peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_pipe.py
import numpy as np | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
) | |
import pandas._testing as tm | |
def test_pipe(): | |
# Test the pipe method of DataFrameGroupBy. | |
# Issue #17871 | |
random_state = np.random.default_rng(2) | |
df = DataFrame( | |
{ | |
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], | |
"B": random_state.standard_normal(8), | |
"C": random_state.standard_normal(8), | |
} | |
) | |
def f(dfgb): | |
return dfgb.B.max() - dfgb.C.min().min() | |
def square(srs): | |
return srs**2 | |
# Note that the transformations are | |
# GroupBy -> Series | |
# Series -> Series | |
# This then chains the GroupBy.pipe and the | |
# NDFrame.pipe methods | |
result = df.groupby("A").pipe(f).pipe(square) | |
index = Index(["bar", "foo"], dtype="object", name="A") | |
expected = pd.Series([3.749306591013693, 6.717707873081384], name="B", index=index) | |
tm.assert_series_equal(expected, result) | |
def test_pipe_args(): | |
# Test passing args to the pipe method of DataFrameGroupBy. | |
# Issue #17871 | |
df = DataFrame( | |
{ | |
"group": ["A", "A", "B", "B", "C"], | |
"x": [1.0, 2.0, 3.0, 2.0, 5.0], | |
"y": [10.0, 100.0, 1000.0, -100.0, -1000.0], | |
} | |
) | |
def f(dfgb, arg1): | |
filtered = dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False) | |
return filtered.groupby("group") | |
def g(dfgb, arg2): | |
return dfgb.sum() / dfgb.sum().sum() + arg2 | |
def h(df, arg3): | |
return df.x + df.y - arg3 | |
result = df.groupby("group").pipe(f, 0).pipe(g, 10).pipe(h, 100) | |
# Assert the results here | |
index = Index(["A", "B"], name="group") | |
expected = pd.Series([-79.5160891089, -78.4839108911], index=index) | |
tm.assert_series_equal(result, expected) | |
# test SeriesGroupby.pipe | |
ser = pd.Series([1, 1, 2, 2, 3, 3]) | |
result = ser.groupby(ser).pipe(lambda grp: grp.sum() * grp.count()) | |
expected = pd.Series([4, 8, 12], index=Index([1, 2, 3], dtype=np.int64)) | |
tm.assert_series_equal(result, expected) | |