peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_groupby.py
from datetime import datetime | |
import decimal | |
from decimal import Decimal | |
import re | |
import numpy as np | |
import pytest | |
from pandas.errors import ( | |
PerformanceWarning, | |
SpecificationError, | |
) | |
import pandas.util._test_decorators as td | |
from pandas.core.dtypes.common import is_string_dtype | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
DataFrame, | |
Grouper, | |
Index, | |
Interval, | |
MultiIndex, | |
RangeIndex, | |
Series, | |
Timedelta, | |
Timestamp, | |
date_range, | |
to_datetime, | |
) | |
import pandas._testing as tm | |
from pandas.core.arrays import BooleanArray | |
import pandas.core.common as com | |
pytestmark = pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning") | |
def test_repr(): | |
# GH18203 | |
result = repr(Grouper(key="A", level="B")) | |
expected = "Grouper(key='A', level='B', axis=0, sort=False, dropna=True)" | |
assert result == expected | |
def test_groupby_std_datetimelike(warn_copy_on_write): | |
# GH#48481 | |
tdi = pd.timedelta_range("1 Day", periods=10000) | |
ser = Series(tdi) | |
ser[::5] *= 2 # get different std for different groups | |
df = ser.to_frame("A").copy() | |
df["B"] = ser + Timestamp(0) | |
df["C"] = ser + Timestamp(0, tz="UTC") | |
df.iloc[-1] = pd.NaT # last group includes NaTs | |
gb = df.groupby(list(range(5)) * 2000) | |
result = gb.std() | |
# Note: this does not _exactly_ match what we would get if we did | |
# [gb.get_group(i).std() for i in gb.groups] | |
# but it _does_ match the floating point error we get doing the | |
# same operation on int64 data xref GH#51332 | |
td1 = Timedelta("2887 days 11:21:02.326710176") | |
td4 = Timedelta("2886 days 00:42:34.664668096") | |
exp_ser = Series([td1 * 2, td1, td1, td1, td4], index=np.arange(5)) | |
expected = DataFrame({"A": exp_ser, "B": exp_ser, "C": exp_ser}) | |
tm.assert_frame_equal(result, expected) | |
def test_basic_aggregations(dtype): | |
data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) | |
index = np.arange(9) | |
np.random.default_rng(2).shuffle(index) | |
data = data.reindex(index) | |
grouped = data.groupby(lambda x: x // 3, group_keys=False) | |
for k, v in grouped: | |
assert len(v) == 3 | |
msg = "using SeriesGroupBy.mean" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
agged = grouped.aggregate(np.mean) | |
assert agged[1] == 1 | |
msg = "using SeriesGroupBy.mean" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = grouped.agg(np.mean) | |
tm.assert_series_equal(agged, expected) # shorthand | |
tm.assert_series_equal(agged, grouped.mean()) | |
result = grouped.sum() | |
msg = "using SeriesGroupBy.sum" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = grouped.agg(np.sum) | |
tm.assert_series_equal(result, expected) | |
expected = grouped.apply(lambda x: x * x.sum()) | |
transformed = grouped.transform(lambda x: x * x.sum()) | |
assert transformed[7] == 12 | |
tm.assert_series_equal(transformed, expected) | |
value_grouped = data.groupby(data) | |
msg = "using SeriesGroupBy.mean" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result = value_grouped.aggregate(np.mean) | |
tm.assert_series_equal(result, agged, check_index_type=False) | |
# complex agg | |
msg = "using SeriesGroupBy.[mean|std]" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
agged = grouped.aggregate([np.mean, np.std]) | |
msg = r"nested renamer is not supported" | |
with pytest.raises(SpecificationError, match=msg): | |
grouped.aggregate({"one": np.mean, "two": np.std}) | |
group_constants = {0: 10, 1: 20, 2: 30} | |
msg = ( | |
"Pinning the groupby key to each group in SeriesGroupBy.agg is deprecated, " | |
"and cases that relied on it will raise in a future version" | |
) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
# GH#41090 | |
agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) | |
assert agged[1] == 21 | |
# corner cases | |
msg = "Must produce aggregated value" | |
# exception raised is type Exception | |
with pytest.raises(Exception, match=msg): | |
grouped.aggregate(lambda x: x * 2) | |
def test_groupby_nonobject_dtype(multiindex_dataframe_random_data): | |
key = multiindex_dataframe_random_data.index.codes[0] | |
grouped = multiindex_dataframe_random_data.groupby(key) | |
result = grouped.sum() | |
expected = multiindex_dataframe_random_data.groupby(key.astype("O")).sum() | |
assert result.index.dtype == np.int8 | |
assert expected.index.dtype == np.int64 | |
tm.assert_frame_equal(result, expected, check_index_type=False) | |
def test_groupby_nonobject_dtype_mixed(): | |
# GH 3911, mixed frame non-conversion | |
df = DataFrame( | |
{ | |
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], | |
"B": ["one", "one", "two", "three", "two", "two", "one", "three"], | |
"C": np.random.default_rng(2).standard_normal(8), | |
"D": np.array(np.random.default_rng(2).standard_normal(8), dtype="float32"), | |
} | |
) | |
df["value"] = range(len(df)) | |
def max_value(group): | |
return group.loc[group["value"].idxmax()] | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
applied = df.groupby("A").apply(max_value) | |
result = applied.dtypes | |
expected = df.dtypes | |
tm.assert_series_equal(result, expected) | |
def test_inconsistent_return_type(): | |
# GH5592 | |
# inconsistent return type | |
df = DataFrame( | |
{ | |
"A": ["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], | |
"B": Series(np.arange(7), dtype="int64"), | |
"C": date_range("20130101", periods=7), | |
} | |
) | |
def f_0(grp): | |
return grp.iloc[0] | |
expected = df.groupby("A").first()[["B"]] | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = df.groupby("A").apply(f_0)[["B"]] | |
tm.assert_frame_equal(result, expected) | |
def f_1(grp): | |
if grp.name == "Tiger": | |
return None | |
return grp.iloc[0] | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = df.groupby("A").apply(f_1)[["B"]] | |
e = expected.copy() | |
e.loc["Tiger"] = np.nan | |
tm.assert_frame_equal(result, e) | |
def f_2(grp): | |
if grp.name == "Pony": | |
return None | |
return grp.iloc[0] | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = df.groupby("A").apply(f_2)[["B"]] | |
e = expected.copy() | |
e.loc["Pony"] = np.nan | |
tm.assert_frame_equal(result, e) | |
# 5592 revisited, with datetimes | |
def f_3(grp): | |
if grp.name == "Pony": | |
return None | |
return grp.iloc[0] | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = df.groupby("A").apply(f_3)[["C"]] | |
e = df.groupby("A").first()[["C"]] | |
e.loc["Pony"] = pd.NaT | |
tm.assert_frame_equal(result, e) | |
# scalar outputs | |
def f_4(grp): | |
if grp.name == "Pony": | |
return None | |
return grp.iloc[0].loc["C"] | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = df.groupby("A").apply(f_4) | |
e = df.groupby("A").first()["C"].copy() | |
e.loc["Pony"] = np.nan | |
e.name = None | |
tm.assert_series_equal(result, e) | |
def test_pass_args_kwargs(ts, tsframe): | |
def f(x, q=None, axis=0): | |
return np.percentile(x, q, axis=axis) | |
g = lambda x: np.percentile(x, 80, axis=0) | |
# Series | |
ts_grouped = ts.groupby(lambda x: x.month) | |
agg_result = ts_grouped.agg(np.percentile, 80, axis=0) | |
apply_result = ts_grouped.apply(np.percentile, 80, axis=0) | |
trans_result = ts_grouped.transform(np.percentile, 80, axis=0) | |
agg_expected = ts_grouped.quantile(0.8) | |
trans_expected = ts_grouped.transform(g) | |
tm.assert_series_equal(apply_result, agg_expected) | |
tm.assert_series_equal(agg_result, agg_expected) | |
tm.assert_series_equal(trans_result, trans_expected) | |
agg_result = ts_grouped.agg(f, q=80) | |
apply_result = ts_grouped.apply(f, q=80) | |
trans_result = ts_grouped.transform(f, q=80) | |
tm.assert_series_equal(agg_result, agg_expected) | |
tm.assert_series_equal(apply_result, agg_expected) | |
tm.assert_series_equal(trans_result, trans_expected) | |
# DataFrame | |
for as_index in [True, False]: | |
df_grouped = tsframe.groupby(lambda x: x.month, as_index=as_index) | |
warn = None if as_index else FutureWarning | |
msg = "A grouping .* was excluded from the result" | |
with tm.assert_produces_warning(warn, match=msg): | |
agg_result = df_grouped.agg(np.percentile, 80, axis=0) | |
with tm.assert_produces_warning(warn, match=msg): | |
apply_result = df_grouped.apply(DataFrame.quantile, 0.8) | |
with tm.assert_produces_warning(warn, match=msg): | |
expected = df_grouped.quantile(0.8) | |
tm.assert_frame_equal(apply_result, expected, check_names=False) | |
tm.assert_frame_equal(agg_result, expected) | |
apply_result = df_grouped.apply(DataFrame.quantile, [0.4, 0.8]) | |
with tm.assert_produces_warning(warn, match=msg): | |
expected_seq = df_grouped.quantile([0.4, 0.8]) | |
tm.assert_frame_equal(apply_result, expected_seq, check_names=False) | |
with tm.assert_produces_warning(warn, match=msg): | |
agg_result = df_grouped.agg(f, q=80) | |
with tm.assert_produces_warning(warn, match=msg): | |
apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) | |
tm.assert_frame_equal(agg_result, expected) | |
tm.assert_frame_equal(apply_result, expected, check_names=False) | |
def test_pass_args_kwargs_duplicate_columns(tsframe, as_index): | |
# go through _aggregate_frame with self.axis == 0 and duplicate columns | |
tsframe.columns = ["A", "B", "A", "C"] | |
gb = tsframe.groupby(lambda x: x.month, as_index=as_index) | |
warn = None if as_index else FutureWarning | |
msg = "A grouping .* was excluded from the result" | |
with tm.assert_produces_warning(warn, match=msg): | |
res = gb.agg(np.percentile, 80, axis=0) | |
ex_data = { | |
1: tsframe[tsframe.index.month == 1].quantile(0.8), | |
2: tsframe[tsframe.index.month == 2].quantile(0.8), | |
} | |
expected = DataFrame(ex_data).T | |
if not as_index: | |
# TODO: try to get this more consistent? | |
expected.index = Index(range(2)) | |
tm.assert_frame_equal(res, expected) | |
def test_len(): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) | |
assert len(grouped) == len(df) | |
grouped = df.groupby([lambda x: x.year, lambda x: x.month]) | |
expected = len({(x.year, x.month) for x in df.index}) | |
assert len(grouped) == expected | |
def test_len_nan_group(): | |
# issue 11016 | |
df = DataFrame({"a": [np.nan] * 3, "b": [1, 2, 3]}) | |
assert len(df.groupby("a")) == 0 | |
assert len(df.groupby("b")) == 3 | |
assert len(df.groupby(["a", "b"])) == 3 | |
def test_basic_regression(): | |
# regression | |
result = Series([1.0 * x for x in list(range(1, 10)) * 10]) | |
data = np.random.default_rng(2).random(1100) * 10.0 | |
groupings = Series(data) | |
grouped = result.groupby(groupings) | |
grouped.mean() | |
def test_with_na_groups(dtype): | |
index = Index(np.arange(10)) | |
values = Series(np.ones(10), index, dtype=dtype) | |
labels = Series( | |
[np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], | |
index=index, | |
) | |
# this SHOULD be an int | |
grouped = values.groupby(labels) | |
agged = grouped.agg(len) | |
expected = Series([4, 2], index=["bar", "foo"]) | |
tm.assert_series_equal(agged, expected, check_dtype=False) | |
# assert issubclass(agged.dtype.type, np.integer) | |
# explicitly return a float from my function | |
def f(x): | |
return float(len(x)) | |
agged = grouped.agg(f) | |
expected = Series([4.0, 2.0], index=["bar", "foo"]) | |
tm.assert_series_equal(agged, expected) | |
def test_indices_concatenation_order(): | |
# GH 2808 | |
def f1(x): | |
y = x[(x.b % 2) == 1] ** 2 | |
if y.empty: | |
multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) | |
res = DataFrame(columns=["a"], index=multiindex) | |
return res | |
else: | |
y = y.set_index(["b", "c"]) | |
return y | |
def f2(x): | |
y = x[(x.b % 2) == 1] ** 2 | |
if y.empty: | |
return DataFrame() | |
else: | |
y = y.set_index(["b", "c"]) | |
return y | |
def f3(x): | |
y = x[(x.b % 2) == 1] ** 2 | |
if y.empty: | |
multiindex = MultiIndex( | |
levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] | |
) | |
res = DataFrame(columns=["a", "b"], index=multiindex) | |
return res | |
else: | |
return y | |
df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) | |
df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) | |
depr_msg = "The behavior of array concatenation with empty entries is deprecated" | |
# correct result | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result1 = df.groupby("a").apply(f1) | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result2 = df2.groupby("a").apply(f1) | |
tm.assert_frame_equal(result1, result2) | |
# should fail (not the same number of levels) | |
msg = "Cannot concat indices that do not have the same number of levels" | |
with pytest.raises(AssertionError, match=msg): | |
df.groupby("a").apply(f2) | |
with pytest.raises(AssertionError, match=msg): | |
df2.groupby("a").apply(f2) | |
# should fail (incorrect shape) | |
with pytest.raises(AssertionError, match=msg): | |
df.groupby("a").apply(f3) | |
with pytest.raises(AssertionError, match=msg): | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
df2.groupby("a").apply(f3) | |
def test_attr_wrapper(ts): | |
grouped = ts.groupby(lambda x: x.weekday()) | |
result = grouped.std() | |
expected = grouped.agg(lambda x: np.std(x, ddof=1)) | |
tm.assert_series_equal(result, expected) | |
# this is pretty cool | |
result = grouped.describe() | |
expected = {name: gp.describe() for name, gp in grouped} | |
expected = DataFrame(expected).T | |
tm.assert_frame_equal(result, expected) | |
# get attribute | |
result = grouped.dtype | |
expected = grouped.agg(lambda x: x.dtype) | |
tm.assert_series_equal(result, expected) | |
# make sure raises error | |
msg = "'SeriesGroupBy' object has no attribute 'foo'" | |
with pytest.raises(AttributeError, match=msg): | |
getattr(grouped, "foo") | |
def test_frame_groupby(tsframe): | |
grouped = tsframe.groupby(lambda x: x.weekday()) | |
# aggregate | |
aggregated = grouped.aggregate("mean") | |
assert len(aggregated) == 5 | |
assert len(aggregated.columns) == 4 | |
# by string | |
tscopy = tsframe.copy() | |
tscopy["weekday"] = [x.weekday() for x in tscopy.index] | |
stragged = tscopy.groupby("weekday").aggregate("mean") | |
tm.assert_frame_equal(stragged, aggregated, check_names=False) | |
# transform | |
grouped = tsframe.head(30).groupby(lambda x: x.weekday()) | |
transformed = grouped.transform(lambda x: x - x.mean()) | |
assert len(transformed) == 30 | |
assert len(transformed.columns) == 4 | |
# transform propagate | |
transformed = grouped.transform(lambda x: x.mean()) | |
for name, group in grouped: | |
mean = group.mean() | |
for idx in group.index: | |
tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) | |
# iterate | |
for weekday, group in grouped: | |
assert group.index[0].weekday() == weekday | |
# groups / group_indices | |
groups = grouped.groups | |
indices = grouped.indices | |
for k, v in groups.items(): | |
samething = tsframe.index.take(indices[k]) | |
assert (samething == v).all() | |
def test_frame_groupby_columns(tsframe): | |
mapping = {"A": 0, "B": 0, "C": 1, "D": 1} | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
grouped = tsframe.groupby(mapping, axis=1) | |
# aggregate | |
aggregated = grouped.aggregate("mean") | |
assert len(aggregated) == len(tsframe) | |
assert len(aggregated.columns) == 2 | |
# transform | |
tf = lambda x: x - x.mean() | |
msg = "The 'axis' keyword in DataFrame.groupby is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
groupedT = tsframe.T.groupby(mapping, axis=0) | |
tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) | |
# iterate | |
for k, v in grouped: | |
assert len(v.columns) == 2 | |
def test_frame_set_name_single(df): | |
grouped = df.groupby("A") | |
result = grouped.mean(numeric_only=True) | |
assert result.index.name == "A" | |
result = df.groupby("A", as_index=False).mean(numeric_only=True) | |
assert result.index.name != "A" | |
result = grouped[["C", "D"]].agg("mean") | |
assert result.index.name == "A" | |
result = grouped.agg({"C": "mean", "D": "std"}) | |
assert result.index.name == "A" | |
result = grouped["C"].mean() | |
assert result.index.name == "A" | |
result = grouped["C"].agg("mean") | |
assert result.index.name == "A" | |
result = grouped["C"].agg(["mean", "std"]) | |
assert result.index.name == "A" | |
msg = r"nested renamer is not supported" | |
with pytest.raises(SpecificationError, match=msg): | |
grouped["C"].agg({"foo": "mean", "bar": "std"}) | |
def test_multi_func(df): | |
col1 = df["A"] | |
col2 = df["B"] | |
grouped = df.groupby([col1.get, col2.get]) | |
agged = grouped.mean(numeric_only=True) | |
expected = df.groupby(["A", "B"]).mean() | |
# TODO groupby get drops names | |
tm.assert_frame_equal( | |
agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False | |
) | |
# some "groups" with no data | |
df = DataFrame( | |
{ | |
"v1": np.random.default_rng(2).standard_normal(6), | |
"v2": np.random.default_rng(2).standard_normal(6), | |
"k1": np.array(["b", "b", "b", "a", "a", "a"]), | |
"k2": np.array(["1", "1", "1", "2", "2", "2"]), | |
}, | |
index=["one", "two", "three", "four", "five", "six"], | |
) | |
# only verify that it works for now | |
grouped = df.groupby(["k1", "k2"]) | |
grouped.agg("sum") | |
def test_multi_key_multiple_functions(df): | |
grouped = df.groupby(["A", "B"])["C"] | |
agged = grouped.agg(["mean", "std"]) | |
expected = DataFrame({"mean": grouped.agg("mean"), "std": grouped.agg("std")}) | |
tm.assert_frame_equal(agged, expected) | |
def test_frame_multi_key_function_list(): | |
data = DataFrame( | |
{ | |
"A": [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
"foo", | |
"foo", | |
"foo", | |
], | |
"B": [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"two", | |
"one", | |
], | |
"D": np.random.default_rng(2).standard_normal(11), | |
"E": np.random.default_rng(2).standard_normal(11), | |
"F": np.random.default_rng(2).standard_normal(11), | |
} | |
) | |
grouped = data.groupby(["A", "B"]) | |
funcs = ["mean", "std"] | |
agged = grouped.agg(funcs) | |
expected = pd.concat( | |
[grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], | |
keys=["D", "E", "F"], | |
axis=1, | |
) | |
assert isinstance(agged.index, MultiIndex) | |
assert isinstance(expected.index, MultiIndex) | |
tm.assert_frame_equal(agged, expected) | |
def test_frame_multi_key_function_list_partial_failure(): | |
data = DataFrame( | |
{ | |
"A": [ | |
"foo", | |
"foo", | |
"foo", | |
"foo", | |
"bar", | |
"bar", | |
"bar", | |
"bar", | |
"foo", | |
"foo", | |
"foo", | |
], | |
"B": [ | |
"one", | |
"one", | |
"one", | |
"two", | |
"one", | |
"one", | |
"one", | |
"two", | |
"two", | |
"two", | |
"one", | |
], | |
"C": [ | |
"dull", | |
"dull", | |
"shiny", | |
"dull", | |
"dull", | |
"shiny", | |
"shiny", | |
"dull", | |
"shiny", | |
"shiny", | |
"shiny", | |
], | |
"D": np.random.default_rng(2).standard_normal(11), | |
"E": np.random.default_rng(2).standard_normal(11), | |
"F": np.random.default_rng(2).standard_normal(11), | |
} | |
) | |
grouped = data.groupby(["A", "B"]) | |
funcs = ["mean", "std"] | |
msg = re.escape("agg function failed [how->mean,dtype->") | |
with pytest.raises(TypeError, match=msg): | |
grouped.agg(funcs) | |
def test_groupby_multiple_columns(df, op): | |
data = df | |
grouped = data.groupby(["A", "B"]) | |
result1 = op(grouped) | |
keys = [] | |
values = [] | |
for n1, gp1 in data.groupby("A"): | |
for n2, gp2 in gp1.groupby("B"): | |
keys.append((n1, n2)) | |
values.append(op(gp2.loc[:, ["C", "D"]])) | |
mi = MultiIndex.from_tuples(keys, names=["A", "B"]) | |
expected = pd.concat(values, axis=1).T | |
expected.index = mi | |
# a little bit crude | |
for col in ["C", "D"]: | |
result_col = op(grouped[col]) | |
pivoted = result1[col] | |
exp = expected[col] | |
tm.assert_series_equal(result_col, exp) | |
tm.assert_series_equal(pivoted, exp) | |
# test single series works the same | |
result = data["C"].groupby([data["A"], data["B"]]).mean() | |
expected = data.groupby(["A", "B"]).mean()["C"] | |
tm.assert_series_equal(result, expected) | |
def test_as_index_select_column(): | |
# GH 5764 | |
df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) | |
result = df.groupby("A", as_index=False)["B"].get_group(1) | |
expected = Series([2, 4], name="B") | |
tm.assert_series_equal(result, expected) | |
result = df.groupby("A", as_index=False, group_keys=True)["B"].apply( | |
lambda x: x.cumsum() | |
) | |
expected = Series( | |
[2, 6, 6], name="B", index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_obj_arg_get_group_deprecated(): | |
depr_msg = "obj is deprecated" | |
df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5]}) | |
expected = df.iloc[df.groupby("b").indices.get(4)] | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
result = df.groupby("b").get_group(4, obj=df) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_as_index_select_column_sum_empty_df(): | |
# GH 35246 | |
df = DataFrame(columns=Index(["A", "B", "C"], name="alpha")) | |
left = df.groupby(by="A", as_index=False)["B"].sum(numeric_only=False) | |
expected = DataFrame(columns=df.columns[:2], index=range(0)) | |
# GH#50744 - Columns after selection shouldn't retain names | |
expected.columns.names = [None] | |
tm.assert_frame_equal(left, expected) | |
def test_groupby_as_index_agg(df): | |
grouped = df.groupby("A", as_index=False) | |
# single-key | |
result = grouped[["C", "D"]].agg("mean") | |
expected = grouped.mean(numeric_only=True) | |
tm.assert_frame_equal(result, expected) | |
result2 = grouped.agg({"C": "mean", "D": "sum"}) | |
expected2 = grouped.mean(numeric_only=True) | |
expected2["D"] = grouped.sum()["D"] | |
tm.assert_frame_equal(result2, expected2) | |
grouped = df.groupby("A", as_index=True) | |
msg = r"nested renamer is not supported" | |
with pytest.raises(SpecificationError, match=msg): | |
grouped["C"].agg({"Q": "sum"}) | |
# multi-key | |
grouped = df.groupby(["A", "B"], as_index=False) | |
result = grouped.agg("mean") | |
expected = grouped.mean() | |
tm.assert_frame_equal(result, expected) | |
result2 = grouped.agg({"C": "mean", "D": "sum"}) | |
expected2 = grouped.mean() | |
expected2["D"] = grouped.sum()["D"] | |
tm.assert_frame_equal(result2, expected2) | |
expected3 = grouped["C"].sum() | |
expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) | |
msg = "Passing a dictionary to SeriesGroupBy.agg is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
result3 = grouped["C"].agg({"Q": "sum"}) | |
tm.assert_frame_equal(result3, expected3) | |
# GH7115 & GH8112 & GH8582 | |
df = DataFrame( | |
np.random.default_rng(2).integers(0, 100, (50, 3)), | |
columns=["jim", "joe", "jolie"], | |
) | |
ts = Series(np.random.default_rng(2).integers(5, 10, 50), name="jim") | |
gr = df.groupby(ts) | |
gr.nth(0) # invokes set_selection_from_grouper internally | |
msg = "The behavior of DataFrame.sum with axis=None is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False): | |
res = gr.apply(sum) | |
with tm.assert_produces_warning(FutureWarning, match=msg, check_stacklevel=False): | |
alt = df.groupby(ts).apply(sum) | |
tm.assert_frame_equal(res, alt) | |
for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: | |
gr = df.groupby(ts, as_index=False) | |
left = getattr(gr, attr)() | |
gr = df.groupby(ts.values, as_index=True) | |
right = getattr(gr, attr)().reset_index(drop=True) | |
tm.assert_frame_equal(left, right) | |
def test_ops_not_as_index(reduction_func): | |
# GH 10355, 21090 | |
# Using as_index=False should not modify grouped column | |
if reduction_func in ("corrwith", "nth", "ngroup"): | |
pytest.skip(f"GH 5755: Test not applicable for {reduction_func}") | |
df = DataFrame( | |
np.random.default_rng(2).integers(0, 5, size=(100, 2)), columns=["a", "b"] | |
) | |
expected = getattr(df.groupby("a"), reduction_func)() | |
if reduction_func == "size": | |
expected = expected.rename("size") | |
expected = expected.reset_index() | |
if reduction_func != "size": | |
# 32 bit compat -> groupby preserves dtype whereas reset_index casts to int64 | |
expected["a"] = expected["a"].astype(df["a"].dtype) | |
g = df.groupby("a", as_index=False) | |
result = getattr(g, reduction_func)() | |
tm.assert_frame_equal(result, expected) | |
result = g.agg(reduction_func) | |
tm.assert_frame_equal(result, expected) | |
result = getattr(g["b"], reduction_func)() | |
tm.assert_frame_equal(result, expected) | |
result = g["b"].agg(reduction_func) | |
tm.assert_frame_equal(result, expected) | |
def test_as_index_series_return_frame(df): | |
grouped = df.groupby("A", as_index=False) | |
grouped2 = df.groupby(["A", "B"], as_index=False) | |
result = grouped["C"].agg("sum") | |
expected = grouped.agg("sum").loc[:, ["A", "C"]] | |
assert isinstance(result, DataFrame) | |
tm.assert_frame_equal(result, expected) | |
result2 = grouped2["C"].agg("sum") | |
expected2 = grouped2.agg("sum").loc[:, ["A", "B", "C"]] | |
assert isinstance(result2, DataFrame) | |
tm.assert_frame_equal(result2, expected2) | |
result = grouped["C"].sum() | |
expected = grouped.sum().loc[:, ["A", "C"]] | |
assert isinstance(result, DataFrame) | |
tm.assert_frame_equal(result, expected) | |
result2 = grouped2["C"].sum() | |
expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] | |
assert isinstance(result2, DataFrame) | |
tm.assert_frame_equal(result2, expected2) | |
def test_as_index_series_column_slice_raises(df): | |
# GH15072 | |
grouped = df.groupby("A", as_index=False) | |
msg = r"Column\(s\) C already selected" | |
with pytest.raises(IndexError, match=msg): | |
grouped["C"].__getitem__("D") | |
def test_groupby_as_index_cython(df): | |
data = df | |
# single-key | |
grouped = data.groupby("A", as_index=False) | |
result = grouped.mean(numeric_only=True) | |
expected = data.groupby(["A"]).mean(numeric_only=True) | |
expected.insert(0, "A", expected.index) | |
expected.index = RangeIndex(len(expected)) | |
tm.assert_frame_equal(result, expected) | |
# multi-key | |
grouped = data.groupby(["A", "B"], as_index=False) | |
result = grouped.mean() | |
expected = data.groupby(["A", "B"]).mean() | |
arrays = list(zip(*expected.index.values)) | |
expected.insert(0, "A", arrays[0]) | |
expected.insert(1, "B", arrays[1]) | |
expected.index = RangeIndex(len(expected)) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_as_index_series_scalar(df): | |
grouped = df.groupby(["A", "B"], as_index=False) | |
# GH #421 | |
result = grouped["C"].agg(len) | |
expected = grouped.agg(len).loc[:, ["A", "B", "C"]] | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_as_index_corner(df, ts): | |
msg = "as_index=False only valid with DataFrame" | |
with pytest.raises(TypeError, match=msg): | |
ts.groupby(lambda x: x.weekday(), as_index=False) | |
msg = "as_index=False only valid for axis=0" | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with pytest.raises(ValueError, match=msg): | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
df.groupby(lambda x: x.lower(), as_index=False, axis=1) | |
def test_groupby_multiple_key(): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) | |
agged = grouped.sum() | |
tm.assert_almost_equal(df.values, agged.values) | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
grouped = df.T.groupby( | |
[lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 | |
) | |
agged = grouped.agg(lambda x: x.sum()) | |
tm.assert_index_equal(agged.index, df.columns) | |
tm.assert_almost_equal(df.T.values, agged.values) | |
agged = grouped.agg(lambda x: x.sum()) | |
tm.assert_almost_equal(df.T.values, agged.values) | |
def test_groupby_multi_corner(df): | |
# test that having an all-NA column doesn't mess you up | |
df = df.copy() | |
df["bad"] = np.nan | |
agged = df.groupby(["A", "B"]).mean() | |
expected = df.groupby(["A", "B"]).mean() | |
expected["bad"] = np.nan | |
tm.assert_frame_equal(agged, expected) | |
def test_raises_on_nuisance(df): | |
grouped = df.groupby("A") | |
msg = re.escape("agg function failed [how->mean,dtype->") | |
with pytest.raises(TypeError, match=msg): | |
grouped.agg("mean") | |
with pytest.raises(TypeError, match=msg): | |
grouped.mean() | |
df = df.loc[:, ["A", "C", "D"]] | |
df["E"] = datetime.now() | |
grouped = df.groupby("A") | |
msg = "datetime64 type does not support sum operations" | |
with pytest.raises(TypeError, match=msg): | |
grouped.agg("sum") | |
with pytest.raises(TypeError, match=msg): | |
grouped.sum() | |
# won't work with axis = 1 | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) | |
msg = "does not support reduction 'sum'" | |
with pytest.raises(TypeError, match=msg): | |
grouped.agg(lambda x: x.sum(0, numeric_only=False)) | |
def test_keep_nuisance_agg(df, agg_function): | |
# GH 38815 | |
grouped = df.groupby("A") | |
result = getattr(grouped, agg_function)() | |
expected = result.copy() | |
expected.loc["bar", "B"] = getattr(df.loc[df["A"] == "bar", "B"], agg_function)() | |
expected.loc["foo", "B"] = getattr(df.loc[df["A"] == "foo", "B"], agg_function)() | |
tm.assert_frame_equal(result, expected) | |
def test_omit_nuisance_agg(df, agg_function, numeric_only): | |
# GH 38774, GH 38815 | |
grouped = df.groupby("A") | |
no_drop_nuisance = ("var", "std", "sem", "mean", "prod", "median") | |
if agg_function in no_drop_nuisance and not numeric_only: | |
# Added numeric_only as part of GH#46560; these do not drop nuisance | |
# columns when numeric_only is False | |
if agg_function in ("std", "sem"): | |
klass = ValueError | |
msg = "could not convert string to float: 'one'" | |
else: | |
klass = TypeError | |
msg = re.escape(f"agg function failed [how->{agg_function},dtype->") | |
with pytest.raises(klass, match=msg): | |
getattr(grouped, agg_function)(numeric_only=numeric_only) | |
else: | |
result = getattr(grouped, agg_function)(numeric_only=numeric_only) | |
if not numeric_only and agg_function == "sum": | |
# sum is successful on column B | |
columns = ["A", "B", "C", "D"] | |
else: | |
columns = ["A", "C", "D"] | |
expected = getattr(df.loc[:, columns].groupby("A"), agg_function)( | |
numeric_only=numeric_only | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_raise_on_nuisance_python_single(df): | |
# GH 38815 | |
grouped = df.groupby("A") | |
with pytest.raises(ValueError, match="could not convert"): | |
grouped.skew() | |
def test_raise_on_nuisance_python_multiple(three_group): | |
grouped = three_group.groupby(["A", "B"]) | |
msg = re.escape("agg function failed [how->mean,dtype->") | |
with pytest.raises(TypeError, match=msg): | |
grouped.agg("mean") | |
with pytest.raises(TypeError, match=msg): | |
grouped.mean() | |
def test_empty_groups_corner(multiindex_dataframe_random_data): | |
# handle empty groups | |
df = DataFrame( | |
{ | |
"k1": np.array(["b", "b", "b", "a", "a", "a"]), | |
"k2": np.array(["1", "1", "1", "2", "2", "2"]), | |
"k3": ["foo", "bar"] * 3, | |
"v1": np.random.default_rng(2).standard_normal(6), | |
"v2": np.random.default_rng(2).standard_normal(6), | |
} | |
) | |
grouped = df.groupby(["k1", "k2"]) | |
result = grouped[["v1", "v2"]].agg("mean") | |
expected = grouped.mean(numeric_only=True) | |
tm.assert_frame_equal(result, expected) | |
grouped = multiindex_dataframe_random_data[3:5].groupby(level=0) | |
agged = grouped.apply(lambda x: x.mean()) | |
agged_A = grouped["A"].apply("mean") | |
tm.assert_series_equal(agged["A"], agged_A) | |
assert agged.index.name == "first" | |
def test_nonsense_func(): | |
df = DataFrame([0]) | |
msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" | |
with pytest.raises(TypeError, match=msg): | |
df.groupby(lambda x: x + "foo") | |
def test_wrap_aggregated_output_multindex(multiindex_dataframe_random_data): | |
df = multiindex_dataframe_random_data.T | |
df["baz", "two"] = "peekaboo" | |
keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] | |
msg = re.escape("agg function failed [how->mean,dtype->") | |
with pytest.raises(TypeError, match=msg): | |
df.groupby(keys).agg("mean") | |
agged = df.drop(columns=("baz", "two")).groupby(keys).agg("mean") | |
assert isinstance(agged.columns, MultiIndex) | |
def aggfun(ser): | |
if ser.name == ("foo", "one"): | |
raise TypeError("Test error message") | |
return ser.sum() | |
with pytest.raises(TypeError, match="Test error message"): | |
df.groupby(keys).aggregate(aggfun) | |
def test_groupby_level_apply(multiindex_dataframe_random_data): | |
result = multiindex_dataframe_random_data.groupby(level=0).count() | |
assert result.index.name == "first" | |
result = multiindex_dataframe_random_data.groupby(level=1).count() | |
assert result.index.name == "second" | |
result = multiindex_dataframe_random_data["A"].groupby(level=0).count() | |
assert result.index.name == "first" | |
def test_groupby_level_mapper(multiindex_dataframe_random_data): | |
deleveled = multiindex_dataframe_random_data.reset_index() | |
mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} | |
mapper1 = {"one": 0, "two": 0, "three": 1} | |
result0 = multiindex_dataframe_random_data.groupby(mapper0, level=0).sum() | |
result1 = multiindex_dataframe_random_data.groupby(mapper1, level=1).sum() | |
mapped_level0 = np.array( | |
[mapper0.get(x) for x in deleveled["first"]], dtype=np.int64 | |
) | |
mapped_level1 = np.array( | |
[mapper1.get(x) for x in deleveled["second"]], dtype=np.int64 | |
) | |
expected0 = multiindex_dataframe_random_data.groupby(mapped_level0).sum() | |
expected1 = multiindex_dataframe_random_data.groupby(mapped_level1).sum() | |
expected0.index.name, expected1.index.name = "first", "second" | |
tm.assert_frame_equal(result0, expected0) | |
tm.assert_frame_equal(result1, expected1) | |
def test_groupby_level_nonmulti(): | |
# GH 1313, GH 13901 | |
s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) | |
expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) | |
result = s.groupby(level=0).sum() | |
tm.assert_series_equal(result, expected) | |
result = s.groupby(level=[0]).sum() | |
tm.assert_series_equal(result, expected) | |
result = s.groupby(level=-1).sum() | |
tm.assert_series_equal(result, expected) | |
result = s.groupby(level=[-1]).sum() | |
tm.assert_series_equal(result, expected) | |
msg = "level > 0 or level < -1 only valid with MultiIndex" | |
with pytest.raises(ValueError, match=msg): | |
s.groupby(level=1) | |
with pytest.raises(ValueError, match=msg): | |
s.groupby(level=-2) | |
msg = "No group keys passed!" | |
with pytest.raises(ValueError, match=msg): | |
s.groupby(level=[]) | |
msg = "multiple levels only valid with MultiIndex" | |
with pytest.raises(ValueError, match=msg): | |
s.groupby(level=[0, 0]) | |
with pytest.raises(ValueError, match=msg): | |
s.groupby(level=[0, 1]) | |
msg = "level > 0 or level < -1 only valid with MultiIndex" | |
with pytest.raises(ValueError, match=msg): | |
s.groupby(level=[1]) | |
def test_groupby_complex(): | |
# GH 12902 | |
a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) | |
expected = Series((1 + 2j, 5 + 10j)) | |
result = a.groupby(level=0).sum() | |
tm.assert_series_equal(result, expected) | |
def test_groupby_complex_mean(): | |
# GH 26475 | |
df = DataFrame( | |
[ | |
{"a": 2, "b": 1 + 2j}, | |
{"a": 1, "b": 1 + 1j}, | |
{"a": 1, "b": 1 + 2j}, | |
] | |
) | |
result = df.groupby("b").mean() | |
expected = DataFrame( | |
[[1.0], [1.5]], | |
index=Index([(1 + 1j), (1 + 2j)], name="b"), | |
columns=Index(["a"]), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_complex_numbers(using_infer_string): | |
# GH 17927 | |
df = DataFrame( | |
[ | |
{"a": 1, "b": 1 + 1j}, | |
{"a": 1, "b": 1 + 2j}, | |
{"a": 4, "b": 1}, | |
] | |
) | |
dtype = "string[pyarrow_numpy]" if using_infer_string else object | |
expected = DataFrame( | |
np.array([1, 1, 1], dtype=np.int64), | |
index=Index([(1 + 1j), (1 + 2j), (1 + 0j)], name="b"), | |
columns=Index(["a"], dtype=dtype), | |
) | |
result = df.groupby("b", sort=False).count() | |
tm.assert_frame_equal(result, expected) | |
# Sorted by the magnitude of the complex numbers | |
expected.index = Index([(1 + 0j), (1 + 1j), (1 + 2j)], name="b") | |
result = df.groupby("b", sort=True).count() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_series_indexed_differently(): | |
s1 = Series( | |
[5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], | |
index=Index(["a", "b", "c", "d", "e", "f", "g"]), | |
) | |
s2 = Series( | |
[1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) | |
) | |
grouped = s1.groupby(s2) | |
agged = grouped.mean() | |
exp = s1.groupby(s2.reindex(s1.index).get).mean() | |
tm.assert_series_equal(agged, exp) | |
def test_groupby_with_hier_columns(): | |
tuples = list( | |
zip( | |
*[ | |
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], | |
["one", "two", "one", "two", "one", "two", "one", "two"], | |
] | |
) | |
) | |
index = MultiIndex.from_tuples(tuples) | |
columns = MultiIndex.from_tuples( | |
[("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] | |
) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((8, 4)), index=index, columns=columns | |
) | |
result = df.groupby(level=0).mean() | |
tm.assert_index_equal(result.columns, columns) | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
gb = df.groupby(level=0, axis=1) | |
result = gb.mean() | |
tm.assert_index_equal(result.index, df.index) | |
result = df.groupby(level=0).agg("mean") | |
tm.assert_index_equal(result.columns, columns) | |
result = df.groupby(level=0).apply(lambda x: x.mean()) | |
tm.assert_index_equal(result.columns, columns) | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
gb = df.groupby(level=0, axis=1) | |
result = gb.agg(lambda x: x.mean(1)) | |
tm.assert_index_equal(result.columns, Index(["A", "B"])) | |
tm.assert_index_equal(result.index, df.index) | |
# add a nuisance column | |
sorted_columns, _ = columns.sortlevel(0) | |
df["A", "foo"] = "bar" | |
result = df.groupby(level=0).mean(numeric_only=True) | |
tm.assert_index_equal(result.columns, df.columns[:-1]) | |
def test_grouping_ndarray(df): | |
grouped = df.groupby(df["A"].values) | |
result = grouped.sum() | |
expected = df.groupby(df["A"].rename(None)).sum() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_wrong_multi_labels(): | |
index = Index([0, 1, 2, 3, 4], name="index") | |
data = DataFrame( | |
{ | |
"foo": ["foo1", "foo1", "foo2", "foo1", "foo3"], | |
"bar": ["bar1", "bar2", "bar2", "bar1", "bar1"], | |
"baz": ["baz1", "baz1", "baz1", "baz2", "baz2"], | |
"spam": ["spam2", "spam3", "spam2", "spam1", "spam1"], | |
"data": [20, 30, 40, 50, 60], | |
}, | |
index=index, | |
) | |
grouped = data.groupby(["foo", "bar", "baz", "spam"]) | |
result = grouped.agg("mean") | |
expected = grouped.mean() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_series_with_name(df): | |
result = df.groupby(df["A"]).mean(numeric_only=True) | |
result2 = df.groupby(df["A"], as_index=False).mean(numeric_only=True) | |
assert result.index.name == "A" | |
assert "A" in result2 | |
result = df.groupby([df["A"], df["B"]]).mean() | |
result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() | |
assert result.index.names == ("A", "B") | |
assert "A" in result2 | |
assert "B" in result2 | |
def test_seriesgroupby_name_attr(df): | |
# GH 6265 | |
result = df.groupby("A")["C"] | |
assert result.count().name == "C" | |
assert result.mean().name == "C" | |
testFunc = lambda x: np.sum(x) * 2 | |
assert result.agg(testFunc).name == "C" | |
def test_consistency_name(): | |
# GH 12363 | |
df = DataFrame( | |
{ | |
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], | |
"B": ["one", "one", "two", "two", "two", "two", "one", "two"], | |
"C": np.random.default_rng(2).standard_normal(8) + 1.0, | |
"D": np.arange(8), | |
} | |
) | |
expected = df.groupby(["A"]).B.count() | |
result = df.B.groupby(df.A).count() | |
tm.assert_series_equal(result, expected) | |
def test_groupby_name_propagation(df): | |
# GH 6124 | |
def summarize(df, name=None): | |
return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) | |
def summarize_random_name(df): | |
# Provide a different name for each Series. In this case, groupby | |
# should not attempt to propagate the Series name since they are | |
# inconsistent. | |
return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
metrics = df.groupby("A").apply(summarize) | |
assert metrics.columns.name is None | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
metrics = df.groupby("A").apply(summarize, "metrics") | |
assert metrics.columns.name == "metrics" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
metrics = df.groupby("A").apply(summarize_random_name) | |
assert metrics.columns.name is None | |
def test_groupby_nonstring_columns(): | |
df = DataFrame([np.arange(10) for x in range(10)]) | |
grouped = df.groupby(0) | |
result = grouped.mean() | |
expected = df.groupby(df[0]).mean() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_mixed_type_columns(): | |
# GH 13432, unorderable types in py3 | |
df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) | |
expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) | |
result = df.groupby("A").first() | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("A").sum() | |
tm.assert_frame_equal(result, expected) | |
def test_cython_grouper_series_bug_noncontig(): | |
arr = np.empty((100, 100)) | |
arr.fill(np.nan) | |
obj = Series(arr[:, 0]) | |
inds = np.tile(range(10), 10) | |
result = obj.groupby(inds).agg(Series.median) | |
assert result.isna().all() | |
def test_series_grouper_noncontig_index(): | |
index = Index(["a" * 10] * 100) | |
values = Series(np.random.default_rng(2).standard_normal(50), index=index[::2]) | |
labels = np.random.default_rng(2).integers(0, 5, 50) | |
# it works! | |
grouped = values.groupby(labels) | |
# accessing the index elements causes segfault | |
f = lambda x: len(set(map(id, x.index))) | |
grouped.agg(f) | |
def test_convert_objects_leave_decimal_alone(): | |
s = Series(range(5)) | |
labels = np.array(["a", "b", "c", "d", "e"], dtype="O") | |
def convert_fast(x): | |
return Decimal(str(x.mean())) | |
def convert_force_pure(x): | |
# base will be length 0 | |
assert len(x.values.base) > 0 | |
return Decimal(str(x.mean())) | |
grouped = s.groupby(labels) | |
result = grouped.agg(convert_fast) | |
assert result.dtype == np.object_ | |
assert isinstance(result.iloc[0], Decimal) | |
result = grouped.agg(convert_force_pure) | |
assert result.dtype == np.object_ | |
assert isinstance(result.iloc[0], Decimal) | |
def test_groupby_dtype_inference_empty(): | |
# GH 6733 | |
df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) | |
assert df["x"].dtype == np.float64 | |
result = df.groupby("x").first() | |
exp_index = Index([], name="x", dtype=np.float64) | |
expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) | |
tm.assert_frame_equal(result, expected, by_blocks=True) | |
def test_groupby_unit64_float_conversion(): | |
# GH: 30859 groupby converts unit64 to floats sometimes | |
df = DataFrame({"first": [1], "second": [1], "value": [16148277970000000000]}) | |
result = df.groupby(["first", "second"])["value"].max() | |
expected = Series( | |
[16148277970000000000], | |
MultiIndex.from_product([[1], [1]], names=["first", "second"]), | |
name="value", | |
) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_list_infer_array_like(df): | |
result = df.groupby(list(df["A"])).mean(numeric_only=True) | |
expected = df.groupby(df["A"]).mean(numeric_only=True) | |
tm.assert_frame_equal(result, expected, check_names=False) | |
with pytest.raises(KeyError, match=r"^'foo'$"): | |
df.groupby(list(df["A"][:-1])) | |
# pathological case of ambiguity | |
df = DataFrame( | |
{ | |
"foo": [0, 1], | |
"bar": [3, 4], | |
"val": np.random.default_rng(2).standard_normal(2), | |
} | |
) | |
result = df.groupby(["foo", "bar"]).mean() | |
expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] | |
def test_groupby_keys_same_size_as_index(): | |
# GH 11185 | |
freq = "s" | |
index = date_range( | |
start=Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq | |
) | |
df = DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) | |
result = df.groupby([Grouper(level=0, freq=freq), "metric"]).mean() | |
expected = df.set_index([df.index, "metric"]).astype(float) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_one_row(): | |
# GH 11741 | |
msg = r"^'Z'$" | |
df1 = DataFrame( | |
np.random.default_rng(2).standard_normal((1, 4)), columns=list("ABCD") | |
) | |
with pytest.raises(KeyError, match=msg): | |
df1.groupby("Z") | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((2, 4)), columns=list("ABCD") | |
) | |
with pytest.raises(KeyError, match=msg): | |
df2.groupby("Z") | |
def test_groupby_nat_exclude(): | |
# GH 6992 | |
df = DataFrame( | |
{ | |
"values": np.random.default_rng(2).standard_normal(8), | |
"dt": [ | |
np.nan, | |
Timestamp("2013-01-01"), | |
np.nan, | |
Timestamp("2013-02-01"), | |
np.nan, | |
Timestamp("2013-02-01"), | |
np.nan, | |
Timestamp("2013-01-01"), | |
], | |
"str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], | |
} | |
) | |
grouped = df.groupby("dt") | |
expected = [Index([1, 7]), Index([3, 5])] | |
keys = sorted(grouped.groups.keys()) | |
assert len(keys) == 2 | |
for k, e in zip(keys, expected): | |
# grouped.groups keys are np.datetime64 with system tz | |
# not to be affected by tz, only compare values | |
tm.assert_index_equal(grouped.groups[k], e) | |
# confirm obj is not filtered | |
tm.assert_frame_equal(grouped._grouper.groupings[0].obj, df) | |
assert grouped.ngroups == 2 | |
expected = { | |
Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), | |
Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), | |
} | |
for k in grouped.indices: | |
tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) | |
tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) | |
tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) | |
with pytest.raises(KeyError, match=r"^NaT$"): | |
grouped.get_group(pd.NaT) | |
nan_df = DataFrame( | |
{"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} | |
) | |
assert nan_df["nan"].dtype == "float64" | |
assert nan_df["nat"].dtype == "datetime64[ns]" | |
for key in ["nan", "nat"]: | |
grouped = nan_df.groupby(key) | |
assert grouped.groups == {} | |
assert grouped.ngroups == 0 | |
assert grouped.indices == {} | |
with pytest.raises(KeyError, match=r"^nan$"): | |
grouped.get_group(np.nan) | |
with pytest.raises(KeyError, match=r"^NaT$"): | |
grouped.get_group(pd.NaT) | |
def test_groupby_two_group_keys_all_nan(): | |
# GH #36842: Grouping over two group keys shouldn't raise an error | |
df = DataFrame({"a": [np.nan, np.nan], "b": [np.nan, np.nan], "c": [1, 2]}) | |
result = df.groupby(["a", "b"]).indices | |
assert result == {} | |
def test_groupby_2d_malformed(): | |
d = DataFrame(index=range(2)) | |
d["group"] = ["g1", "g2"] | |
d["zeros"] = [0, 0] | |
d["ones"] = [1, 1] | |
d["label"] = ["l1", "l2"] | |
tmp = d.groupby(["group"]).mean(numeric_only=True) | |
res_values = np.array([[0.0, 1.0], [0.0, 1.0]]) | |
tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) | |
tm.assert_numpy_array_equal(tmp.values, res_values) | |
def test_int32_overflow(): | |
B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) | |
A = np.arange(25000) | |
df = DataFrame( | |
{ | |
"A": A, | |
"B": B, | |
"C": A, | |
"D": B, | |
"E": np.random.default_rng(2).standard_normal(25000), | |
} | |
) | |
left = df.groupby(["A", "B", "C", "D"]).sum() | |
right = df.groupby(["D", "C", "B", "A"]).sum() | |
assert len(left) == len(right) | |
def test_groupby_sort_multi(): | |
df = DataFrame( | |
{ | |
"a": ["foo", "bar", "baz"], | |
"b": [3, 2, 1], | |
"c": [0, 1, 2], | |
"d": np.random.default_rng(2).standard_normal(3), | |
} | |
) | |
tups = [tuple(row) for row in df[["a", "b", "c"]].values] | |
tups = com.asarray_tuplesafe(tups) | |
result = df.groupby(["a", "b", "c"], sort=True).sum() | |
tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) | |
tups = [tuple(row) for row in df[["c", "a", "b"]].values] | |
tups = com.asarray_tuplesafe(tups) | |
result = df.groupby(["c", "a", "b"], sort=True).sum() | |
tm.assert_numpy_array_equal(result.index.values, tups) | |
tups = [tuple(x) for x in df[["b", "c", "a"]].values] | |
tups = com.asarray_tuplesafe(tups) | |
result = df.groupby(["b", "c", "a"], sort=True).sum() | |
tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) | |
df = DataFrame( | |
{ | |
"a": [0, 1, 2, 0, 1, 2], | |
"b": [0, 0, 0, 1, 1, 1], | |
"d": np.random.default_rng(2).standard_normal(6), | |
} | |
) | |
grouped = df.groupby(["a", "b"])["d"] | |
result = grouped.sum() | |
def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): | |
tups = [tuple(row) for row in df[keys].values] | |
tups = com.asarray_tuplesafe(tups) | |
expected = f(df.groupby(tups)[field]) | |
for k, v in expected.items(): | |
assert result[k] == v | |
_check_groupby(df, result, ["a", "b"], "d") | |
def test_dont_clobber_name_column(): | |
df = DataFrame( | |
{"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} | |
) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
result = df.groupby("key", group_keys=False).apply(lambda x: x) | |
tm.assert_frame_equal(result, df) | |
def test_skip_group_keys(): | |
tsf = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
grouped = tsf.groupby(lambda x: x.month, group_keys=False) | |
result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) | |
pieces = [group.sort_values(by="A")[:3] for key, group in grouped] | |
expected = pd.concat(pieces) | |
tm.assert_frame_equal(result, expected) | |
grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) | |
result = grouped.apply(lambda x: x.sort_values()[:3]) | |
pieces = [group.sort_values()[:3] for key, group in grouped] | |
expected = pd.concat(pieces) | |
tm.assert_series_equal(result, expected) | |
def test_no_nonsense_name(float_frame): | |
# GH #995 | |
s = float_frame["C"].copy() | |
s.name = None | |
result = s.groupby(float_frame["A"]).agg("sum") | |
assert result.name is None | |
def test_multifunc_sum_bug(): | |
# GH #1065 | |
x = DataFrame(np.arange(9).reshape(3, 3)) | |
x["test"] = 0 | |
x["fl"] = [1.3, 1.5, 1.6] | |
grouped = x.groupby("test") | |
result = grouped.agg({"fl": "sum", 2: "size"}) | |
assert result["fl"].dtype == np.float64 | |
def test_handle_dict_return_value(df): | |
def f(group): | |
return {"max": group.max(), "min": group.min()} | |
def g(group): | |
return Series({"max": group.max(), "min": group.min()}) | |
result = df.groupby("A")["C"].apply(f) | |
expected = df.groupby("A")["C"].apply(g) | |
assert isinstance(result, Series) | |
tm.assert_series_equal(result, expected) | |
def test_set_group_name(df, grouper, using_infer_string): | |
def f(group): | |
assert group.name is not None | |
return group | |
def freduce(group): | |
assert group.name is not None | |
if using_infer_string and grouper == "A" and is_string_dtype(group.dtype): | |
with pytest.raises(TypeError, match="does not support"): | |
group.sum() | |
else: | |
return group.sum() | |
def freducex(x): | |
return freduce(x) | |
grouped = df.groupby(grouper, group_keys=False) | |
# make sure all these work | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
grouped.apply(f) | |
grouped.aggregate(freduce) | |
grouped.aggregate({"C": freduce, "D": freduce}) | |
grouped.transform(f) | |
grouped["C"].apply(f) | |
grouped["C"].aggregate(freduce) | |
grouped["C"].aggregate([freduce, freducex]) | |
grouped["C"].transform(f) | |
def test_group_name_available_in_inference_pass(): | |
# gh-15062 | |
df = DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) | |
names = [] | |
def f(group): | |
names.append(group.name) | |
return group.copy() | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
df.groupby("a", sort=False, group_keys=False).apply(f) | |
expected_names = [0, 1, 2] | |
assert names == expected_names | |
def test_no_dummy_key_names(df): | |
# see gh-1291 | |
result = df.groupby(df["A"].values).sum() | |
assert result.index.name is None | |
result = df.groupby([df["A"].values, df["B"].values]).sum() | |
assert result.index.names == (None, None) | |
def test_groupby_sort_multiindex_series(): | |
# series multiindex groupby sort argument was not being passed through | |
# _compress_group_index | |
# GH 9444 | |
index = MultiIndex( | |
levels=[[1, 2], [1, 2]], | |
codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], | |
names=["a", "b"], | |
) | |
mseries = Series([0, 1, 2, 3, 4, 5], index=index) | |
index = MultiIndex( | |
levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] | |
) | |
mseries_result = Series([0, 2, 4], index=index) | |
result = mseries.groupby(level=["a", "b"], sort=False).first() | |
tm.assert_series_equal(result, mseries_result) | |
result = mseries.groupby(level=["a", "b"], sort=True).first() | |
tm.assert_series_equal(result, mseries_result.sort_index()) | |
def test_groupby_reindex_inside_function(): | |
periods = 1000 | |
ind = date_range(start="2012/1/1", freq="5min", periods=periods) | |
df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) | |
def agg_before(func, fix=False): | |
""" | |
Run an aggregate func on the subset of data. | |
""" | |
def _func(data): | |
d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() | |
if fix: | |
data[data.index[0]] | |
if len(d) == 0: | |
return None | |
return func(d) | |
return _func | |
grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) | |
closure_bad = grouped.agg({"high": agg_before(np.max)}) | |
closure_good = grouped.agg({"high": agg_before(np.max, True)}) | |
tm.assert_frame_equal(closure_bad, closure_good) | |
def test_groupby_multiindex_missing_pair(): | |
# GH9049 | |
df = DataFrame( | |
{ | |
"group1": ["a", "a", "a", "b"], | |
"group2": ["c", "c", "d", "c"], | |
"value": [1, 1, 1, 5], | |
} | |
) | |
df = df.set_index(["group1", "group2"]) | |
df_grouped = df.groupby(level=["group1", "group2"], sort=True) | |
res = df_grouped.agg("sum") | |
idx = MultiIndex.from_tuples( | |
[("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] | |
) | |
exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) | |
tm.assert_frame_equal(res, exp) | |
def test_groupby_multiindex_not_lexsorted(): | |
# GH 11640 | |
# define the lexsorted version | |
lexsorted_mi = MultiIndex.from_tuples( | |
[("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] | |
) | |
lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) | |
assert lexsorted_df.columns._is_lexsorted() | |
# define the non-lexsorted version | |
not_lexsorted_df = DataFrame( | |
columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] | |
) | |
not_lexsorted_df = not_lexsorted_df.pivot_table( | |
index="a", columns=["b", "c"], values="d" | |
) | |
not_lexsorted_df = not_lexsorted_df.reset_index() | |
assert not not_lexsorted_df.columns._is_lexsorted() | |
expected = lexsorted_df.groupby("a").mean() | |
with tm.assert_produces_warning(PerformanceWarning): | |
result = not_lexsorted_df.groupby("a").mean() | |
tm.assert_frame_equal(expected, result) | |
# a transforming function should work regardless of sort | |
# GH 14776 | |
df = DataFrame( | |
{"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} | |
).set_index(["x", "y"]) | |
assert not df.index._is_lexsorted() | |
for level in [0, 1, [0, 1]]: | |
for sort in [False, True]: | |
result = df.groupby(level=level, sort=sort, group_keys=False).apply( | |
DataFrame.drop_duplicates | |
) | |
expected = df | |
tm.assert_frame_equal(expected, result) | |
result = ( | |
df.sort_index() | |
.groupby(level=level, sort=sort, group_keys=False) | |
.apply(DataFrame.drop_duplicates) | |
) | |
expected = df.sort_index() | |
tm.assert_frame_equal(expected, result) | |
def test_index_label_overlaps_location(): | |
# checking we don't have any label/location confusion in the | |
# wake of GH5375 | |
df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) | |
g = df.groupby(list("ababb")) | |
actual = g.filter(lambda x: len(x) > 2) | |
expected = df.iloc[[1, 3, 4]] | |
tm.assert_frame_equal(actual, expected) | |
ser = df[0] | |
g = ser.groupby(list("ababb")) | |
actual = g.filter(lambda x: len(x) > 2) | |
expected = ser.take([1, 3, 4]) | |
tm.assert_series_equal(actual, expected) | |
# and again, with a generic Index of floats | |
df.index = df.index.astype(float) | |
g = df.groupby(list("ababb")) | |
actual = g.filter(lambda x: len(x) > 2) | |
expected = df.iloc[[1, 3, 4]] | |
tm.assert_frame_equal(actual, expected) | |
ser = df[0] | |
g = ser.groupby(list("ababb")) | |
actual = g.filter(lambda x: len(x) > 2) | |
expected = ser.take([1, 3, 4]) | |
tm.assert_series_equal(actual, expected) | |
def test_transform_doesnt_clobber_ints(): | |
# GH 7972 | |
n = 6 | |
x = np.arange(n) | |
df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) | |
df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) | |
gb = df.groupby("a") | |
result = gb.transform("mean") | |
gb2 = df2.groupby("a") | |
expected = gb2.transform("mean") | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_preserves_sort(sort_column, group_column): | |
# Test to ensure that groupby always preserves sort order of original | |
# object. Issue #8588 and #9651 | |
df = DataFrame( | |
{ | |
"int_groups": [3, 1, 0, 1, 0, 3, 3, 3], | |
"string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], | |
"ints": [8, 7, 4, 5, 2, 9, 1, 1], | |
"floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], | |
"strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], | |
} | |
) | |
# Try sorting on different types and with different group types | |
df = df.sort_values(by=sort_column) | |
g = df.groupby(group_column) | |
def test_sort(x): | |
tm.assert_frame_equal(x, x.sort_values(by=sort_column)) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
g.apply(test_sort) | |
def test_pivot_table_values_key_error(): | |
# This test is designed to replicate the error in issue #14938 | |
df = DataFrame( | |
{ | |
"eventDate": date_range(datetime.today(), periods=20, freq="ME").tolist(), | |
"thename": range(20), | |
} | |
) | |
df["year"] = df.set_index("eventDate").index.year | |
df["month"] = df.set_index("eventDate").index.month | |
with pytest.raises(KeyError, match="'badname'"): | |
df.reset_index().pivot_table( | |
index="year", columns="month", values="badname", aggfunc="count" | |
) | |
def test_empty_groupby( | |
columns, keys, values, method, op, using_array_manager, dropna, using_infer_string | |
): | |
# GH8093 & GH26411 | |
override_dtype = None | |
if isinstance(values, BooleanArray) and op in ["sum", "prod"]: | |
# We expect to get Int64 back for these | |
override_dtype = "Int64" | |
if isinstance(values[0], bool) and op in ("prod", "sum"): | |
# sum/product of bools is an integer | |
override_dtype = "int64" | |
df = DataFrame({"A": values, "B": values, "C": values}, columns=list("ABC")) | |
if hasattr(values, "dtype"): | |
# check that we did the construction right | |
assert (df.dtypes == values.dtype).all() | |
df = df.iloc[:0] | |
gb = df.groupby(keys, group_keys=False, dropna=dropna, observed=False)[columns] | |
def get_result(**kwargs): | |
if method == "attr": | |
return getattr(gb, op)(**kwargs) | |
else: | |
return getattr(gb, method)(op, **kwargs) | |
def get_categorical_invalid_expected(): | |
# Categorical is special without 'observed=True', we get an NaN entry | |
# corresponding to the unobserved group. If we passed observed=True | |
# to groupby, expected would just be 'df.set_index(keys)[columns]' | |
# as below | |
lev = Categorical([0], dtype=values.dtype) | |
if len(keys) != 1: | |
idx = MultiIndex.from_product([lev, lev], names=keys) | |
else: | |
# all columns are dropped, but we end up with one row | |
# Categorical is special without 'observed=True' | |
idx = Index(lev, name=keys[0]) | |
if using_infer_string: | |
columns = Index([], dtype="string[pyarrow_numpy]") | |
else: | |
columns = [] | |
expected = DataFrame([], columns=columns, index=idx) | |
return expected | |
is_per = isinstance(df.dtypes.iloc[0], pd.PeriodDtype) | |
is_dt64 = df.dtypes.iloc[0].kind == "M" | |
is_cat = isinstance(values, Categorical) | |
if ( | |
isinstance(values, Categorical) | |
and not values.ordered | |
and op in ["min", "max", "idxmin", "idxmax"] | |
): | |
if op in ["min", "max"]: | |
msg = f"Cannot perform {op} with non-ordered Categorical" | |
klass = TypeError | |
else: | |
msg = f"Can't get {op} of an empty group due to unobserved categories" | |
klass = ValueError | |
with pytest.raises(klass, match=msg): | |
get_result() | |
if op in ["min", "max", "idxmin", "idxmax"] and isinstance(columns, list): | |
# i.e. DataframeGroupBy, not SeriesGroupBy | |
result = get_result(numeric_only=True) | |
expected = get_categorical_invalid_expected() | |
tm.assert_equal(result, expected) | |
return | |
if op in ["prod", "sum", "skew"]: | |
# ops that require more than just ordered-ness | |
if is_dt64 or is_cat or is_per: | |
# GH#41291 | |
# datetime64 -> prod and sum are invalid | |
if is_dt64: | |
msg = "datetime64 type does not support" | |
elif is_per: | |
msg = "Period type does not support" | |
else: | |
msg = "category type does not support" | |
if op == "skew": | |
msg = "|".join([msg, "does not support reduction 'skew'"]) | |
with pytest.raises(TypeError, match=msg): | |
get_result() | |
if not isinstance(columns, list): | |
# i.e. SeriesGroupBy | |
return | |
elif op == "skew": | |
# TODO: test the numeric_only=True case | |
return | |
else: | |
# i.e. op in ["prod", "sum"]: | |
# i.e. DataFrameGroupBy | |
# ops that require more than just ordered-ness | |
# GH#41291 | |
result = get_result(numeric_only=True) | |
# with numeric_only=True, these are dropped, and we get | |
# an empty DataFrame back | |
expected = df.set_index(keys)[[]] | |
if is_cat: | |
expected = get_categorical_invalid_expected() | |
tm.assert_equal(result, expected) | |
return | |
result = get_result() | |
expected = df.set_index(keys)[columns] | |
if op in ["idxmax", "idxmin"]: | |
expected = expected.astype(df.index.dtype) | |
if override_dtype is not None: | |
expected = expected.astype(override_dtype) | |
if len(keys) == 1: | |
expected.index.name = keys[0] | |
tm.assert_equal(result, expected) | |
def test_empty_groupby_apply_nonunique_columns(): | |
# GH#44417 | |
df = DataFrame(np.random.default_rng(2).standard_normal((0, 4))) | |
df[3] = df[3].astype(np.int64) | |
df.columns = [0, 1, 2, 0] | |
gb = df.groupby(df[1], group_keys=False) | |
msg = "DataFrameGroupBy.apply operated on the grouping columns" | |
with tm.assert_produces_warning(DeprecationWarning, match=msg): | |
res = gb.apply(lambda x: x) | |
assert (res.dtypes == df.dtypes).all() | |
def test_tuple_as_grouping(): | |
# https://github.com/pandas-dev/pandas/issues/18314 | |
df = DataFrame( | |
{ | |
("a", "b"): [1, 1, 1, 1], | |
"a": [2, 2, 2, 2], | |
"b": [2, 2, 2, 2], | |
"c": [1, 1, 1, 1], | |
} | |
) | |
with pytest.raises(KeyError, match=r"('a', 'b')"): | |
df[["a", "b", "c"]].groupby(("a", "b")) | |
result = df.groupby(("a", "b"))["c"].sum() | |
expected = Series([4], name="c", index=Index([1], name=("a", "b"))) | |
tm.assert_series_equal(result, expected) | |
def test_tuple_correct_keyerror(): | |
# https://github.com/pandas-dev/pandas/issues/18798 | |
df = DataFrame(1, index=range(3), columns=MultiIndex.from_product([[1, 2], [3, 4]])) | |
with pytest.raises(KeyError, match=r"^\(7, 8\)$"): | |
df.groupby((7, 8)).mean() | |
def test_groupby_agg_ohlc_non_first(): | |
# GH 21716 | |
df = DataFrame( | |
[[1], [1]], | |
columns=Index(["foo"], name="mycols"), | |
index=date_range("2018-01-01", periods=2, freq="D", name="dti"), | |
) | |
expected = DataFrame( | |
[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], | |
columns=MultiIndex.from_tuples( | |
( | |
("foo", "sum", "foo"), | |
("foo", "ohlc", "open"), | |
("foo", "ohlc", "high"), | |
("foo", "ohlc", "low"), | |
("foo", "ohlc", "close"), | |
), | |
names=["mycols", None, None], | |
), | |
index=date_range("2018-01-01", periods=2, freq="D", name="dti"), | |
) | |
result = df.groupby(Grouper(freq="D")).agg(["sum", "ohlc"]) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_multiindex_nat(): | |
# GH 9236 | |
values = [ | |
(pd.NaT, "a"), | |
(datetime(2012, 1, 2), "a"), | |
(datetime(2012, 1, 2), "b"), | |
(datetime(2012, 1, 3), "a"), | |
] | |
mi = MultiIndex.from_tuples(values, names=["date", None]) | |
ser = Series([3, 2, 2.5, 4], index=mi) | |
result = ser.groupby(level=1).mean() | |
expected = Series([3.0, 2.5], index=["a", "b"]) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_empty_list_raises(): | |
# GH 5289 | |
values = zip(range(10), range(10)) | |
df = DataFrame(values, columns=["apple", "b"]) | |
msg = "Grouper and axis must be same length" | |
with pytest.raises(ValueError, match=msg): | |
df.groupby([[]]) | |
def test_groupby_multiindex_series_keys_len_equal_group_axis(): | |
# GH 25704 | |
index_array = [["x", "x"], ["a", "b"], ["k", "k"]] | |
index_names = ["first", "second", "third"] | |
ri = MultiIndex.from_arrays(index_array, names=index_names) | |
s = Series(data=[1, 2], index=ri) | |
result = s.groupby(["first", "third"]).sum() | |
index_array = [["x"], ["k"]] | |
index_names = ["first", "third"] | |
ei = MultiIndex.from_arrays(index_array, names=index_names) | |
expected = Series([3], index=ei) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_groups_in_BaseGrouper(): | |
# GH 26326 | |
# Test if DataFrame grouped with a pandas.Grouper has correct groups | |
mi = MultiIndex.from_product([["A", "B"], ["C", "D"]], names=["alpha", "beta"]) | |
df = DataFrame({"foo": [1, 2, 1, 2], "bar": [1, 2, 3, 4]}, index=mi) | |
result = df.groupby([Grouper(level="alpha"), "beta"]) | |
expected = df.groupby(["alpha", "beta"]) | |
assert result.groups == expected.groups | |
result = df.groupby(["beta", Grouper(level="alpha")]) | |
expected = df.groupby(["beta", "alpha"]) | |
assert result.groups == expected.groups | |
def test_groupby_axis_1(group_name): | |
# GH 27614 | |
df = DataFrame( | |
np.arange(12).reshape(3, 4), index=[0, 1, 0], columns=[10, 20, 10, 20] | |
) | |
df.index.name = "y" | |
df.columns.name = "x" | |
depr_msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
gb = df.groupby(group_name, axis=1) | |
results = gb.sum() | |
expected = df.T.groupby(group_name).sum().T | |
tm.assert_frame_equal(results, expected) | |
# test on MI column | |
iterables = [["bar", "baz", "foo"], ["one", "two"]] | |
mi = MultiIndex.from_product(iterables=iterables, names=["x", "x1"]) | |
df = DataFrame(np.arange(18).reshape(3, 6), index=[0, 1, 0], columns=mi) | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
gb = df.groupby(group_name, axis=1) | |
results = gb.sum() | |
expected = df.T.groupby(group_name).sum().T | |
tm.assert_frame_equal(results, expected) | |
def test_shift_bfill_ffill_tz(tz_naive_fixture, op, expected): | |
# GH19995, GH27992: Check that timezone does not drop in shift, bfill, and ffill | |
tz = tz_naive_fixture | |
data = { | |
"id": ["A", "B", "A", "B", "A", "B"], | |
"time": [ | |
Timestamp("2019-01-01 12:00:00"), | |
Timestamp("2019-01-01 12:30:00"), | |
None, | |
None, | |
Timestamp("2019-01-01 14:00:00"), | |
Timestamp("2019-01-01 14:30:00"), | |
], | |
} | |
df = DataFrame(data).assign(time=lambda x: x.time.dt.tz_localize(tz)) | |
grouped = df.groupby("id") | |
result = getattr(grouped, op)() | |
expected = DataFrame(expected).assign(time=lambda x: x.time.dt.tz_localize(tz)) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_only_none_group(): | |
# see GH21624 | |
# this was crashing with "ValueError: Length of passed values is 1, index implies 0" | |
df = DataFrame({"g": [None], "x": 1}) | |
actual = df.groupby("g")["x"].transform("sum") | |
expected = Series([np.nan], name="x") | |
tm.assert_series_equal(actual, expected) | |
def test_groupby_duplicate_index(): | |
# GH#29189 the groupby call here used to raise | |
ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0]) | |
gb = ser.groupby(level=0) | |
result = gb.mean() | |
expected = Series([2, 5.5, 8], index=[2.0, 4.0, 5.0]) | |
tm.assert_series_equal(result, expected) | |
def test_group_on_empty_multiindex(transformation_func, request): | |
# GH 47787 | |
# With one row, those are transforms so the schema should be the same | |
df = DataFrame( | |
data=[[1, Timestamp("today"), 3, 4]], | |
columns=["col_1", "col_2", "col_3", "col_4"], | |
) | |
df["col_3"] = df["col_3"].astype(int) | |
df["col_4"] = df["col_4"].astype(int) | |
df = df.set_index(["col_1", "col_2"]) | |
if transformation_func == "fillna": | |
args = ("ffill",) | |
else: | |
args = () | |
warn = FutureWarning if transformation_func == "fillna" else None | |
warn_msg = "DataFrameGroupBy.fillna is deprecated" | |
with tm.assert_produces_warning(warn, match=warn_msg): | |
result = df.iloc[:0].groupby(["col_1"]).transform(transformation_func, *args) | |
with tm.assert_produces_warning(warn, match=warn_msg): | |
expected = df.groupby(["col_1"]).transform(transformation_func, *args).iloc[:0] | |
if transformation_func in ("diff", "shift"): | |
expected = expected.astype(int) | |
tm.assert_equal(result, expected) | |
warn_msg = "SeriesGroupBy.fillna is deprecated" | |
with tm.assert_produces_warning(warn, match=warn_msg): | |
result = ( | |
df["col_3"] | |
.iloc[:0] | |
.groupby(["col_1"]) | |
.transform(transformation_func, *args) | |
) | |
warn_msg = "SeriesGroupBy.fillna is deprecated" | |
with tm.assert_produces_warning(warn, match=warn_msg): | |
expected = ( | |
df["col_3"] | |
.groupby(["col_1"]) | |
.transform(transformation_func, *args) | |
.iloc[:0] | |
) | |
if transformation_func in ("diff", "shift"): | |
expected = expected.astype(int) | |
tm.assert_equal(result, expected) | |
def test_groupby_crash_on_nunique(axis): | |
# Fix following 30253 | |
dti = date_range("2016-01-01", periods=2, name="foo") | |
df = DataFrame({("A", "B"): [1, 2], ("A", "C"): [1, 3], ("D", "B"): [0, 0]}) | |
df.columns.names = ("bar", "baz") | |
df.index = dti | |
axis_number = df._get_axis_number(axis) | |
if not axis_number: | |
df = df.T | |
msg = "The 'axis' keyword in DataFrame.groupby is deprecated" | |
else: | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
gb = df.groupby(axis=axis_number, level=0) | |
result = gb.nunique() | |
expected = DataFrame({"A": [1, 2], "D": [1, 1]}, index=dti) | |
expected.columns.name = "bar" | |
if not axis_number: | |
expected = expected.T | |
tm.assert_frame_equal(result, expected) | |
if axis_number == 0: | |
# same thing, but empty columns | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
gb2 = df[[]].groupby(axis=axis_number, level=0) | |
exp = expected[[]] | |
else: | |
# same thing, but empty rows | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
gb2 = df.loc[[]].groupby(axis=axis_number, level=0) | |
# default for empty when we can't infer a dtype is float64 | |
exp = expected.loc[[]].astype(np.float64) | |
res = gb2.nunique() | |
tm.assert_frame_equal(res, exp) | |
def test_groupby_list_level(): | |
# GH 9790 | |
expected = DataFrame(np.arange(0, 9).reshape(3, 3), dtype=float) | |
result = expected.groupby(level=[0]).mean() | |
tm.assert_frame_equal(result, expected) | |
def test_groups_repr_truncates(max_seq_items, expected): | |
# GH 1135 | |
df = DataFrame(np.random.default_rng(2).standard_normal((5, 1))) | |
df["a"] = df.index | |
with pd.option_context("display.max_seq_items", max_seq_items): | |
result = df.groupby("a").groups.__repr__() | |
assert result == expected | |
result = df.groupby(np.array(df.a)).groups.__repr__() | |
assert result == expected | |
def test_group_on_two_row_multiindex_returns_one_tuple_key(): | |
# GH 18451 | |
df = DataFrame([{"a": 1, "b": 2, "c": 99}, {"a": 1, "b": 2, "c": 88}]) | |
df = df.set_index(["a", "b"]) | |
grp = df.groupby(["a", "b"]) | |
result = grp.indices | |
expected = {(1, 2): np.array([0, 1], dtype=np.int64)} | |
assert len(result) == 1 | |
key = (1, 2) | |
assert (result[key] == expected[key]).all() | |
def test_subsetting_columns_keeps_attrs(klass, attr, value): | |
# GH 9959 - When subsetting columns, don't drop attributes | |
df = DataFrame({"a": [1], "b": [2], "c": [3]}) | |
if attr != "axis": | |
df = df.set_index("a") | |
expected = df.groupby("a", **{attr: value}) | |
result = expected[["b"]] if klass is DataFrame else expected["b"] | |
assert getattr(result, attr) == getattr(expected, attr) | |
def test_subsetting_columns_axis_1(): | |
# GH 37725 | |
df = DataFrame({"A": [1], "B": [2], "C": [3]}) | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
g = df.groupby([0, 0, 1], axis=1) | |
match = "Cannot subset columns when using axis=1" | |
with pytest.raises(ValueError, match=match): | |
g[["A", "B"]].sum() | |
def test_groupby_column_index_name_lost(func): | |
# GH: 29764 groupby loses index sometimes | |
expected = Index(["a"], name="idx") | |
df = DataFrame([[1]], columns=expected) | |
df_grouped = df.groupby([1]) | |
result = getattr(df_grouped, func)().columns | |
tm.assert_index_equal(result, expected) | |
def test_groupby_duplicate_columns(infer_string): | |
# GH: 31735 | |
if infer_string: | |
pytest.importorskip("pyarrow") | |
df = DataFrame( | |
{"A": ["f", "e", "g", "h"], "B": ["a", "b", "c", "d"], "C": [1, 2, 3, 4]} | |
).astype(object) | |
df.columns = ["A", "B", "B"] | |
with pd.option_context("future.infer_string", infer_string): | |
result = df.groupby([0, 0, 0, 0]).min() | |
expected = DataFrame( | |
[["e", "a", 1]], index=np.array([0]), columns=["A", "B", "B"], dtype=object | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_series_with_tuple_name(): | |
# GH 37755 | |
ser = Series([1, 2, 3, 4], index=[1, 1, 2, 2], name=("a", "a")) | |
ser.index.name = ("b", "b") | |
result = ser.groupby(level=0).last() | |
expected = Series([2, 4], index=[1, 2], name=("a", "a")) | |
expected.index.name = ("b", "b") | |
tm.assert_series_equal(result, expected) | |
def test_groupby_numerical_stability_sum_mean(func, values): | |
# GH#38778 | |
data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15] | |
df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data}) | |
result = getattr(df.groupby("group"), func)() | |
expected = DataFrame({"a": values, "b": values}, index=Index([1, 2], name="group")) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_numerical_stability_cumsum(): | |
# GH#38934 | |
data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15] | |
df = DataFrame({"group": [1, 2] * 4, "a": data, "b": data}) | |
result = df.groupby("group").cumsum() | |
exp_data = ( | |
[1e16] * 2 + [1e16 + 96, 1e16 + 98] + [5e15 + 97, 5e15 + 98] + [97.0, 98.0] | |
) | |
expected = DataFrame({"a": exp_data, "b": exp_data}) | |
tm.assert_frame_equal(result, expected, check_exact=True) | |
def test_groupby_cumsum_skipna_false(): | |
# GH#46216 don't propagate np.nan above the diagonal | |
arr = np.random.default_rng(2).standard_normal((5, 5)) | |
df = DataFrame(arr) | |
for i in range(5): | |
df.iloc[i, i] = np.nan | |
df["A"] = 1 | |
gb = df.groupby("A") | |
res = gb.cumsum(skipna=False) | |
expected = df[[0, 1, 2, 3, 4]].cumsum(skipna=False) | |
tm.assert_frame_equal(res, expected) | |
def test_groupby_cumsum_timedelta64(): | |
# GH#46216 don't ignore is_datetimelike in libgroupby.group_cumsum | |
dti = date_range("2016-01-01", periods=5) | |
ser = Series(dti) - dti[0] | |
ser[2] = pd.NaT | |
df = DataFrame({"A": 1, "B": ser}) | |
gb = df.groupby("A") | |
res = gb.cumsum(numeric_only=False, skipna=True) | |
exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, ser[4], ser[4] * 2]}) | |
tm.assert_frame_equal(res, exp) | |
res = gb.cumsum(numeric_only=False, skipna=False) | |
exp = DataFrame({"B": [ser[0], ser[1], pd.NaT, pd.NaT, pd.NaT]}) | |
tm.assert_frame_equal(res, exp) | |
def test_groupby_mean_duplicate_index(rand_series_with_duplicate_datetimeindex): | |
dups = rand_series_with_duplicate_datetimeindex | |
result = dups.groupby(level=0).mean() | |
expected = dups.groupby(dups.index).mean() | |
tm.assert_series_equal(result, expected) | |
def test_groupby_all_nan_groups_drop(): | |
# GH 15036 | |
s = Series([1, 2, 3], [np.nan, np.nan, np.nan]) | |
result = s.groupby(s.index).sum() | |
expected = Series([], index=Index([], dtype=np.float64), dtype=np.int64) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_empty_multi_column(as_index, numeric_only): | |
# GH 15106 & GH 41998 | |
df = DataFrame(data=[], columns=["A", "B", "C"]) | |
gb = df.groupby(["A", "B"], as_index=as_index) | |
result = gb.sum(numeric_only=numeric_only) | |
if as_index: | |
index = MultiIndex([[], []], [[], []], names=["A", "B"]) | |
columns = ["C"] if not numeric_only else [] | |
else: | |
index = RangeIndex(0) | |
columns = ["A", "B", "C"] if not numeric_only else ["A", "B"] | |
expected = DataFrame([], columns=columns, index=index) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_aggregation_non_numeric_dtype(): | |
# GH #43108 | |
df = DataFrame( | |
[["M", [1]], ["M", [1]], ["W", [10]], ["W", [20]]], columns=["MW", "v"] | |
) | |
expected = DataFrame( | |
{ | |
"v": [[1, 1], [10, 20]], | |
}, | |
index=Index(["M", "W"], dtype="object", name="MW"), | |
) | |
gb = df.groupby(by=["MW"]) | |
result = gb.sum() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_aggregation_multi_non_numeric_dtype(): | |
# GH #42395 | |
df = DataFrame( | |
{ | |
"x": [1, 0, 1, 1, 0], | |
"y": [Timedelta(i, "days") for i in range(1, 6)], | |
"z": [Timedelta(i * 10, "days") for i in range(1, 6)], | |
} | |
) | |
expected = DataFrame( | |
{ | |
"y": [Timedelta(i, "days") for i in range(7, 9)], | |
"z": [Timedelta(i * 10, "days") for i in range(7, 9)], | |
}, | |
index=Index([0, 1], dtype="int64", name="x"), | |
) | |
gb = df.groupby(by=["x"]) | |
result = gb.sum() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_aggregation_numeric_with_non_numeric_dtype(): | |
# GH #43108 | |
df = DataFrame( | |
{ | |
"x": [1, 0, 1, 1, 0], | |
"y": [Timedelta(i, "days") for i in range(1, 6)], | |
"z": list(range(1, 6)), | |
} | |
) | |
expected = DataFrame( | |
{"y": [Timedelta(7, "days"), Timedelta(8, "days")], "z": [7, 8]}, | |
index=Index([0, 1], dtype="int64", name="x"), | |
) | |
gb = df.groupby(by=["x"]) | |
result = gb.sum() | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_filtered_df_std(): | |
# GH 16174 | |
dicts = [ | |
{"filter_col": False, "groupby_col": True, "bool_col": True, "float_col": 10.5}, | |
{"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 20.5}, | |
{"filter_col": True, "groupby_col": True, "bool_col": True, "float_col": 30.5}, | |
] | |
df = DataFrame(dicts) | |
df_filter = df[df["filter_col"] == True] # noqa: E712 | |
dfgb = df_filter.groupby("groupby_col") | |
result = dfgb.std() | |
expected = DataFrame( | |
[[0.0, 0.0, 7.071068]], | |
columns=["filter_col", "bool_col", "float_col"], | |
index=Index([True], name="groupby_col"), | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_datetime_categorical_multikey_groupby_indices(): | |
# GH 26859 | |
df = DataFrame( | |
{ | |
"a": Series(list("abc")), | |
"b": Series( | |
to_datetime(["2018-01-01", "2018-02-01", "2018-03-01"]), | |
dtype="category", | |
), | |
"c": Categorical.from_codes([-1, 0, 1], categories=[0, 1]), | |
} | |
) | |
result = df.groupby(["a", "b"], observed=False).indices | |
expected = { | |
("a", Timestamp("2018-01-01 00:00:00")): np.array([0]), | |
("b", Timestamp("2018-02-01 00:00:00")): np.array([1]), | |
("c", Timestamp("2018-03-01 00:00:00")): np.array([2]), | |
} | |
assert result == expected | |
def test_rolling_wrong_param_min_period(): | |
# GH34037 | |
name_l = ["Alice"] * 5 + ["Bob"] * 5 | |
val_l = [np.nan, np.nan, 1, 2, 3] + [np.nan, 1, 2, 3, 4] | |
test_df = DataFrame([name_l, val_l]).T | |
test_df.columns = ["name", "val"] | |
result_error_msg = r"__init__\(\) got an unexpected keyword argument 'min_period'" | |
with pytest.raises(TypeError, match=result_error_msg): | |
test_df.groupby("name")["val"].rolling(window=2, min_period=1).sum() | |
def test_by_column_values_with_same_starting_value(dtype): | |
# GH29635 | |
df = DataFrame( | |
{ | |
"Name": ["Thomas", "Thomas", "Thomas John"], | |
"Credit": [1200, 1300, 900], | |
"Mood": Series(["sad", "happy", "happy"], dtype=dtype), | |
} | |
) | |
aggregate_details = {"Mood": Series.mode, "Credit": "sum"} | |
result = df.groupby(["Name"]).agg(aggregate_details) | |
expected_result = DataFrame( | |
{ | |
"Mood": [["happy", "sad"], "happy"], | |
"Credit": [2500, 900], | |
"Name": ["Thomas", "Thomas John"], | |
} | |
).set_index("Name") | |
tm.assert_frame_equal(result, expected_result) | |
def test_groupby_none_in_first_mi_level(): | |
# GH#47348 | |
arr = [[None, 1, 0, 1], [2, 3, 2, 3]] | |
ser = Series(1, index=MultiIndex.from_arrays(arr, names=["a", "b"])) | |
result = ser.groupby(level=[0, 1]).sum() | |
expected = Series( | |
[1, 2], MultiIndex.from_tuples([(0.0, 2), (1.0, 3)], names=["a", "b"]) | |
) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_none_column_name(): | |
# GH#47348 | |
df = DataFrame({None: [1, 1, 2, 2], "b": [1, 1, 2, 3], "c": [4, 5, 6, 7]}) | |
result = df.groupby(by=[None]).sum() | |
expected = DataFrame({"b": [2, 5], "c": [9, 13]}, index=Index([1, 2], name=None)) | |
tm.assert_frame_equal(result, expected) | |
def test_single_element_list_grouping(selection): | |
# GH#42795, GH#53500 | |
df = DataFrame({"a": [1, 2], "b": [np.nan, 5], "c": [np.nan, 2]}, index=["x", "y"]) | |
grouped = df.groupby(["a"]) if selection is None else df.groupby(["a"])[selection] | |
result = [key for key, _ in grouped] | |
expected = [(1,), (2,)] | |
assert result == expected | |
def test_groupby_string_dtype(): | |
# GH 40148 | |
df = DataFrame({"str_col": ["a", "b", "c", "a"], "num_col": [1, 2, 3, 2]}) | |
df["str_col"] = df["str_col"].astype("string") | |
expected = DataFrame( | |
{ | |
"str_col": [ | |
"a", | |
"b", | |
"c", | |
], | |
"num_col": [1.5, 2.0, 3.0], | |
} | |
) | |
expected["str_col"] = expected["str_col"].astype("string") | |
grouped = df.groupby("str_col", as_index=False) | |
result = grouped.mean() | |
tm.assert_frame_equal(result, expected) | |
def test_single_element_listlike_level_grouping_deprecation(level_arg, multiindex): | |
# GH 51583 | |
df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}, index=["x", "y"]) | |
if multiindex: | |
df = df.set_index(["a", "b"]) | |
depr_msg = ( | |
"Creating a Groupby object with a length-1 list-like " | |
"level parameter will yield indexes as tuples in a future version. " | |
"To keep indexes as scalars, create Groupby objects with " | |
"a scalar level parameter instead." | |
) | |
with tm.assert_produces_warning(FutureWarning, match=depr_msg): | |
[key for key, _ in df.groupby(level=level_arg)] | |
def test_groupby_avoid_casting_to_float(func): | |
# GH#37493 | |
val = 922337203685477580 | |
df = DataFrame({"a": 1, "b": [val]}) | |
result = getattr(df.groupby("a"), func)() - val | |
expected = DataFrame({"b": [0]}, index=Index([1], name="a")) | |
if func in ["cumsum", "cumprod"]: | |
expected = expected.reset_index(drop=True) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_sum_support_mask(any_numeric_ea_dtype, func, val): | |
# GH#37493 | |
df = DataFrame({"a": 1, "b": [1, 2, pd.NA]}, dtype=any_numeric_ea_dtype) | |
result = getattr(df.groupby("a"), func)() | |
expected = DataFrame( | |
{"b": [val]}, | |
index=Index([1], name="a", dtype=any_numeric_ea_dtype), | |
dtype=any_numeric_ea_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_overflow(val, dtype): | |
# GH#37493 | |
df = DataFrame({"a": 1, "b": [val, val]}, dtype=f"{dtype}8") | |
result = df.groupby("a").sum() | |
expected = DataFrame( | |
{"b": [val * 2]}, | |
index=Index([1], name="a", dtype=f"{dtype}8"), | |
dtype=f"{dtype}64", | |
) | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("a").cumsum() | |
expected = DataFrame({"b": [val, val * 2]}, dtype=f"{dtype}64") | |
tm.assert_frame_equal(result, expected) | |
result = df.groupby("a").prod() | |
expected = DataFrame( | |
{"b": [val * val]}, | |
index=Index([1], name="a", dtype=f"{dtype}8"), | |
dtype=f"{dtype}64", | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_cumsum_mask(any_numeric_ea_dtype, skipna, val): | |
# GH#37493 | |
df = DataFrame({"a": 1, "b": [1, pd.NA, 2]}, dtype=any_numeric_ea_dtype) | |
result = df.groupby("a").cumsum(skipna=skipna) | |
expected = DataFrame( | |
{"b": [1, pd.NA, val]}, | |
dtype=any_numeric_ea_dtype, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_index_name_in_index_content(val_in, index, val_out): | |
# GH 48567 | |
series = Series(data=val_in, name="values", index=Index(index, name="blah")) | |
result = series.groupby("blah").sum() | |
expected = Series( | |
data=val_out, | |
name="values", | |
index=Index(["bar", "baz", "blah", "foo"], name="blah"), | |
) | |
tm.assert_series_equal(result, expected) | |
result = series.to_frame().groupby("blah").sum() | |
expected = expected.to_frame() | |
tm.assert_frame_equal(result, expected) | |
def test_sum_of_booleans(n): | |
# GH 50347 | |
df = DataFrame({"groupby_col": 1, "bool": [True] * n}) | |
df["bool"] = df["bool"].eq(True) | |
result = df.groupby("groupby_col").sum() | |
expected = DataFrame({"bool": [n]}, index=Index([1], name="groupby_col")) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_method_drop_na(method): | |
# GH 21755 | |
df = DataFrame({"A": ["a", np.nan, "b", np.nan, "c"], "B": range(5)}) | |
if method == "nth": | |
result = getattr(df.groupby("A"), method)(n=0) | |
else: | |
result = getattr(df.groupby("A"), method)() | |
if method in ["first", "last"]: | |
expected = DataFrame({"B": [0, 2, 4]}).set_index( | |
Series(["a", "b", "c"], name="A") | |
) | |
else: | |
expected = DataFrame({"A": ["a", "b", "c"], "B": [0, 2, 4]}, index=[0, 2, 4]) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_reduce_period(): | |
# GH#51040 | |
pi = pd.period_range("2016-01-01", periods=100, freq="D") | |
grps = list(range(10)) * 10 | |
ser = pi.to_series() | |
gb = ser.groupby(grps) | |
with pytest.raises(TypeError, match="Period type does not support sum operations"): | |
gb.sum() | |
with pytest.raises( | |
TypeError, match="Period type does not support cumsum operations" | |
): | |
gb.cumsum() | |
with pytest.raises(TypeError, match="Period type does not support prod operations"): | |
gb.prod() | |
with pytest.raises( | |
TypeError, match="Period type does not support cumprod operations" | |
): | |
gb.cumprod() | |
res = gb.max() | |
expected = ser[-10:] | |
expected.index = Index(range(10), dtype=int) | |
tm.assert_series_equal(res, expected) | |
res = gb.min() | |
expected = ser[:10] | |
expected.index = Index(range(10), dtype=int) | |
tm.assert_series_equal(res, expected) | |
def test_obj_with_exclusions_duplicate_columns(): | |
# GH#50806 | |
df = DataFrame([[0, 1, 2, 3]]) | |
df.columns = [0, 1, 2, 0] | |
gb = df.groupby(df[1]) | |
result = gb._obj_with_exclusions | |
expected = df.take([0, 2, 3], axis=1) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_numeric_only_std_no_result(numeric_only): | |
# GH 51080 | |
dicts_non_numeric = [{"a": "foo", "b": "bar"}, {"a": "car", "b": "dar"}] | |
df = DataFrame(dicts_non_numeric) | |
dfgb = df.groupby("a", as_index=False, sort=False) | |
if numeric_only: | |
result = dfgb.std(numeric_only=True) | |
expected_df = DataFrame(["foo", "car"], columns=["a"]) | |
tm.assert_frame_equal(result, expected_df) | |
else: | |
with pytest.raises( | |
ValueError, match="could not convert string to float: 'bar'" | |
): | |
dfgb.std(numeric_only=numeric_only) | |
def test_grouping_with_categorical_interval_columns(): | |
# GH#34164 | |
df = DataFrame({"x": [0.1, 0.2, 0.3, -0.4, 0.5], "w": ["a", "b", "a", "c", "a"]}) | |
qq = pd.qcut(df["x"], q=np.linspace(0, 1, 5)) | |
result = df.groupby([qq, "w"], observed=False)["x"].agg("mean") | |
categorical_index_level_1 = Categorical( | |
[ | |
Interval(-0.401, 0.1, closed="right"), | |
Interval(0.1, 0.2, closed="right"), | |
Interval(0.2, 0.3, closed="right"), | |
Interval(0.3, 0.5, closed="right"), | |
], | |
ordered=True, | |
) | |
index_level_2 = ["a", "b", "c"] | |
mi = MultiIndex.from_product( | |
[categorical_index_level_1, index_level_2], names=["x", "w"] | |
) | |
expected = Series( | |
np.array( | |
[ | |
0.1, | |
np.nan, | |
-0.4, | |
np.nan, | |
0.2, | |
np.nan, | |
0.3, | |
np.nan, | |
np.nan, | |
0.5, | |
np.nan, | |
np.nan, | |
] | |
), | |
index=mi, | |
name="x", | |
) | |
tm.assert_series_equal(result, expected) | |
def test_groupby_sum_on_nan_should_return_nan(bug_var): | |
# GH 24196 | |
df = DataFrame({"A": [bug_var, bug_var, bug_var, np.nan]}) | |
dfgb = df.groupby(lambda x: x) | |
result = dfgb.sum(min_count=1) | |
expected_df = DataFrame([bug_var, bug_var, bug_var, None], columns=["A"]) | |
tm.assert_frame_equal(result, expected_df) | |
def test_groupby_selection_with_methods(df, method): | |
# some methods which require DatetimeIndex | |
rng = date_range("2014", periods=len(df)) | |
df.index = rng | |
g = df.groupby(["A"])[["C"]] | |
g_exp = df[["C"]].groupby(df["A"]) | |
# TODO check groupby with > 1 col ? | |
res = getattr(g, method)() | |
exp = getattr(g_exp, method)() | |
# should always be frames! | |
tm.assert_frame_equal(res, exp) | |
def test_groupby_selection_other_methods(df): | |
# some methods which require DatetimeIndex | |
rng = date_range("2014", periods=len(df)) | |
df.columns.name = "foo" | |
df.index = rng | |
g = df.groupby(["A"])[["C"]] | |
g_exp = df[["C"]].groupby(df["A"]) | |
# methods which aren't just .foo() | |
warn_msg = "DataFrameGroupBy.fillna is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=warn_msg): | |
tm.assert_frame_equal(g.fillna(0), g_exp.fillna(0)) | |
msg = "DataFrameGroupBy.dtypes is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
tm.assert_frame_equal(g.dtypes, g_exp.dtypes) | |
tm.assert_frame_equal(g.apply(lambda x: x.sum()), g_exp.apply(lambda x: x.sum())) | |
tm.assert_frame_equal(g.resample("D").mean(), g_exp.resample("D").mean()) | |
tm.assert_frame_equal(g.resample("D").ohlc(), g_exp.resample("D").ohlc()) | |
tm.assert_frame_equal( | |
g.filter(lambda x: len(x) == 3), g_exp.filter(lambda x: len(x) == 3) | |
) | |
def test_groupby_with_Time_Grouper(unit): | |
idx2 = to_datetime( | |
[ | |
"2016-08-31 22:08:12.000", | |
"2016-08-31 22:09:12.200", | |
"2016-08-31 22:20:12.400", | |
] | |
).as_unit(unit) | |
test_data = DataFrame( | |
{"quant": [1.0, 1.0, 3.0], "quant2": [1.0, 1.0, 3.0], "time2": idx2} | |
) | |
time2 = date_range("2016-08-31 22:08:00", periods=13, freq="1min", unit=unit) | |
expected_output = DataFrame( | |
{ | |
"time2": time2, | |
"quant": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], | |
"quant2": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], | |
} | |
) | |
gb = test_data.groupby(Grouper(key="time2", freq="1min")) | |
result = gb.count().reset_index() | |
tm.assert_frame_equal(result, expected_output) | |
def test_groupby_series_with_datetimeindex_month_name(): | |
# GH 48509 | |
s = Series([0, 1, 0], index=date_range("2022-01-01", periods=3), name="jan") | |
result = s.groupby(s).count() | |
expected = Series([2, 1], name="jan") | |
expected.index.name = "jan" | |
tm.assert_series_equal(result, expected) | |
def test_depr_get_group_len_1_list_likes(test_series, kwarg, value, name, warn): | |
# GH#25971 | |
obj = DataFrame({"b": [3, 4, 5]}, index=Index([1, 1, 2], name="a")) | |
if test_series: | |
obj = obj["b"] | |
gb = obj.groupby(**{kwarg: value}) | |
msg = "you will need to pass a length-1 tuple" | |
with tm.assert_produces_warning(warn, match=msg): | |
result = gb.get_group(name) | |
if test_series: | |
expected = Series([3, 4], index=Index([1, 1], name="a"), name="b") | |
else: | |
expected = DataFrame({"b": [3, 4]}, index=Index([1, 1], name="a")) | |
tm.assert_equal(result, expected) | |
def test_groupby_ngroup_with_nan(): | |
# GH#50100 | |
df = DataFrame({"a": Categorical([np.nan]), "b": [1]}) | |
result = df.groupby(["a", "b"], dropna=False, observed=False).ngroup() | |
expected = Series([0]) | |
tm.assert_series_equal(result, expected) | |
def test_get_group_axis_1(): | |
# GH#54858 | |
df = DataFrame( | |
{ | |
"col1": [0, 3, 2, 3], | |
"col2": [4, 1, 6, 7], | |
"col3": [3, 8, 2, 10], | |
"col4": [1, 13, 6, 15], | |
"col5": [-4, 5, 6, -7], | |
} | |
) | |
with tm.assert_produces_warning(FutureWarning, match="deprecated"): | |
grouped = df.groupby(axis=1, by=[1, 2, 3, 2, 1]) | |
result = grouped.get_group(1) | |
expected = DataFrame( | |
{ | |
"col1": [0, 3, 2, 3], | |
"col5": [-4, 5, 6, -7], | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_ffill_with_duplicated_index(): | |
# GH#43412 | |
df = DataFrame({"a": [1, 2, 3, 4, np.nan, np.nan]}, index=[0, 1, 2, 0, 1, 2]) | |
result = df.groupby(level=0).ffill() | |
expected = DataFrame({"a": [1, 2, 3, 4, 2, 3]}, index=[0, 1, 2, 0, 1, 2]) | |
tm.assert_frame_equal(result, expected, check_dtype=False) | |
def test_decimal_na_sort(test_series): | |
# GH#54847 | |
# We catch both TypeError and decimal.InvalidOperation exceptions in safe_sort. | |
# If this next assert raises, we can just catch TypeError | |
assert not isinstance(decimal.InvalidOperation, TypeError) | |
df = DataFrame( | |
{ | |
"key": [Decimal(1), Decimal(1), None, None], | |
"value": [Decimal(2), Decimal(3), Decimal(4), Decimal(5)], | |
} | |
) | |
gb = df.groupby("key", dropna=False) | |
if test_series: | |
gb = gb["value"] | |
result = gb._grouper.result_index | |
expected = Index([Decimal(1), None], name="key") | |
tm.assert_index_equal(result, expected) | |