peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_indexing.py
# Test GroupBy._positional_selector positional grouped indexing GH#42864 | |
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
def test_int(slice_test_df, slice_test_grouped, arg, expected_rows): | |
# Test single integer | |
result = slice_test_grouped._positional_selector[arg] | |
expected = slice_test_df.iloc[expected_rows] | |
tm.assert_frame_equal(result, expected) | |
def test_slice(slice_test_df, slice_test_grouped): | |
# Test single slice | |
result = slice_test_grouped._positional_selector[0:3:2] | |
expected = slice_test_df.iloc[[0, 1, 4, 5]] | |
tm.assert_frame_equal(result, expected) | |
def test_list(slice_test_df, slice_test_grouped, arg, expected_rows): | |
# Test lists of integers and integer valued iterables | |
result = slice_test_grouped._positional_selector[arg] | |
expected = slice_test_df.iloc[expected_rows] | |
tm.assert_frame_equal(result, expected) | |
def test_ints(slice_test_df, slice_test_grouped): | |
# Test tuple of ints | |
result = slice_test_grouped._positional_selector[0, 2, -1] | |
expected = slice_test_df.iloc[[0, 1, 3, 4, 5, 7]] | |
tm.assert_frame_equal(result, expected) | |
def test_slices(slice_test_df, slice_test_grouped): | |
# Test tuple of slices | |
result = slice_test_grouped._positional_selector[:2, -2:] | |
expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]] | |
tm.assert_frame_equal(result, expected) | |
def test_mix(slice_test_df, slice_test_grouped): | |
# Test mixed tuple of ints and slices | |
result = slice_test_grouped._positional_selector[0, 1, -2:] | |
expected = slice_test_df.iloc[[0, 1, 2, 3, 4, 6, 7]] | |
tm.assert_frame_equal(result, expected) | |
def test_as_index(slice_test_df, arg, expected_rows): | |
# Test the default as_index behaviour | |
result = slice_test_df.groupby("Group", sort=False)._positional_selector[arg] | |
expected = slice_test_df.iloc[expected_rows] | |
tm.assert_frame_equal(result, expected) | |
def test_doc_examples(): | |
# Test the examples in the documentation | |
df = pd.DataFrame( | |
[["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]], columns=["A", "B"] | |
) | |
grouped = df.groupby("A", as_index=False) | |
result = grouped._positional_selector[1:2] | |
expected = pd.DataFrame([["a", 2], ["b", 5]], columns=["A", "B"], index=[1, 4]) | |
tm.assert_frame_equal(result, expected) | |
result = grouped._positional_selector[1, -1] | |
expected = pd.DataFrame( | |
[["a", 2], ["a", 3], ["b", 5]], columns=["A", "B"], index=[1, 2, 4] | |
) | |
tm.assert_frame_equal(result, expected) | |
def multiindex_data(): | |
rng = np.random.default_rng(2) | |
ndates = 100 | |
nitems = 20 | |
dates = pd.date_range("20130101", periods=ndates, freq="D") | |
items = [f"item {i}" for i in range(nitems)] | |
data = {} | |
for date in dates: | |
nitems_for_date = nitems - rng.integers(0, 12) | |
levels = [ | |
(item, rng.integers(0, 10000) / 100, rng.integers(0, 10000) / 100) | |
for item in items[:nitems_for_date] | |
] | |
levels.sort(key=lambda x: x[1]) | |
data[date] = levels | |
return data | |
def _make_df_from_data(data): | |
rows = {} | |
for date in data: | |
for level in data[date]: | |
rows[(date, level[0])] = {"A": level[1], "B": level[2]} | |
df = pd.DataFrame.from_dict(rows, orient="index") | |
df.index.names = ("Date", "Item") | |
return df | |
def test_multiindex(multiindex_data): | |
# Test the multiindex mentioned as the use-case in the documentation | |
df = _make_df_from_data(multiindex_data) | |
result = df.groupby("Date", as_index=False).nth(slice(3, -3)) | |
sliced = {date: multiindex_data[date][3:-3] for date in multiindex_data} | |
expected = _make_df_from_data(sliced) | |
tm.assert_frame_equal(result, expected) | |
def test_against_head_and_tail(arg, method, simulated): | |
# Test gives the same results as grouped head and tail | |
n_groups = 100 | |
n_rows_per_group = 30 | |
data = { | |
"group": [ | |
f"group {g}" for j in range(n_rows_per_group) for g in range(n_groups) | |
], | |
"value": [ | |
f"group {g} row {j}" | |
for j in range(n_rows_per_group) | |
for g in range(n_groups) | |
], | |
} | |
df = pd.DataFrame(data) | |
grouped = df.groupby("group", as_index=False) | |
size = arg if arg >= 0 else n_rows_per_group + arg | |
if method == "head": | |
result = grouped._positional_selector[:arg] | |
if simulated: | |
indices = [ | |
j * n_groups + i | |
for j in range(size) | |
for i in range(n_groups) | |
if j * n_groups + i < n_groups * n_rows_per_group | |
] | |
expected = df.iloc[indices] | |
else: | |
expected = grouped.head(arg) | |
else: | |
result = grouped._positional_selector[-arg:] | |
if simulated: | |
indices = [ | |
(n_rows_per_group + j - size) * n_groups + i | |
for j in range(size) | |
for i in range(n_groups) | |
if (n_rows_per_group + j - size) * n_groups + i >= 0 | |
] | |
expected = df.iloc[indices] | |
else: | |
expected = grouped.tail(arg) | |
tm.assert_frame_equal(result, expected) | |
def test_against_df_iloc(start, stop, step): | |
# Test that a single group gives the same results as DataFrame.iloc | |
n_rows = 30 | |
data = { | |
"group": ["group 0"] * n_rows, | |
"value": list(range(n_rows)), | |
} | |
df = pd.DataFrame(data) | |
grouped = df.groupby("group", as_index=False) | |
result = grouped._positional_selector[start:stop:step] | |
expected = df.iloc[start:stop:step] | |
tm.assert_frame_equal(result, expected) | |
def test_series(): | |
# Test grouped Series | |
ser = pd.Series([1, 2, 3, 4, 5], index=["a", "a", "a", "b", "b"]) | |
grouped = ser.groupby(level=0) | |
result = grouped._positional_selector[1:2] | |
expected = pd.Series([2, 5], index=["a", "b"]) | |
tm.assert_series_equal(result, expected) | |
def test_step(step): | |
# Test slice with various step values | |
data = [["x", f"x{i}"] for i in range(5)] | |
data += [["y", f"y{i}"] for i in range(4)] | |
data += [["z", f"z{i}"] for i in range(3)] | |
df = pd.DataFrame(data, columns=["A", "B"]) | |
grouped = df.groupby("A", as_index=False) | |
result = grouped._positional_selector[::step] | |
data = [["x", f"x{i}"] for i in range(0, 5, step)] | |
data += [["y", f"y{i}"] for i in range(0, 4, step)] | |
data += [["z", f"z{i}"] for i in range(0, 3, step)] | |
index = [0 + i for i in range(0, 5, step)] | |
index += [5 + i for i in range(0, 4, step)] | |
index += [9 + i for i in range(0, 3, step)] | |
expected = pd.DataFrame(data, columns=["A", "B"], index=index) | |
tm.assert_frame_equal(result, expected) | |
def column_group_df(): | |
return pd.DataFrame( | |
[[0, 1, 2, 3, 4, 5, 6], [0, 0, 1, 0, 1, 0, 2]], | |
columns=["A", "B", "C", "D", "E", "F", "G"], | |
) | |
def test_column_axis(column_group_df): | |
msg = "DataFrame.groupby with axis=1" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
g = column_group_df.groupby(column_group_df.iloc[1], axis=1) | |
result = g._positional_selector[1:-1] | |
expected = column_group_df.iloc[:, [1, 3]] | |
tm.assert_frame_equal(result, expected) | |
def test_columns_on_iter(): | |
# GitHub issue #44821 | |
df = pd.DataFrame({k: range(10) for k in "ABC"}) | |
# Group-by and select columns | |
cols = ["A", "B"] | |
for _, dg in df.groupby(df.A < 4)[cols]: | |
tm.assert_index_equal(dg.columns, pd.Index(cols)) | |
assert "C" not in dg.columns | |
def test_groupby_duplicated_columns(func): | |
# GH#44924 | |
df = pd.DataFrame( | |
{ | |
"A": [1, 2], | |
"B": [3, 3], | |
"C": ["G", "G"], | |
} | |
) | |
result = df.groupby("C")[func(["A", "B", "A"])].mean() | |
expected = pd.DataFrame( | |
[[1.5, 3.0, 1.5]], columns=["A", "B", "A"], index=pd.Index(["G"], name="C") | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_groupby_get_nonexisting_groups(): | |
# GH#32492 | |
df = pd.DataFrame( | |
data={ | |
"A": ["a1", "a2", None], | |
"B": ["b1", "b2", "b1"], | |
"val": [1, 2, 3], | |
} | |
) | |
grps = df.groupby(by=["A", "B"]) | |
msg = "('a2', 'b1')" | |
with pytest.raises(KeyError, match=msg): | |
grps.get_group(("a2", "b1")) | |