 10, 1, 20, 0),
|
230 |
+
datetime(2013, 10, 2, 10, 0),
|
231 |
+
datetime(2013, 10, 2, 12, 0),
|
232 |
+
datetime(2013, 10, 2, 14, 0),
|
233 |
+
],
|
234 |
+
}
|
235 |
+
).set_index("Date")
|
236 |
+
|
237 |
+
df_sorted = df_original.sort_values(by="Quantity", ascending=False)
|
238 |
+
for df in [df_original, df_sorted]:
|
239 |
+
expected = DataFrame(
|
240 |
+
{
|
241 |
+
"Buyer": "Carl Joe Mark Carl Joe".split(),
|
242 |
+
"Quantity": [6, 8, 3, 4, 10],
|
243 |
+
"Date": [
|
244 |
+
datetime(2013, 10, 1, 0, 0),
|
245 |
+
datetime(2013, 10, 1, 0, 0),
|
246 |
+
datetime(2013, 10, 1, 0, 0),
|
247 |
+
datetime(2013, 10, 2, 0, 0),
|
248 |
+
datetime(2013, 10, 2, 0, 0),
|
249 |
+
],
|
250 |
+
}
|
251 |
+
).set_index(["Date", "Buyer"])
|
252 |
+
|
253 |
+
result = df.groupby([Grouper(freq="1D"), "Buyer"]).sum(numeric_only=True)
|
254 |
+
tm.assert_frame_equal(result, expected)
|
255 |
+
|
256 |
+
result = df.groupby([Grouper(freq="1ME"), "Buyer"]).sum(numeric_only=True)
|
257 |
+
expected = DataFrame(
|
258 |
+
{
|
259 |
+
"Buyer": "Carl Joe Mark".split(),
|
260 |
+
"Quantity": [10, 18, 3],
|
261 |
+
"Date": [
|
262 |
+
datetime(2013, 10, 31, 0, 0),
|
263 |
+
datetime(2013, 10, 31, 0, 0),
|
264 |
+
datetime(2013, 10, 31, 0, 0),
|
265 |
+
],
|
266 |
+
}
|
267 |
+
).set_index(["Date", "Buyer"])
|
268 |
+
tm.assert_frame_equal(result, expected)
|
269 |
+
|
270 |
+
# passing the name
|
271 |
+
df = df.reset_index()
|
272 |
+
result = df.groupby([Grouper(freq="1ME", key="Date"), "Buyer"]).sum(
|
273 |
+
numeric_only=True
|
274 |
+
)
|
275 |
+
tm.assert_frame_equal(result, expected)
|
276 |
+
|
277 |
+
with pytest.raises(KeyError, match="'The grouper name foo is not found'"):
|
278 |
+
df.groupby([Grouper(freq="1ME", key="foo"), "Buyer"]).sum()
|
279 |
+
|
280 |
+
# passing the level
|
281 |
+
df = df.set_index("Date")
|
282 |
+
result = df.groupby([Grouper(freq="1ME", level="Date"), "Buyer"]).sum(
|
283 |
+
numeric_only=True
|
284 |
+
)
|
285 |
+
tm.assert_frame_equal(result, expected)
|
286 |
+
result = df.groupby([Grouper(freq="1ME", level=0), "Buyer"]).sum(
|
287 |
+
numeric_only=True
|
288 |
+
)
|
289 |
+
tm.assert_frame_equal(result, expected)
|
290 |
+
|
291 |
+
with pytest.raises(ValueError, match="The level foo is not valid"):
|
292 |
+
df.groupby([Grouper(freq="1ME", level="foo"), "Buyer"]).sum()
|
293 |
+
|
294 |
+
# multi names
|
295 |
+
df = df.copy()
|
296 |
+
df["Date"] = df.index + offsets.MonthEnd(2)
|
297 |
+
result = df.groupby([Grouper(freq="1ME", key="Date"), "Buyer"]).sum(
|
298 |
+
numeric_only=True
|
299 |
+
)
|
300 |
+
expected = DataFrame(
|
301 |
+
{
|
302 |
+
"Buyer": "Carl Joe Mark".split(),
|
303 |
+
"Quantity": [10, 18, 3],
|
304 |
+
"Date": [
|
305 |
+
datetime(2013, 11, 30, 0, 0),
|
306 |
+
datetime(2013, 11, 30, 0, 0),
|
307 |
+
datetime(2013, 11, 30, 0, 0),
|
308 |
+
],
|
309 |
+
}
|
310 |
+
).set_index(["Date", "Buyer"])
|
311 |
+
tm.assert_frame_equal(result, expected)
|
312 |
+
|
313 |
+
# error as we have both a level and a name!
|
314 |
+
msg = "The Grouper cannot specify both a key and a level!"
|
315 |
+
with pytest.raises(ValueError, match=msg):
|
316 |
+
df.groupby(
|
317 |
+
[Grouper(freq="1ME", key="Date", level="Date"), "Buyer"]
|
318 |
+
).sum()
|
319 |
+
|
320 |
+
# single groupers
|
321 |
+
expected = DataFrame(
|
322 |
+
[[31]],
|
323 |
+
columns=["Quantity"],
|
324 |
+
index=DatetimeIndex(
|
325 |
+
[datetime(2013, 10, 31, 0, 0)], freq=offsets.MonthEnd(), name="Date"
|
326 |
+
),
|
327 |
+
)
|
328 |
+
result = df.groupby(Grouper(freq="1ME")).sum(numeric_only=True)
|
329 |
+
tm.assert_frame_equal(result, expected)
|
330 |
+
|
331 |
+
result = df.groupby([Grouper(freq="1ME")]).sum(numeric_only=True)
|
332 |
+
tm.assert_frame_equal(result, expected)
|
333 |
+
|
334 |
+
expected.index = expected.index.shift(1)
|
335 |
+
assert expected.index.freq == offsets.MonthEnd()
|
336 |
+
result = df.groupby(Grouper(freq="1ME", key="Date")).sum(numeric_only=True)
|
337 |
+
tm.assert_frame_equal(result, expected)
|
338 |
+
|
339 |
+
result = df.groupby([Grouper(freq="1ME", key="Date")]).sum(
|
340 |
+
numeric_only=True
|
341 |
+
)
|
342 |
+
tm.assert_frame_equal(result, expected)
|
343 |
+
|
344 |
+
@pytest.mark.parametrize("freq", ["D", "ME", "YE", "QE-APR"])
|
345 |
+
def test_timegrouper_with_reg_groups_freq(self, freq):
|
346 |
+
# GH 6764 multiple grouping with/without sort
|
347 |
+
df = DataFrame(
|
348 |
+
{
|
349 |
+
"date": pd.to_datetime(
|
350 |
+
[
|
351 |
+
"20121002",
|
352 |
+
"20121007",
|
353 |
+
"20130130",
|
354 |
+
"20130202",
|
355 |
+
"20130305",
|
356 |
+
"20121002",
|
357 |
+
"20121207",
|
358 |
+
"20130130",
|
359 |
+
"20130202",
|
360 |
+
"20130305",
|
361 |
+
"20130202",
|
362 |
+
"20130305",
|
363 |
+
]
|
364 |
+
),
|
365 |
+
"user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5],
|
366 |
+
"whole_cost": [
|
367 |
+
1790,
|
368 |
+
364,
|
369 |
+
280,
|
370 |
+
259,
|
371 |
+
201,
|
372 |
+
623,
|
373 |
+
90,
|
374 |
+
312,
|
375 |
+
359,
|
376 |
+
301,
|
377 |
+
359,
|
378 |
+
801,
|
379 |
+
],
|
380 |
+
"cost1": [12, 15, 10, 24, 39, 1, 0, 90, 45, 34, 1, 12],
|
381 |
+
}
|
382 |
+
).set_index("date")
|
383 |
+
|
384 |
+
expected = (
|
385 |
+
df.groupby("user_id")["whole_cost"]
|
386 |
+
.resample(freq)
|
387 |
+
.sum(min_count=1) # XXX
|
388 |
+
.dropna()
|
389 |
+
.reorder_levels(["date", "user_id"])
|
390 |
+
.sort_index()
|
391 |
+
.astype("int64")
|
392 |
+
)
|
393 |
+
expected.name = "whole_cost"
|
394 |
+
|
395 |
+
result1 = (
|
396 |
+
df.sort_index().groupby([Grouper(freq=freq), "user_id"])["whole_cost"].sum()
|
397 |
+
)
|
398 |
+
tm.assert_series_equal(result1, expected)
|
399 |
+
|
400 |
+
result2 = df.groupby([Grouper(freq=freq), "user_id"])["whole_cost"].sum()
|
401 |
+
tm.assert_series_equal(result2, expected)
|
402 |
+
|
403 |
+
def test_timegrouper_get_group(self):
|
404 |
+
# GH 6914
|
405 |
+
|
406 |
+
df_original = DataFrame(
|
407 |
+
{
|
408 |
+
"Buyer": "Carl Joe Joe Carl Joe Carl".split(),
|
409 |
+
"Quantity": [18, 3, 5, 1, 9, 3],
|
410 |
+
"Date": [
|
411 |
+
datetime(2013, 9, 1, 13, 0),
|
412 |
+
datetime(2013, 9, 1, 13, 5),
|
413 |
+
datetime(2013, 10, 1, 20, 0),
|
414 |
+
datetime(2013, 10, 3, 10, 0),
|
415 |
+
datetime(2013, 12, 2, 12, 0),
|
416 |
+
datetime(2013, 9, 2, 14, 0),
|
417 |
+
],
|
418 |
+
}
|
419 |
+
)
|
420 |
+
df_reordered = df_original.sort_values(by="Quantity")
|
421 |
+
|
422 |
+
# single grouping
|
423 |
+
expected_list = [
|
424 |
+
df_original.iloc[[0, 1, 5]],
|
425 |
+
df_original.iloc[[2, 3]],
|
426 |
+
df_original.iloc[[4]],
|
427 |
+
]
|
428 |
+
dt_list = ["2013-09-30", "2013-10-31", "2013-12-31"]
|
429 |
+
|
430 |
+
for df in [df_original, df_reordered]:
|
431 |
+
grouped = df.groupby(Grouper(freq="ME", key="Date"))
|
432 |
+
for t, expected in zip(dt_list, expected_list):
|
433 |
+
dt = Timestamp(t)
|
434 |
+
result = grouped.get_group(dt)
|
435 |
+
tm.assert_frame_equal(result, expected)
|
436 |
+
|
437 |
+
# multiple grouping
|
438 |
+
expected_list = [
|
439 |
+
df_original.iloc[[1]],
|
440 |
+
df_original.iloc[[3]],
|
441 |
+
df_original.iloc[[4]],
|
442 |
+
]
|
443 |
+
g_list = [("Joe", "2013-09-30"), ("Carl", "2013-10-31"), ("Joe", "2013-12-31")]
|
444 |
+
|
445 |
+
for df in [df_original, df_reordered]:
|
446 |
+
grouped = df.groupby(["Buyer", Grouper(freq="ME", key="Date")])
|
447 |
+
for (b, t), expected in zip(g_list, expected_list):
|
448 |
+
dt = Timestamp(t)
|
449 |
+
result = grouped.get_group((b, dt))
|
450 |
+
tm.assert_frame_equal(result, expected)
|
451 |
+
|
452 |
+
# with index
|
453 |
+
df_original = df_original.set_index("Date")
|
454 |
+
df_reordered = df_original.sort_values(by="Quantity")
|
455 |
+
|
456 |
+
expected_list = [
|
457 |
+
df_original.iloc[[0, 1, 5]],
|
458 |
+
df_original.iloc[[2, 3]],
|
459 |
+
df_original.iloc[[4]],
|
460 |
+
]
|
461 |
+
|
462 |
+
for df in [df_original, df_reordered]:
|
463 |
+
grouped = df.groupby(Grouper(freq="ME"))
|
464 |
+
for t, expected in zip(dt_list, expected_list):
|
465 |
+
dt = Timestamp(t)
|
466 |
+
result = grouped.get_group(dt)
|
467 |
+
tm.assert_frame_equal(result, expected)
|
468 |
+
|
469 |
+
def test_timegrouper_apply_return_type_series(self):
|
470 |
+
# Using `apply` with the `TimeGrouper` should give the
|
471 |
+
# same return type as an `apply` with a `Grouper`.
|
472 |
+
# Issue #11742
|
473 |
+
df = DataFrame({"date": ["10/10/2000", "11/10/2000"], "value": [10, 13]})
|
474 |
+
df_dt = df.copy()
|
475 |
+
df_dt["date"] = pd.to_datetime(df_dt["date"])
|
476 |
+
|
477 |
+
def sumfunc_series(x):
|
478 |
+
return Series([x["value"].sum()], ("sum",))
|
479 |
+
|
480 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
481 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
482 |
+
expected = df.groupby(Grouper(key="date")).apply(sumfunc_series)
|
483 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
484 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
485 |
+
result = df_dt.groupby(Grouper(freq="ME", key="date")).apply(sumfunc_series)
|
486 |
+
tm.assert_frame_equal(
|
487 |
+
result.reset_index(drop=True), expected.reset_index(drop=True)
|
488 |
+
)
|
489 |
+
|
490 |
+
def test_timegrouper_apply_return_type_value(self):
|
491 |
+
# Using `apply` with the `TimeGrouper` should give the
|
492 |
+
# same return type as an `apply` with a `Grouper`.
|
493 |
+
# Issue #11742
|
494 |
+
df = DataFrame({"date": ["10/10/2000", "11/10/2000"], "value": [10, 13]})
|
495 |
+
df_dt = df.copy()
|
496 |
+
df_dt["date"] = pd.to_datetime(df_dt["date"])
|
497 |
+
|
498 |
+
def sumfunc_value(x):
|
499 |
+
return x.value.sum()
|
500 |
+
|
501 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
502 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
503 |
+
expected = df.groupby(Grouper(key="date")).apply(sumfunc_value)
|
504 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
505 |
+
result = df_dt.groupby(Grouper(freq="ME", key="date")).apply(sumfunc_value)
|
506 |
+
tm.assert_series_equal(
|
507 |
+
result.reset_index(drop=True), expected.reset_index(drop=True)
|
508 |
+
)
|
509 |
+
|
510 |
+
def test_groupby_groups_datetimeindex(self):
|
511 |
+
# GH#1430
|
512 |
+
periods = 1000
|
513 |
+
ind = date_range(start="2012/1/1", freq="5min", periods=periods)
|
514 |
+
df = DataFrame(
|
515 |
+
{"high": np.arange(periods), "low": np.arange(periods)}, index=ind
|
516 |
+
)
|
517 |
+
grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day))
|
518 |
+
|
519 |
+
# it works!
|
520 |
+
groups = grouped.groups
|
521 |
+
assert isinstance(next(iter(groups.keys())), datetime)
|
522 |
+
|
523 |
+
def test_groupby_groups_datetimeindex2(self):
|
524 |
+
# GH#11442
|
525 |
+
index = date_range("2015/01/01", periods=5, name="date")
|
526 |
+
df = DataFrame({"A": [5, 6, 7, 8, 9], "B": [1, 2, 3, 4, 5]}, index=index)
|
527 |
+
result = df.groupby(level="date").groups
|
528 |
+
dates = ["2015-01-05", "2015-01-04", "2015-01-03", "2015-01-02", "2015-01-01"]
|
529 |
+
expected = {
|
530 |
+
Timestamp(date): DatetimeIndex([date], name="date") for date in dates
|
531 |
+
}
|
532 |
+
tm.assert_dict_equal(result, expected)
|
533 |
+
|
534 |
+
grouped = df.groupby(level="date")
|
535 |
+
for date in dates:
|
536 |
+
result = grouped.get_group(date)
|
537 |
+
data = [[df.loc[date, "A"], df.loc[date, "B"]]]
|
538 |
+
expected_index = DatetimeIndex(
|
539 |
+
[date], name="date", freq="D", dtype=index.dtype
|
540 |
+
)
|
541 |
+
expected = DataFrame(data, columns=list("AB"), index=expected_index)
|
542 |
+
tm.assert_frame_equal(result, expected)
|
543 |
+
|
544 |
+
def test_groupby_groups_datetimeindex_tz(self):
|
545 |
+
# GH 3950
|
546 |
+
dates = [
|
547 |
+
"2011-07-19 07:00:00",
|
548 |
+
"2011-07-19 08:00:00",
|
549 |
+
"2011-07-19 09:00:00",
|
550 |
+
"2011-07-19 07:00:00",
|
551 |
+
"2011-07-19 08:00:00",
|
552 |
+
"2011-07-19 09:00:00",
|
553 |
+
]
|
554 |
+
df = DataFrame(
|
555 |
+
{
|
556 |
+
"label": ["a", "a", "a", "b", "b", "b"],
|
557 |
+
"datetime": dates,
|
558 |
+
"value1": np.arange(6, dtype="int64"),
|
559 |
+
"value2": [1, 2] * 3,
|
560 |
+
}
|
561 |
+
)
|
562 |
+
df["datetime"] = df["datetime"].apply(lambda d: Timestamp(d, tz="US/Pacific"))
|
563 |
+
|
564 |
+
exp_idx1 = DatetimeIndex(
|
565 |
+
[
|
566 |
+
"2011-07-19 07:00:00",
|
567 |
+
"2011-07-19 07:00:00",
|
568 |
+
"2011-07-19 08:00:00",
|
569 |
+
"2011-07-19 08:00:00",
|
570 |
+
"2011-07-19 09:00:00",
|
571 |
+
"2011-07-19 09:00:00",
|
572 |
+
],
|
573 |
+
tz="US/Pacific",
|
574 |
+
name="datetime",
|
575 |
+
)
|
576 |
+
exp_idx2 = Index(["a", "b"] * 3, name="label")
|
577 |
+
exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
|
578 |
+
expected = DataFrame(
|
579 |
+
{"value1": [0, 3, 1, 4, 2, 5], "value2": [1, 2, 2, 1, 1, 2]},
|
580 |
+
index=exp_idx,
|
581 |
+
columns=["value1", "value2"],
|
582 |
+
)
|
583 |
+
|
584 |
+
result = df.groupby(["datetime", "label"]).sum()
|
585 |
+
tm.assert_frame_equal(result, expected)
|
586 |
+
|
587 |
+
# by level
|
588 |
+
didx = DatetimeIndex(dates, tz="Asia/Tokyo")
|
589 |
+
df = DataFrame(
|
590 |
+
{"value1": np.arange(6, dtype="int64"), "value2": [1, 2, 3, 1, 2, 3]},
|
591 |
+
index=didx,
|
592 |
+
)
|
593 |
+
|
594 |
+
exp_idx = DatetimeIndex(
|
595 |
+
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
|
596 |
+
tz="Asia/Tokyo",
|
597 |
+
)
|
598 |
+
expected = DataFrame(
|
599 |
+
{"value1": [3, 5, 7], "value2": [2, 4, 6]},
|
600 |
+
index=exp_idx,
|
601 |
+
columns=["value1", "value2"],
|
602 |
+
)
|
603 |
+
|
604 |
+
result = df.groupby(level=0).sum()
|
605 |
+
tm.assert_frame_equal(result, expected)
|
606 |
+
|
607 |
+
def test_frame_datetime64_handling_groupby(self):
|
608 |
+
# it works!
|
609 |
+
df = DataFrame(
|
610 |
+
[(3, np.datetime64("2012-07-03")), (3, np.datetime64("2012-07-04"))],
|
611 |
+
columns=["a", "date"],
|
612 |
+
)
|
613 |
+
result = df.groupby("a").first()
|
614 |
+
assert result["date"][3] == Timestamp("2012-07-03")
|
615 |
+
|
616 |
+
def test_groupby_multi_timezone(self):
|
617 |
+
# combining multiple / different timezones yields UTC
|
618 |
+
df = DataFrame(
|
619 |
+
{
|
620 |
+
"value": range(5),
|
621 |
+
"date": [
|
622 |
+
"2000-01-28 16:47:00",
|
623 |
+
"2000-01-29 16:48:00",
|
624 |
+
"2000-01-30 16:49:00",
|
625 |
+
"2000-01-31 16:50:00",
|
626 |
+
"2000-01-01 16:50:00",
|
627 |
+
],
|
628 |
+
"tz": [
|
629 |
+
"America/Chicago",
|
630 |
+
"America/Chicago",
|
631 |
+
"America/Los_Angeles",
|
632 |
+
"America/Chicago",
|
633 |
+
"America/New_York",
|
634 |
+
],
|
635 |
+
}
|
636 |
+
)
|
637 |
+
|
638 |
+
result = df.groupby("tz", group_keys=False).date.apply(
|
639 |
+
lambda x: pd.to_datetime(x).dt.tz_localize(x.name)
|
640 |
+
)
|
641 |
+
|
642 |
+
expected = Series(
|
643 |
+
[
|
644 |
+
Timestamp("2000-01-28 16:47:00-0600", tz="America/Chicago"),
|
645 |
+
Timestamp("2000-01-29 16:48:00-0600", tz="America/Chicago"),
|
646 |
+
Timestamp("2000-01-30 16:49:00-0800", tz="America/Los_Angeles"),
|
647 |
+
Timestamp("2000-01-31 16:50:00-0600", tz="America/Chicago"),
|
648 |
+
Timestamp("2000-01-01 16:50:00-0500", tz="America/New_York"),
|
649 |
+
],
|
650 |
+
name="date",
|
651 |
+
dtype=object,
|
652 |
+
)
|
653 |
+
tm.assert_series_equal(result, expected)
|
654 |
+
|
655 |
+
tz = "America/Chicago"
|
656 |
+
res_values = df.groupby("tz").date.get_group(tz)
|
657 |
+
result = pd.to_datetime(res_values).dt.tz_localize(tz)
|
658 |
+
exp_values = Series(
|
659 |
+
["2000-01-28 16:47:00", "2000-01-29 16:48:00", "2000-01-31 16:50:00"],
|
660 |
+
index=[0, 1, 3],
|
661 |
+
name="date",
|
662 |
+
)
|
663 |
+
expected = pd.to_datetime(exp_values).dt.tz_localize(tz)
|
664 |
+
tm.assert_series_equal(result, expected)
|
665 |
+
|
666 |
+
def test_groupby_groups_periods(self):
|
667 |
+
dates = [
|
668 |
+
"2011-07-19 07:00:00",
|
669 |
+
"2011-07-19 08:00:00",
|
670 |
+
"2011-07-19 09:00:00",
|
671 |
+
"2011-07-19 07:00:00",
|
672 |
+
"2011-07-19 08:00:00",
|
673 |
+
"2011-07-19 09:00:00",
|
674 |
+
]
|
675 |
+
df = DataFrame(
|
676 |
+
{
|
677 |
+
"label": ["a", "a", "a", "b", "b", "b"],
|
678 |
+
"period": [pd.Period(d, freq="h") for d in dates],
|
679 |
+
"value1": np.arange(6, dtype="int64"),
|
680 |
+
"value2": [1, 2] * 3,
|
681 |
+
}
|
682 |
+
)
|
683 |
+
|
684 |
+
exp_idx1 = pd.PeriodIndex(
|
685 |
+
[
|
686 |
+
"2011-07-19 07:00:00",
|
687 |
+
"2011-07-19 07:00:00",
|
688 |
+
"2011-07-19 08:00:00",
|
689 |
+
"2011-07-19 08:00:00",
|
690 |
+
"2011-07-19 09:00:00",
|
691 |
+
"2011-07-19 09:00:00",
|
692 |
+
],
|
693 |
+
freq="h",
|
694 |
+
name="period",
|
695 |
+
)
|
696 |
+
exp_idx2 = Index(["a", "b"] * 3, name="label")
|
697 |
+
exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
|
698 |
+
expected = DataFrame(
|
699 |
+
{"value1": [0, 3, 1, 4, 2, 5], "value2": [1, 2, 2, 1, 1, 2]},
|
700 |
+
index=exp_idx,
|
701 |
+
columns=["value1", "value2"],
|
702 |
+
)
|
703 |
+
|
704 |
+
result = df.groupby(["period", "label"]).sum()
|
705 |
+
tm.assert_frame_equal(result, expected)
|
706 |
+
|
707 |
+
# by level
|
708 |
+
didx = pd.PeriodIndex(dates, freq="h")
|
709 |
+
df = DataFrame(
|
710 |
+
{"value1": np.arange(6, dtype="int64"), "value2": [1, 2, 3, 1, 2, 3]},
|
711 |
+
index=didx,
|
712 |
+
)
|
713 |
+
|
714 |
+
exp_idx = pd.PeriodIndex(
|
715 |
+
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
|
716 |
+
freq="h",
|
717 |
+
)
|
718 |
+
expected = DataFrame(
|
719 |
+
{"value1": [3, 5, 7], "value2": [2, 4, 6]},
|
720 |
+
index=exp_idx,
|
721 |
+
columns=["value1", "value2"],
|
722 |
+
)
|
723 |
+
|
724 |
+
result = df.groupby(level=0).sum()
|
725 |
+
tm.assert_frame_equal(result, expected)
|
726 |
+
|
727 |
+
def test_groupby_first_datetime64(self):
|
728 |
+
df = DataFrame([(1, 1351036800000000000), (2, 1351036800000000000)])
|
729 |
+
df[1] = df[1].astype("M8[ns]")
|
730 |
+
|
731 |
+
assert issubclass(df[1].dtype.type, np.datetime64)
|
732 |
+
|
733 |
+
result = df.groupby(level=0).first()
|
734 |
+
got_dt = result[1].dtype
|
735 |
+
assert issubclass(got_dt.type, np.datetime64)
|
736 |
+
|
737 |
+
result = df[1].groupby(level=0).first()
|
738 |
+
got_dt = result.dtype
|
739 |
+
assert issubclass(got_dt.type, np.datetime64)
|
740 |
+
|
741 |
+
def test_groupby_max_datetime64(self):
|
742 |
+
# GH 5869
|
743 |
+
# datetimelike dtype conversion from int
|
744 |
+
df = DataFrame({"A": Timestamp("20130101"), "B": np.arange(5)})
|
745 |
+
# TODO: can we retain second reso in .apply here?
|
746 |
+
expected = df.groupby("A")["A"].apply(lambda x: x.max()).astype("M8[s]")
|
747 |
+
result = df.groupby("A")["A"].max()
|
748 |
+
tm.assert_series_equal(result, expected)
|
749 |
+
|
750 |
+
def test_groupby_datetime64_32_bit(self):
|
751 |
+
# GH 6410 / numpy 4328
|
752 |
+
# 32-bit under 1.9-dev indexing issue
|
753 |
+
|
754 |
+
df = DataFrame({"A": range(2), "B": [Timestamp("2000-01-1")] * 2})
|
755 |
+
result = df.groupby("A")["B"].transform("min")
|
756 |
+
expected = Series([Timestamp("2000-01-1")] * 2, name="B")
|
757 |
+
tm.assert_series_equal(result, expected)
|
758 |
+
|
759 |
+
def test_groupby_with_timezone_selection(self):
|
760 |
+
# GH 11616
|
761 |
+
# Test that column selection returns output in correct timezone.
|
762 |
+
|
763 |
+
df = DataFrame(
|
764 |
+
{
|
765 |
+
"factor": np.random.default_rng(2).integers(0, 3, size=60),
|
766 |
+
"time": date_range("01/01/2000 00:00", periods=60, freq="s", tz="UTC"),
|
767 |
+
}
|
768 |
+
)
|
769 |
+
df1 = df.groupby("factor").max()["time"]
|
770 |
+
df2 = df.groupby("factor")["time"].max()
|
771 |
+
tm.assert_series_equal(df1, df2)
|
772 |
+
|
773 |
+
def test_timezone_info(self):
|
774 |
+
# see gh-11682: Timezone info lost when broadcasting
|
775 |
+
# scalar datetime to DataFrame
|
776 |
+
|
777 |
+
df = DataFrame({"a": [1], "b": [datetime.now(pytz.utc)]})
|
778 |
+
assert df["b"][0].tzinfo == pytz.utc
|
779 |
+
df = DataFrame({"a": [1, 2, 3]})
|
780 |
+
df["b"] = datetime.now(pytz.utc)
|
781 |
+
assert df["b"][0].tzinfo == pytz.utc
|
782 |
+
|
783 |
+
def test_datetime_count(self):
|
784 |
+
df = DataFrame(
|
785 |
+
{"a": [1, 2, 3] * 2, "dates": date_range("now", periods=6, freq="min")}
|
786 |
+
)
|
787 |
+
result = df.groupby("a").dates.count()
|
788 |
+
expected = Series([2, 2, 2], index=Index([1, 2, 3], name="a"), name="dates")
|
789 |
+
tm.assert_series_equal(result, expected)
|
790 |
+
|
791 |
+
def test_first_last_max_min_on_time_data(self):
|
792 |
+
# GH 10295
|
793 |
+
# Verify that NaT is not in the result of max, min, first and last on
|
794 |
+
# Dataframe with datetime or timedelta values.
|
795 |
+
df_test = DataFrame(
|
796 |
+
{
|
797 |
+
"dt": [
|
798 |
+
np.nan,
|
799 |
+
"2015-07-24 10:10",
|
800 |
+
"2015-07-25 11:11",
|
801 |
+
"2015-07-23 12:12",
|
802 |
+
np.nan,
|
803 |
+
],
|
804 |
+
"td": [
|
805 |
+
np.nan,
|
806 |
+
timedelta(days=1),
|
807 |
+
timedelta(days=2),
|
808 |
+
timedelta(days=3),
|
809 |
+
np.nan,
|
810 |
+
],
|
811 |
+
}
|
812 |
+
)
|
813 |
+
df_test.dt = pd.to_datetime(df_test.dt)
|
814 |
+
df_test["group"] = "A"
|
815 |
+
df_ref = df_test[df_test.dt.notna()]
|
816 |
+
|
817 |
+
grouped_test = df_test.groupby("group")
|
818 |
+
grouped_ref = df_ref.groupby("group")
|
819 |
+
|
820 |
+
tm.assert_frame_equal(grouped_ref.max(), grouped_test.max())
|
821 |
+
tm.assert_frame_equal(grouped_ref.min(), grouped_test.min())
|
822 |
+
tm.assert_frame_equal(grouped_ref.first(), grouped_test.first())
|
823 |
+
tm.assert_frame_equal(grouped_ref.last(), grouped_test.last())
|
824 |
+
|
825 |
+
def test_nunique_with_timegrouper_and_nat(self):
|
826 |
+
# GH 17575
|
827 |
+
test = DataFrame(
|
828 |
+
{
|
829 |
+
"time": [
|
830 |
+
Timestamp("2016-06-28 09:35:35"),
|
831 |
+
pd.NaT,
|
832 |
+
Timestamp("2016-06-28 16:46:28"),
|
833 |
+
],
|
834 |
+
"data": ["1", "2", "3"],
|
835 |
+
}
|
836 |
+
)
|
837 |
+
|
838 |
+
grouper = Grouper(key="time", freq="h")
|
839 |
+
result = test.groupby(grouper)["data"].nunique()
|
840 |
+
expected = test[test.time.notnull()].groupby(grouper)["data"].nunique()
|
841 |
+
expected.index = expected.index._with_freq(None)
|
842 |
+
tm.assert_series_equal(result, expected)
|
843 |
+
|
844 |
+
def test_scalar_call_versus_list_call(self):
|
845 |
+
# Issue: 17530
|
846 |
+
data_frame = {
|
847 |
+
"location": ["shanghai", "beijing", "shanghai"],
|
848 |
+
"time": Series(
|
849 |
+
["2017-08-09 13:32:23", "2017-08-11 23:23:15", "2017-08-11 22:23:15"],
|
850 |
+
dtype="datetime64[ns]",
|
851 |
+
),
|
852 |
+
"value": [1, 2, 3],
|
853 |
+
}
|
854 |
+
data_frame = DataFrame(data_frame).set_index("time")
|
855 |
+
grouper = Grouper(freq="D")
|
856 |
+
|
857 |
+
grouped = data_frame.groupby(grouper)
|
858 |
+
result = grouped.count()
|
859 |
+
grouped = data_frame.groupby([grouper])
|
860 |
+
expected = grouped.count()
|
861 |
+
|
862 |
+
tm.assert_frame_equal(result, expected)
|
863 |
+
|
864 |
+
def test_grouper_period_index(self):
|
865 |
+
# GH 32108
|
866 |
+
periods = 2
|
867 |
+
index = pd.period_range(
|
868 |
+
start="2018-01", periods=periods, freq="M", name="Month"
|
869 |
+
)
|
870 |
+
period_series = Series(range(periods), index=index)
|
871 |
+
result = period_series.groupby(period_series.index.month).sum()
|
872 |
+
|
873 |
+
expected = Series(
|
874 |
+
range(periods), index=Index(range(1, periods + 1), name=index.name)
|
875 |
+
)
|
876 |
+
tm.assert_series_equal(result, expected)
|
877 |
+
|
878 |
+
def test_groupby_apply_timegrouper_with_nat_dict_returns(
|
879 |
+
self, groupby_with_truncated_bingrouper
|
880 |
+
):
|
881 |
+
# GH#43500 case where gb._grouper.result_index and gb._grouper.group_keys_seq
|
882 |
+
# have different lengths that goes through the `isinstance(values[0], dict)`
|
883 |
+
# path
|
884 |
+
gb = groupby_with_truncated_bingrouper
|
885 |
+
|
886 |
+
res = gb["Quantity"].apply(lambda x: {"foo": len(x)})
|
887 |
+
|
888 |
+
df = gb.obj
|
889 |
+
unit = df["Date"]._values.unit
|
890 |
+
dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date", unit=unit)
|
891 |
+
mi = MultiIndex.from_arrays([dti, ["foo"] * len(dti)])
|
892 |
+
expected = Series([3, 0, 0, 0, 0, 0, 2], index=mi, name="Quantity")
|
893 |
+
tm.assert_series_equal(res, expected)
|
894 |
+
|
895 |
+
def test_groupby_apply_timegrouper_with_nat_scalar_returns(
|
896 |
+
self, groupby_with_truncated_bingrouper
|
897 |
+
):
|
898 |
+
# GH#43500 Previously raised ValueError bc used index with incorrect
|
899 |
+
# length in wrap_applied_result
|
900 |
+
gb = groupby_with_truncated_bingrouper
|
901 |
+
|
902 |
+
res = gb["Quantity"].apply(lambda x: x.iloc[0] if len(x) else np.nan)
|
903 |
+
|
904 |
+
df = gb.obj
|
905 |
+
unit = df["Date"]._values.unit
|
906 |
+
dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date", unit=unit)
|
907 |
+
expected = Series(
|
908 |
+
[18, np.nan, np.nan, np.nan, np.nan, np.nan, 5],
|
909 |
+
index=dti._with_freq(None),
|
910 |
+
name="Quantity",
|
911 |
+
)
|
912 |
+
|
913 |
+
tm.assert_series_equal(res, expected)
|
914 |
+
|
915 |
+
def test_groupby_apply_timegrouper_with_nat_apply_squeeze(
|
916 |
+
self, frame_for_truncated_bingrouper
|
917 |
+
):
|
918 |
+
df = frame_for_truncated_bingrouper
|
919 |
+
|
920 |
+
# We need to create a GroupBy object with only one non-NaT group,
|
921 |
+
# so use a huge freq so that all non-NaT dates will be grouped together
|
922 |
+
tdg = Grouper(key="Date", freq="100YE")
|
923 |
+
gb = df.groupby(tdg)
|
924 |
+
|
925 |
+
# check that we will go through the singular_series path
|
926 |
+
# in _wrap_applied_output_series
|
927 |
+
assert gb.ngroups == 1
|
928 |
+
assert gb._selected_obj._get_axis(gb.axis).nlevels == 1
|
929 |
+
|
930 |
+
# function that returns a Series
|
931 |
+
msg = "DataFrameGroupBy.apply operated on the grouping columns"
|
932 |
+
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
933 |
+
res = gb.apply(lambda x: x["Quantity"] * 2)
|
934 |
+
|
935 |
+
dti = Index([Timestamp("2013-12-31")], dtype=df["Date"].dtype, name="Date")
|
936 |
+
expected = DataFrame(
|
937 |
+
[[36, 6, 6, 10, 2]],
|
938 |
+
index=dti,
|
939 |
+
columns=Index([0, 1, 5, 2, 3], name="Quantity"),
|
940 |
+
)
|
941 |
+
tm.assert_frame_equal(res, expected)
|
942 |
+
|
943 |
+
@pytest.mark.single_cpu
|
944 |
+
def test_groupby_agg_numba_timegrouper_with_nat(
|
945 |
+
self, groupby_with_truncated_bingrouper
|
946 |
+
):
|
947 |
+
pytest.importorskip("numba")
|
948 |
+
|
949 |
+
# See discussion in GH#43487
|
950 |
+
gb = groupby_with_truncated_bingrouper
|
951 |
+
|
952 |
+
result = gb["Quantity"].aggregate(
|
953 |
+
lambda values, index: np.nanmean(values), engine="numba"
|
954 |
+
)
|
955 |
+
|
956 |
+
expected = gb["Quantity"].aggregate("mean")
|
957 |
+
tm.assert_series_equal(result, expected)
|
958 |
+
|
959 |
+
result_df = gb[["Quantity"]].aggregate(
|
960 |
+
lambda values, index: np.nanmean(values), engine="numba"
|
961 |
+
)
|
962 |
+
expected_df = gb[["Quantity"]].aggregate("mean")
|
963 |
+
tm.assert_frame_equal(result_df, expected_df)
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (7.82 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_c_parser_only.cpython-310.pyc
ADDED
Binary file (16.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_comment.cpython-310.pyc
ADDED
Binary file (5.65 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_compression.cpython-310.pyc
ADDED
Binary file (6.27 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_concatenate_chunks.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_converters.cpython-310.pyc
ADDED
Binary file (6.58 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_encoding.cpython-310.pyc
ADDED
Binary file (9.22 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_header.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_mangle_dupes.cpython-310.pyc
ADDED
Binary file (4.58 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_multi_thread.cpython-310.pyc
ADDED
Binary file (4.24 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_na_values.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_network.cpython-310.pyc
ADDED
Binary file (9.44 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_parse_dates.cpython-310.pyc
ADDED
Binary file (44.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_python_parser_only.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_quoting.cpython-310.pyc
ADDED
Binary file (4.88 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_read_fwf.cpython-310.pyc
ADDED
Binary file (24.4 kB). View file
|
|