peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_counting.py
from itertools import product | |
from string import ascii_lowercase | |
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Period, | |
Series, | |
Timedelta, | |
Timestamp, | |
date_range, | |
) | |
import pandas._testing as tm | |
class TestCounting: | |
def test_cumcount(self): | |
df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"]) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0, 1, 2, 0, 3]) | |
tm.assert_series_equal(expected, g.cumcount()) | |
tm.assert_series_equal(expected, sg.cumcount()) | |
def test_cumcount_empty(self): | |
ge = DataFrame().groupby(level=0) | |
se = Series(dtype=object).groupby(level=0) | |
# edge case, as this is usually considered float | |
e = Series(dtype="int64") | |
tm.assert_series_equal(e, ge.cumcount()) | |
tm.assert_series_equal(e, se.cumcount()) | |
def test_cumcount_dupe_index(self): | |
df = DataFrame( | |
[["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5 | |
) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0, 1, 2, 0, 3], index=[0] * 5) | |
tm.assert_series_equal(expected, g.cumcount()) | |
tm.assert_series_equal(expected, sg.cumcount()) | |
def test_cumcount_mi(self): | |
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) | |
df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=mi) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0, 1, 2, 0, 3], index=mi) | |
tm.assert_series_equal(expected, g.cumcount()) | |
tm.assert_series_equal(expected, sg.cumcount()) | |
def test_cumcount_groupby_not_col(self): | |
df = DataFrame( | |
[["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5 | |
) | |
g = df.groupby([0, 0, 0, 1, 0]) | |
sg = g.A | |
expected = Series([0, 1, 2, 0, 3], index=[0] * 5) | |
tm.assert_series_equal(expected, g.cumcount()) | |
tm.assert_series_equal(expected, sg.cumcount()) | |
def test_ngroup(self): | |
df = DataFrame({"A": list("aaaba")}) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0, 0, 0, 1, 0]) | |
tm.assert_series_equal(expected, g.ngroup()) | |
tm.assert_series_equal(expected, sg.ngroup()) | |
def test_ngroup_distinct(self): | |
df = DataFrame({"A": list("abcde")}) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series(range(5), dtype="int64") | |
tm.assert_series_equal(expected, g.ngroup()) | |
tm.assert_series_equal(expected, sg.ngroup()) | |
def test_ngroup_one_group(self): | |
df = DataFrame({"A": [0] * 5}) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0] * 5) | |
tm.assert_series_equal(expected, g.ngroup()) | |
tm.assert_series_equal(expected, sg.ngroup()) | |
def test_ngroup_empty(self): | |
ge = DataFrame().groupby(level=0) | |
se = Series(dtype=object).groupby(level=0) | |
# edge case, as this is usually considered float | |
e = Series(dtype="int64") | |
tm.assert_series_equal(e, ge.ngroup()) | |
tm.assert_series_equal(e, se.ngroup()) | |
def test_ngroup_series_matches_frame(self): | |
df = DataFrame({"A": list("aaaba")}) | |
s = Series(list("aaaba")) | |
tm.assert_series_equal(df.groupby(s).ngroup(), s.groupby(s).ngroup()) | |
def test_ngroup_dupe_index(self): | |
df = DataFrame({"A": list("aaaba")}, index=[0] * 5) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0, 0, 0, 1, 0], index=[0] * 5) | |
tm.assert_series_equal(expected, g.ngroup()) | |
tm.assert_series_equal(expected, sg.ngroup()) | |
def test_ngroup_mi(self): | |
mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) | |
df = DataFrame({"A": list("aaaba")}, index=mi) | |
g = df.groupby("A") | |
sg = g.A | |
expected = Series([0, 0, 0, 1, 0], index=mi) | |
tm.assert_series_equal(expected, g.ngroup()) | |
tm.assert_series_equal(expected, sg.ngroup()) | |
def test_ngroup_groupby_not_col(self): | |
df = DataFrame({"A": list("aaaba")}, index=[0] * 5) | |
g = df.groupby([0, 0, 0, 1, 0]) | |
sg = g.A | |
expected = Series([0, 0, 0, 1, 0], index=[0] * 5) | |
tm.assert_series_equal(expected, g.ngroup()) | |
tm.assert_series_equal(expected, sg.ngroup()) | |
def test_ngroup_descending(self): | |
df = DataFrame(["a", "a", "b", "a", "b"], columns=["A"]) | |
g = df.groupby(["A"]) | |
ascending = Series([0, 0, 1, 0, 1]) | |
descending = Series([1, 1, 0, 1, 0]) | |
tm.assert_series_equal(descending, (g.ngroups - 1) - ascending) | |
tm.assert_series_equal(ascending, g.ngroup(ascending=True)) | |
tm.assert_series_equal(descending, g.ngroup(ascending=False)) | |
def test_ngroup_matches_cumcount(self): | |
# verify one manually-worked out case works | |
df = DataFrame( | |
[["a", "x"], ["a", "y"], ["b", "x"], ["a", "x"], ["b", "y"]], | |
columns=["A", "X"], | |
) | |
g = df.groupby(["A", "X"]) | |
g_ngroup = g.ngroup() | |
g_cumcount = g.cumcount() | |
expected_ngroup = Series([0, 1, 2, 0, 3]) | |
expected_cumcount = Series([0, 0, 0, 1, 0]) | |
tm.assert_series_equal(g_ngroup, expected_ngroup) | |
tm.assert_series_equal(g_cumcount, expected_cumcount) | |
def test_ngroup_cumcount_pair(self): | |
# brute force comparison for all small series | |
for p in product(range(3), repeat=4): | |
df = DataFrame({"a": p}) | |
g = df.groupby(["a"]) | |
order = sorted(set(p)) | |
ngroupd = [order.index(val) for val in p] | |
cumcounted = [p[:i].count(val) for i, val in enumerate(p)] | |
tm.assert_series_equal(g.ngroup(), Series(ngroupd)) | |
tm.assert_series_equal(g.cumcount(), Series(cumcounted)) | |
def test_ngroup_respects_groupby_order(self, sort): | |
df = DataFrame({"a": np.random.default_rng(2).choice(list("abcdef"), 100)}) | |
g = df.groupby("a", sort=sort) | |
df["group_id"] = -1 | |
df["group_index"] = -1 | |
for i, (_, group) in enumerate(g): | |
df.loc[group.index, "group_id"] = i | |
for j, ind in enumerate(group.index): | |
df.loc[ind, "group_index"] = j | |
tm.assert_series_equal(Series(df["group_id"].values), g.ngroup()) | |
tm.assert_series_equal(Series(df["group_index"].values), g.cumcount()) | |
def test_count_with_datetimelike(self, datetimelike): | |
# test for #13393, where DataframeGroupBy.count() fails | |
# when counting a datetimelike column. | |
df = DataFrame({"x": ["a", "a", "b"], "y": datetimelike}) | |
res = df.groupby("x").count() | |
expected = DataFrame({"y": [2, 1]}, index=["a", "b"]) | |
expected.index.name = "x" | |
tm.assert_frame_equal(expected, res) | |
def test_count_with_only_nans_in_first_group(self): | |
# GH21956 | |
df = DataFrame({"A": [np.nan, np.nan], "B": ["a", "b"], "C": [1, 2]}) | |
result = df.groupby(["A", "B"]).C.count() | |
mi = MultiIndex(levels=[[], ["a", "b"]], codes=[[], []], names=["A", "B"]) | |
expected = Series([], index=mi, dtype=np.int64, name="C") | |
tm.assert_series_equal(result, expected, check_index_type=False) | |
def test_count_groupby_column_with_nan_in_groupby_column(self): | |
# https://github.com/pandas-dev/pandas/issues/32841 | |
df = DataFrame({"A": [1, 1, 1, 1, 1], "B": [5, 4, np.nan, 3, 0]}) | |
res = df.groupby(["B"]).count() | |
expected = DataFrame( | |
index=Index([0.0, 3.0, 4.0, 5.0], name="B"), data={"A": [1, 1, 1, 1]} | |
) | |
tm.assert_frame_equal(expected, res) | |
def test_groupby_count_dateparseerror(self): | |
dr = date_range(start="1/1/2012", freq="5min", periods=10) | |
# BAD Example, datetimes first | |
ser = Series(np.arange(10), index=[dr, np.arange(10)]) | |
grouped = ser.groupby(lambda x: x[1] % 2 == 0) | |
result = grouped.count() | |
ser = Series(np.arange(10), index=[np.arange(10), dr]) | |
grouped = ser.groupby(lambda x: x[0] % 2 == 0) | |
expected = grouped.count() | |
tm.assert_series_equal(result, expected) | |
def test_groupby_timedelta_cython_count(): | |
df = DataFrame( | |
{"g": list("ab" * 2), "delta": np.arange(4).astype("timedelta64[ns]")} | |
) | |
expected = Series([2, 2], index=Index(["a", "b"], name="g"), name="delta") | |
result = df.groupby("g").delta.count() | |
tm.assert_series_equal(expected, result) | |
def test_count(): | |
n = 1 << 15 | |
dr = date_range("2015-08-30", periods=n // 10, freq="min") | |
df = DataFrame( | |
{ | |
"1st": np.random.default_rng(2).choice(list(ascii_lowercase), n), | |
"2nd": np.random.default_rng(2).integers(0, 5, n), | |
"3rd": np.random.default_rng(2).standard_normal(n).round(3), | |
"4th": np.random.default_rng(2).integers(-10, 10, n), | |
"5th": np.random.default_rng(2).choice(dr, n), | |
"6th": np.random.default_rng(2).standard_normal(n).round(3), | |
"7th": np.random.default_rng(2).standard_normal(n).round(3), | |
"8th": np.random.default_rng(2).choice(dr, n) | |
- np.random.default_rng(2).choice(dr, 1), | |
"9th": np.random.default_rng(2).choice(list(ascii_lowercase), n), | |
} | |
) | |
for col in df.columns.drop(["1st", "2nd", "4th"]): | |
df.loc[np.random.default_rng(2).choice(n, n // 10), col] = np.nan | |
df["9th"] = df["9th"].astype("category") | |
for key in ["1st", "2nd", ["1st", "2nd"]]: | |
left = df.groupby(key).count() | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1) | |
tm.assert_frame_equal(left, right) | |
def test_count_non_nulls(): | |
# GH#5610 | |
# count counts non-nulls | |
df = DataFrame( | |
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, np.nan]], | |
columns=["A", "B", "C"], | |
) | |
count_as = df.groupby("A").count() | |
count_not_as = df.groupby("A", as_index=False).count() | |
expected = DataFrame([[1, 2], [0, 0]], columns=["B", "C"], index=[1, 3]) | |
expected.index.name = "A" | |
tm.assert_frame_equal(count_not_as, expected.reset_index()) | |
tm.assert_frame_equal(count_as, expected) | |
count_B = df.groupby("A")["B"].count() | |
tm.assert_series_equal(count_B, expected["B"]) | |
def test_count_object(): | |
df = DataFrame({"a": ["a"] * 3 + ["b"] * 3, "c": [2] * 3 + [3] * 3}) | |
result = df.groupby("c").a.count() | |
expected = Series([3, 3], index=Index([2, 3], name="c"), name="a") | |
tm.assert_series_equal(result, expected) | |
df = DataFrame({"a": ["a", np.nan, np.nan] + ["b"] * 3, "c": [2] * 3 + [3] * 3}) | |
result = df.groupby("c").a.count() | |
expected = Series([1, 3], index=Index([2, 3], name="c"), name="a") | |
tm.assert_series_equal(result, expected) | |
def test_count_cross_type(): | |
# GH8169 | |
# Set float64 dtype to avoid upcast when setting nan below | |
vals = np.hstack( | |
( | |
np.random.default_rng(2).integers(0, 5, (100, 2)), | |
np.random.default_rng(2).integers(0, 2, (100, 2)), | |
) | |
).astype("float64") | |
df = DataFrame(vals, columns=["a", "b", "c", "d"]) | |
df[df == 2] = np.nan | |
expected = df.groupby(["c", "d"]).count() | |
for t in ["float32", "object"]: | |
df["a"] = df["a"].astype(t) | |
df["b"] = df["b"].astype(t) | |
result = df.groupby(["c", "d"]).count() | |
tm.assert_frame_equal(result, expected) | |
def test_lower_int_prec_count(): | |
df = DataFrame( | |
{ | |
"a": np.array([0, 1, 2, 100], np.int8), | |
"b": np.array([1, 2, 3, 6], np.uint32), | |
"c": np.array([4, 5, 6, 8], np.int16), | |
"grp": list("ab" * 2), | |
} | |
) | |
result = df.groupby("grp").count() | |
expected = DataFrame( | |
{"a": [2, 2], "b": [2, 2], "c": [2, 2]}, index=Index(list("ab"), name="grp") | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_count_uses_size_on_exception(): | |
class RaisingObjectException(Exception): | |
pass | |
class RaisingObject: | |
def __init__(self, msg="I will raise inside Cython") -> None: | |
super().__init__() | |
self.msg = msg | |
def __eq__(self, other): | |
# gets called in Cython to check that raising calls the method | |
raise RaisingObjectException(self.msg) | |
df = DataFrame({"a": [RaisingObject() for _ in range(4)], "grp": list("ab" * 2)}) | |
result = df.groupby("grp").count() | |
expected = DataFrame({"a": [2, 2]}, index=Index(list("ab"), name="grp")) | |
tm.assert_frame_equal(result, expected) | |
def test_count_arrow_string_array(any_string_dtype): | |
# GH#54751 | |
pytest.importorskip("pyarrow") | |
df = DataFrame( | |
{"a": [1, 2, 3], "b": Series(["a", "b", "a"], dtype=any_string_dtype)} | |
) | |
result = df.groupby("a").count() | |
expected = DataFrame({"b": 1}, index=Index([1, 2, 3], name="a")) | |
tm.assert_frame_equal(result, expected) | |