peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_libgroupby.py
import numpy as np | |
import pytest | |
from pandas._libs import groupby as libgroupby | |
from pandas._libs.groupby import ( | |
group_cumprod, | |
group_cumsum, | |
group_mean, | |
group_sum, | |
group_var, | |
) | |
from pandas.core.dtypes.common import ensure_platform_int | |
from pandas import isna | |
import pandas._testing as tm | |
class GroupVarTestMixin: | |
def test_group_var_generic_1d(self): | |
prng = np.random.default_rng(2) | |
out = (np.nan * np.ones((5, 1))).astype(self.dtype) | |
counts = np.zeros(5, dtype="int64") | |
values = 10 * prng.random((15, 1)).astype(self.dtype) | |
labels = np.tile(np.arange(5), (3,)).astype("intp") | |
expected_out = ( | |
np.squeeze(values).reshape((5, 3), order="F").std(axis=1, ddof=1) ** 2 | |
)[:, np.newaxis] | |
expected_counts = counts + 3 | |
self.algo(out, counts, values, labels) | |
assert np.allclose(out, expected_out, self.rtol) | |
tm.assert_numpy_array_equal(counts, expected_counts) | |
def test_group_var_generic_1d_flat_labels(self): | |
prng = np.random.default_rng(2) | |
out = (np.nan * np.ones((1, 1))).astype(self.dtype) | |
counts = np.zeros(1, dtype="int64") | |
values = 10 * prng.random((5, 1)).astype(self.dtype) | |
labels = np.zeros(5, dtype="intp") | |
expected_out = np.array([[values.std(ddof=1) ** 2]]) | |
expected_counts = counts + 5 | |
self.algo(out, counts, values, labels) | |
assert np.allclose(out, expected_out, self.rtol) | |
tm.assert_numpy_array_equal(counts, expected_counts) | |
def test_group_var_generic_2d_all_finite(self): | |
prng = np.random.default_rng(2) | |
out = (np.nan * np.ones((5, 2))).astype(self.dtype) | |
counts = np.zeros(5, dtype="int64") | |
values = 10 * prng.random((10, 2)).astype(self.dtype) | |
labels = np.tile(np.arange(5), (2,)).astype("intp") | |
expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2 | |
expected_counts = counts + 2 | |
self.algo(out, counts, values, labels) | |
assert np.allclose(out, expected_out, self.rtol) | |
tm.assert_numpy_array_equal(counts, expected_counts) | |
def test_group_var_generic_2d_some_nan(self): | |
prng = np.random.default_rng(2) | |
out = (np.nan * np.ones((5, 2))).astype(self.dtype) | |
counts = np.zeros(5, dtype="int64") | |
values = 10 * prng.random((10, 2)).astype(self.dtype) | |
values[:, 1] = np.nan | |
labels = np.tile(np.arange(5), (2,)).astype("intp") | |
expected_out = np.vstack( | |
[ | |
values[:, 0].reshape(5, 2, order="F").std(ddof=1, axis=1) ** 2, | |
np.nan * np.ones(5), | |
] | |
).T.astype(self.dtype) | |
expected_counts = counts + 2 | |
self.algo(out, counts, values, labels) | |
tm.assert_almost_equal(out, expected_out, rtol=0.5e-06) | |
tm.assert_numpy_array_equal(counts, expected_counts) | |
def test_group_var_constant(self): | |
# Regression test from GH 10448. | |
out = np.array([[np.nan]], dtype=self.dtype) | |
counts = np.array([0], dtype="int64") | |
values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype) | |
labels = np.zeros(3, dtype="intp") | |
self.algo(out, counts, values, labels) | |
assert counts[0] == 3 | |
assert out[0, 0] >= 0 | |
tm.assert_almost_equal(out[0, 0], 0.0) | |
class TestGroupVarFloat64(GroupVarTestMixin): | |
__test__ = True | |
algo = staticmethod(group_var) | |
dtype = np.float64 | |
rtol = 1e-5 | |
def test_group_var_large_inputs(self): | |
prng = np.random.default_rng(2) | |
out = np.array([[np.nan]], dtype=self.dtype) | |
counts = np.array([0], dtype="int64") | |
values = (prng.random(10**6) + 10**12).astype(self.dtype) | |
values.shape = (10**6, 1) | |
labels = np.zeros(10**6, dtype="intp") | |
self.algo(out, counts, values, labels) | |
assert counts[0] == 10**6 | |
tm.assert_almost_equal(out[0, 0], 1.0 / 12, rtol=0.5e-3) | |
class TestGroupVarFloat32(GroupVarTestMixin): | |
__test__ = True | |
algo = staticmethod(group_var) | |
dtype = np.float32 | |
rtol = 1e-2 | |
def test_group_ohlc(dtype): | |
obj = np.array(np.random.default_rng(2).standard_normal(20), dtype=dtype) | |
bins = np.array([6, 12, 20]) | |
out = np.zeros((3, 4), dtype) | |
counts = np.zeros(len(out), dtype=np.int64) | |
labels = ensure_platform_int(np.repeat(np.arange(3), np.diff(np.r_[0, bins]))) | |
func = libgroupby.group_ohlc | |
func(out, counts, obj[:, None], labels) | |
def _ohlc(group): | |
if isna(group).all(): | |
return np.repeat(np.nan, 4) | |
return [group[0], group.max(), group.min(), group[-1]] | |
expected = np.array([_ohlc(obj[:6]), _ohlc(obj[6:12]), _ohlc(obj[12:])]) | |
tm.assert_almost_equal(out, expected) | |
tm.assert_numpy_array_equal(counts, np.array([6, 6, 8], dtype=np.int64)) | |
obj[:6] = np.nan | |
func(out, counts, obj[:, None], labels) | |
expected[0] = np.nan | |
tm.assert_almost_equal(out, expected) | |
def _check_cython_group_transform_cumulative(pd_op, np_op, dtype): | |
""" | |
Check a group transform that executes a cumulative function. | |
Parameters | |
---------- | |
pd_op : callable | |
The pandas cumulative function. | |
np_op : callable | |
The analogous one in NumPy. | |
dtype : type | |
The specified dtype of the data. | |
""" | |
is_datetimelike = False | |
data = np.array([[1], [2], [3], [4]], dtype=dtype) | |
answer = np.zeros_like(data) | |
labels = np.array([0, 0, 0, 0], dtype=np.intp) | |
ngroups = 1 | |
pd_op(answer, data, labels, ngroups, is_datetimelike) | |
tm.assert_numpy_array_equal(np_op(data), answer[:, 0], check_dtype=False) | |
def test_cython_group_transform_cumsum(np_dtype): | |
# see gh-4095 | |
dtype = np.dtype(np_dtype).type | |
pd_op, np_op = group_cumsum, np.cumsum | |
_check_cython_group_transform_cumulative(pd_op, np_op, dtype) | |
def test_cython_group_transform_cumprod(): | |
# see gh-4095 | |
dtype = np.float64 | |
pd_op, np_op = group_cumprod, np.cumprod | |
_check_cython_group_transform_cumulative(pd_op, np_op, dtype) | |
def test_cython_group_transform_algos(): | |
# see gh-4095 | |
is_datetimelike = False | |
# with nans | |
labels = np.array([0, 0, 0, 0, 0], dtype=np.intp) | |
ngroups = 1 | |
data = np.array([[1], [2], [3], [np.nan], [4]], dtype="float64") | |
actual = np.zeros_like(data) | |
actual.fill(np.nan) | |
group_cumprod(actual, data, labels, ngroups, is_datetimelike) | |
expected = np.array([1, 2, 6, np.nan, 24], dtype="float64") | |
tm.assert_numpy_array_equal(actual[:, 0], expected) | |
actual = np.zeros_like(data) | |
actual.fill(np.nan) | |
group_cumsum(actual, data, labels, ngroups, is_datetimelike) | |
expected = np.array([1, 3, 6, np.nan, 10], dtype="float64") | |
tm.assert_numpy_array_equal(actual[:, 0], expected) | |
# timedelta | |
is_datetimelike = True | |
data = np.array([np.timedelta64(1, "ns")] * 5, dtype="m8[ns]")[:, None] | |
actual = np.zeros_like(data, dtype="int64") | |
group_cumsum(actual, data.view("int64"), labels, ngroups, is_datetimelike) | |
expected = np.array( | |
[ | |
np.timedelta64(1, "ns"), | |
np.timedelta64(2, "ns"), | |
np.timedelta64(3, "ns"), | |
np.timedelta64(4, "ns"), | |
np.timedelta64(5, "ns"), | |
] | |
) | |
tm.assert_numpy_array_equal(actual[:, 0].view("m8[ns]"), expected) | |
def test_cython_group_mean_datetimelike(): | |
actual = np.zeros(shape=(1, 1), dtype="float64") | |
counts = np.array([0], dtype="int64") | |
data = ( | |
np.array( | |
[np.timedelta64(2, "ns"), np.timedelta64(4, "ns"), np.timedelta64("NaT")], | |
dtype="m8[ns]", | |
)[:, None] | |
.view("int64") | |
.astype("float64") | |
) | |
labels = np.zeros(len(data), dtype=np.intp) | |
group_mean(actual, counts, data, labels, is_datetimelike=True) | |
tm.assert_numpy_array_equal(actual[:, 0], np.array([3], dtype="float64")) | |
def test_cython_group_mean_wrong_min_count(): | |
actual = np.zeros(shape=(1, 1), dtype="float64") | |
counts = np.zeros(1, dtype="int64") | |
data = np.zeros(1, dtype="float64")[:, None] | |
labels = np.zeros(1, dtype=np.intp) | |
with pytest.raises(AssertionError, match="min_count"): | |
group_mean(actual, counts, data, labels, is_datetimelike=True, min_count=0) | |
def test_cython_group_mean_not_datetimelike_but_has_NaT_values(): | |
actual = np.zeros(shape=(1, 1), dtype="float64") | |
counts = np.array([0], dtype="int64") | |
data = ( | |
np.array( | |
[np.timedelta64("NaT"), np.timedelta64("NaT")], | |
dtype="m8[ns]", | |
)[:, None] | |
.view("int64") | |
.astype("float64") | |
) | |
labels = np.zeros(len(data), dtype=np.intp) | |
group_mean(actual, counts, data, labels, is_datetimelike=False) | |
tm.assert_numpy_array_equal( | |
actual[:, 0], np.array(np.divide(np.add(data[0], data[1]), 2), dtype="float64") | |
) | |
def test_cython_group_mean_Inf_at_begining_and_end(): | |
# GH 50367 | |
actual = np.array([[np.nan, np.nan], [np.nan, np.nan]], dtype="float64") | |
counts = np.array([0, 0], dtype="int64") | |
data = np.array( | |
[[np.inf, 1.0], [1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0], [5, np.inf]], | |
dtype="float64", | |
) | |
labels = np.array([0, 1, 0, 1, 0, 1], dtype=np.intp) | |
group_mean(actual, counts, data, labels, is_datetimelike=False) | |
expected = np.array([[np.inf, 3], [3, np.inf]], dtype="float64") | |
tm.assert_numpy_array_equal( | |
actual, | |
expected, | |
) | |
def test_cython_group_sum_Inf_at_begining_and_end(values, out): | |
# GH #53606 | |
actual = np.array([[np.nan], [np.nan]], dtype="float64") | |
counts = np.array([0, 0], dtype="int64") | |
data = np.array(values, dtype="float64") | |
labels = np.array([0, 1, 1], dtype=np.intp) | |
group_sum(actual, counts, data, labels, None, is_datetimelike=False) | |
expected = np.array(out, dtype="float64") | |
tm.assert_numpy_array_equal( | |
actual, | |
expected, | |
) | |