peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/groupby
/test_raises.py
# Only tests that raise an error and have no better location should go here. | |
# Tests for specific groupby methods should go in their respective | |
# test file. | |
import datetime | |
import re | |
import numpy as np | |
import pytest | |
from pandas import ( | |
Categorical, | |
DataFrame, | |
Grouper, | |
Series, | |
) | |
import pandas._testing as tm | |
from pandas.tests.groupby import get_groupby_method_args | |
def by(request): | |
return request.param | |
def groupby_series(request): | |
return request.param | |
def df_with_string_col(): | |
df = DataFrame( | |
{ | |
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2], | |
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3], | |
"c": range(9), | |
"d": list("xyzwtyuio"), | |
} | |
) | |
return df | |
def df_with_datetime_col(): | |
df = DataFrame( | |
{ | |
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2], | |
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3], | |
"c": range(9), | |
"d": datetime.datetime(2005, 1, 1, 10, 30, 23, 540000), | |
} | |
) | |
return df | |
def df_with_timedelta_col(): | |
df = DataFrame( | |
{ | |
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2], | |
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3], | |
"c": range(9), | |
"d": datetime.timedelta(days=1), | |
} | |
) | |
return df | |
def df_with_cat_col(): | |
df = DataFrame( | |
{ | |
"a": [1, 1, 1, 1, 1, 2, 2, 2, 2], | |
"b": [3, 3, 4, 4, 4, 4, 4, 3, 3], | |
"c": range(9), | |
"d": Categorical( | |
["a", "a", "a", "a", "b", "b", "b", "b", "c"], | |
categories=["a", "b", "c", "d"], | |
ordered=True, | |
), | |
} | |
) | |
return df | |
def _call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg=""): | |
warn_klass = None if warn_msg == "" else FutureWarning | |
with tm.assert_produces_warning(warn_klass, match=warn_msg): | |
if klass is None: | |
if how == "method": | |
getattr(gb, groupby_func)(*args) | |
elif how == "agg": | |
gb.agg(groupby_func, *args) | |
else: | |
gb.transform(groupby_func, *args) | |
else: | |
with pytest.raises(klass, match=msg): | |
if how == "method": | |
getattr(gb, groupby_func)(*args) | |
elif how == "agg": | |
gb.agg(groupby_func, *args) | |
else: | |
gb.transform(groupby_func, *args) | |
def test_groupby_raises_string( | |
how, by, groupby_series, groupby_func, df_with_string_col | |
): | |
df = df_with_string_col | |
args = get_groupby_method_args(groupby_func, df) | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
if groupby_func == "corrwith": | |
assert not hasattr(gb, "corrwith") | |
return | |
klass, msg = { | |
"all": (None, ""), | |
"any": (None, ""), | |
"bfill": (None, ""), | |
"corrwith": (TypeError, "Could not convert"), | |
"count": (None, ""), | |
"cumcount": (None, ""), | |
"cummax": ( | |
(NotImplementedError, TypeError), | |
"(function|cummax) is not (implemented|supported) for (this|object) dtype", | |
), | |
"cummin": ( | |
(NotImplementedError, TypeError), | |
"(function|cummin) is not (implemented|supported) for (this|object) dtype", | |
), | |
"cumprod": ( | |
(NotImplementedError, TypeError), | |
"(function|cumprod) is not (implemented|supported) for (this|object) dtype", | |
), | |
"cumsum": ( | |
(NotImplementedError, TypeError), | |
"(function|cumsum) is not (implemented|supported) for (this|object) dtype", | |
), | |
"diff": (TypeError, "unsupported operand type"), | |
"ffill": (None, ""), | |
"fillna": (None, ""), | |
"first": (None, ""), | |
"idxmax": (None, ""), | |
"idxmin": (None, ""), | |
"last": (None, ""), | |
"max": (None, ""), | |
"mean": ( | |
TypeError, | |
re.escape("agg function failed [how->mean,dtype->object]"), | |
), | |
"median": ( | |
TypeError, | |
re.escape("agg function failed [how->median,dtype->object]"), | |
), | |
"min": (None, ""), | |
"ngroup": (None, ""), | |
"nunique": (None, ""), | |
"pct_change": (TypeError, "unsupported operand type"), | |
"prod": ( | |
TypeError, | |
re.escape("agg function failed [how->prod,dtype->object]"), | |
), | |
"quantile": (TypeError, "cannot be performed against 'object' dtypes!"), | |
"rank": (None, ""), | |
"sem": (ValueError, "could not convert string to float"), | |
"shift": (None, ""), | |
"size": (None, ""), | |
"skew": (ValueError, "could not convert string to float"), | |
"std": (ValueError, "could not convert string to float"), | |
"sum": (None, ""), | |
"var": ( | |
TypeError, | |
re.escape("agg function failed [how->var,dtype->"), | |
), | |
}[groupby_func] | |
if groupby_func == "fillna": | |
kind = "Series" if groupby_series else "DataFrame" | |
warn_msg = f"{kind}GroupBy.fillna is deprecated" | |
else: | |
warn_msg = "" | |
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg) | |
def test_groupby_raises_string_udf(how, by, groupby_series, df_with_string_col): | |
df = df_with_string_col | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
def func(x): | |
raise TypeError("Test error message") | |
with pytest.raises(TypeError, match="Test error message"): | |
getattr(gb, how)(func) | |
def test_groupby_raises_string_np( | |
how, by, groupby_series, groupby_func_np, df_with_string_col | |
): | |
# GH#50749 | |
df = df_with_string_col | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
klass, msg = { | |
np.sum: (None, ""), | |
np.mean: ( | |
TypeError, | |
re.escape("agg function failed [how->mean,dtype->object]"), | |
), | |
}[groupby_func_np] | |
if groupby_series: | |
warn_msg = "using SeriesGroupBy.[sum|mean]" | |
else: | |
warn_msg = "using DataFrameGroupBy.[sum|mean]" | |
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg) | |
def test_groupby_raises_datetime( | |
how, by, groupby_series, groupby_func, df_with_datetime_col | |
): | |
df = df_with_datetime_col | |
args = get_groupby_method_args(groupby_func, df) | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
if groupby_func == "corrwith": | |
assert not hasattr(gb, "corrwith") | |
return | |
klass, msg = { | |
"all": (None, ""), | |
"any": (None, ""), | |
"bfill": (None, ""), | |
"corrwith": (TypeError, "cannot perform __mul__ with this index type"), | |
"count": (None, ""), | |
"cumcount": (None, ""), | |
"cummax": (None, ""), | |
"cummin": (None, ""), | |
"cumprod": (TypeError, "datetime64 type does not support cumprod operations"), | |
"cumsum": (TypeError, "datetime64 type does not support cumsum operations"), | |
"diff": (None, ""), | |
"ffill": (None, ""), | |
"fillna": (None, ""), | |
"first": (None, ""), | |
"idxmax": (None, ""), | |
"idxmin": (None, ""), | |
"last": (None, ""), | |
"max": (None, ""), | |
"mean": (None, ""), | |
"median": (None, ""), | |
"min": (None, ""), | |
"ngroup": (None, ""), | |
"nunique": (None, ""), | |
"pct_change": (TypeError, "cannot perform __truediv__ with this index type"), | |
"prod": (TypeError, "datetime64 type does not support prod"), | |
"quantile": (None, ""), | |
"rank": (None, ""), | |
"sem": (None, ""), | |
"shift": (None, ""), | |
"size": (None, ""), | |
"skew": ( | |
TypeError, | |
"|".join( | |
[ | |
r"dtype datetime64\[ns\] does not support reduction", | |
"datetime64 type does not support skew operations", | |
] | |
), | |
), | |
"std": (None, ""), | |
"sum": (TypeError, "datetime64 type does not support sum operations"), | |
"var": (TypeError, "datetime64 type does not support var operations"), | |
}[groupby_func] | |
if groupby_func in ["any", "all"]: | |
warn_msg = f"'{groupby_func}' with datetime64 dtypes is deprecated" | |
elif groupby_func == "fillna": | |
kind = "Series" if groupby_series else "DataFrame" | |
warn_msg = f"{kind}GroupBy.fillna is deprecated" | |
else: | |
warn_msg = "" | |
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg=warn_msg) | |
def test_groupby_raises_datetime_udf(how, by, groupby_series, df_with_datetime_col): | |
df = df_with_datetime_col | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
def func(x): | |
raise TypeError("Test error message") | |
with pytest.raises(TypeError, match="Test error message"): | |
getattr(gb, how)(func) | |
def test_groupby_raises_datetime_np( | |
how, by, groupby_series, groupby_func_np, df_with_datetime_col | |
): | |
# GH#50749 | |
df = df_with_datetime_col | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
klass, msg = { | |
np.sum: (TypeError, "datetime64 type does not support sum operations"), | |
np.mean: (None, ""), | |
}[groupby_func_np] | |
if groupby_series: | |
warn_msg = "using SeriesGroupBy.[sum|mean]" | |
else: | |
warn_msg = "using DataFrameGroupBy.[sum|mean]" | |
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg) | |
def test_groupby_raises_timedelta(func, df_with_timedelta_col): | |
df = df_with_timedelta_col | |
gb = df.groupby(by="a") | |
_call_and_check( | |
TypeError, | |
"timedelta64 type does not support .* operations", | |
"method", | |
gb, | |
func, | |
[], | |
) | |
def test_groupby_raises_category( | |
how, by, groupby_series, groupby_func, using_copy_on_write, df_with_cat_col | |
): | |
# GH#50749 | |
df = df_with_cat_col | |
args = get_groupby_method_args(groupby_func, df) | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
if groupby_func == "corrwith": | |
assert not hasattr(gb, "corrwith") | |
return | |
klass, msg = { | |
"all": (None, ""), | |
"any": (None, ""), | |
"bfill": (None, ""), | |
"corrwith": ( | |
TypeError, | |
r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'", | |
), | |
"count": (None, ""), | |
"cumcount": (None, ""), | |
"cummax": ( | |
(NotImplementedError, TypeError), | |
"(category type does not support cummax operations|" | |
"category dtype not supported|" | |
"cummax is not supported for category dtype)", | |
), | |
"cummin": ( | |
(NotImplementedError, TypeError), | |
"(category type does not support cummin operations|" | |
"category dtype not supported|" | |
"cummin is not supported for category dtype)", | |
), | |
"cumprod": ( | |
(NotImplementedError, TypeError), | |
"(category type does not support cumprod operations|" | |
"category dtype not supported|" | |
"cumprod is not supported for category dtype)", | |
), | |
"cumsum": ( | |
(NotImplementedError, TypeError), | |
"(category type does not support cumsum operations|" | |
"category dtype not supported|" | |
"cumsum is not supported for category dtype)", | |
), | |
"diff": ( | |
TypeError, | |
r"unsupported operand type\(s\) for -: 'Categorical' and 'Categorical'", | |
), | |
"ffill": (None, ""), | |
"fillna": ( | |
TypeError, | |
r"Cannot setitem on a Categorical with a new category \(0\), " | |
"set the categories first", | |
) | |
if not using_copy_on_write | |
else (None, ""), # no-op with CoW | |
"first": (None, ""), | |
"idxmax": (None, ""), | |
"idxmin": (None, ""), | |
"last": (None, ""), | |
"max": (None, ""), | |
"mean": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'mean'", | |
"category dtype does not support aggregation 'mean'", | |
] | |
), | |
), | |
"median": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'median'", | |
"category dtype does not support aggregation 'median'", | |
] | |
), | |
), | |
"min": (None, ""), | |
"ngroup": (None, ""), | |
"nunique": (None, ""), | |
"pct_change": ( | |
TypeError, | |
r"unsupported operand type\(s\) for /: 'Categorical' and 'Categorical'", | |
), | |
"prod": (TypeError, "category type does not support prod operations"), | |
"quantile": (TypeError, "No matching signature found"), | |
"rank": (None, ""), | |
"sem": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'sem'", | |
"category dtype does not support aggregation 'sem'", | |
] | |
), | |
), | |
"shift": (None, ""), | |
"size": (None, ""), | |
"skew": ( | |
TypeError, | |
"|".join( | |
[ | |
"dtype category does not support reduction 'skew'", | |
"category type does not support skew operations", | |
] | |
), | |
), | |
"std": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'std'", | |
"category dtype does not support aggregation 'std'", | |
] | |
), | |
), | |
"sum": (TypeError, "category type does not support sum operations"), | |
"var": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'var'", | |
"category dtype does not support aggregation 'var'", | |
] | |
), | |
), | |
}[groupby_func] | |
if groupby_func == "fillna": | |
kind = "Series" if groupby_series else "DataFrame" | |
warn_msg = f"{kind}GroupBy.fillna is deprecated" | |
else: | |
warn_msg = "" | |
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg) | |
def test_groupby_raises_category_udf(how, by, groupby_series, df_with_cat_col): | |
# GH#50749 | |
df = df_with_cat_col | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
def func(x): | |
raise TypeError("Test error message") | |
with pytest.raises(TypeError, match="Test error message"): | |
getattr(gb, how)(func) | |
def test_groupby_raises_category_np( | |
how, by, groupby_series, groupby_func_np, df_with_cat_col | |
): | |
# GH#50749 | |
df = df_with_cat_col | |
gb = df.groupby(by=by) | |
if groupby_series: | |
gb = gb["d"] | |
klass, msg = { | |
np.sum: (TypeError, "category type does not support sum operations"), | |
np.mean: ( | |
TypeError, | |
"category dtype does not support aggregation 'mean'", | |
), | |
}[groupby_func_np] | |
if groupby_series: | |
warn_msg = "using SeriesGroupBy.[sum|mean]" | |
else: | |
warn_msg = "using DataFrameGroupBy.[sum|mean]" | |
_call_and_check(klass, msg, how, gb, groupby_func_np, (), warn_msg=warn_msg) | |
def test_groupby_raises_category_on_category( | |
how, | |
by, | |
groupby_series, | |
groupby_func, | |
observed, | |
using_copy_on_write, | |
df_with_cat_col, | |
): | |
# GH#50749 | |
df = df_with_cat_col | |
df["a"] = Categorical( | |
["a", "a", "a", "a", "b", "b", "b", "b", "c"], | |
categories=["a", "b", "c", "d"], | |
ordered=True, | |
) | |
args = get_groupby_method_args(groupby_func, df) | |
gb = df.groupby(by=by, observed=observed) | |
if groupby_series: | |
gb = gb["d"] | |
if groupby_func == "corrwith": | |
assert not hasattr(gb, "corrwith") | |
return | |
empty_groups = not observed and any(group.empty for group in gb.groups.values()) | |
if ( | |
not observed | |
and how != "transform" | |
and isinstance(by, list) | |
and isinstance(by[0], str) | |
and by == ["a", "b"] | |
): | |
assert not empty_groups | |
# TODO: empty_groups should be true due to unobserved categorical combinations | |
empty_groups = True | |
if how == "transform": | |
# empty groups will be ignored | |
empty_groups = False | |
klass, msg = { | |
"all": (None, ""), | |
"any": (None, ""), | |
"bfill": (None, ""), | |
"corrwith": ( | |
TypeError, | |
r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'", | |
), | |
"count": (None, ""), | |
"cumcount": (None, ""), | |
"cummax": ( | |
(NotImplementedError, TypeError), | |
"(cummax is not supported for category dtype|" | |
"category dtype not supported|" | |
"category type does not support cummax operations)", | |
), | |
"cummin": ( | |
(NotImplementedError, TypeError), | |
"(cummin is not supported for category dtype|" | |
"category dtype not supported|" | |
"category type does not support cummin operations)", | |
), | |
"cumprod": ( | |
(NotImplementedError, TypeError), | |
"(cumprod is not supported for category dtype|" | |
"category dtype not supported|" | |
"category type does not support cumprod operations)", | |
), | |
"cumsum": ( | |
(NotImplementedError, TypeError), | |
"(cumsum is not supported for category dtype|" | |
"category dtype not supported|" | |
"category type does not support cumsum operations)", | |
), | |
"diff": (TypeError, "unsupported operand type"), | |
"ffill": (None, ""), | |
"fillna": ( | |
TypeError, | |
r"Cannot setitem on a Categorical with a new category \(0\), " | |
"set the categories first", | |
) | |
if not using_copy_on_write | |
else (None, ""), # no-op with CoW | |
"first": (None, ""), | |
"idxmax": (ValueError, "empty group due to unobserved categories") | |
if empty_groups | |
else (None, ""), | |
"idxmin": (ValueError, "empty group due to unobserved categories") | |
if empty_groups | |
else (None, ""), | |
"last": (None, ""), | |
"max": (None, ""), | |
"mean": (TypeError, "category dtype does not support aggregation 'mean'"), | |
"median": (TypeError, "category dtype does not support aggregation 'median'"), | |
"min": (None, ""), | |
"ngroup": (None, ""), | |
"nunique": (None, ""), | |
"pct_change": (TypeError, "unsupported operand type"), | |
"prod": (TypeError, "category type does not support prod operations"), | |
"quantile": (TypeError, ""), | |
"rank": (None, ""), | |
"sem": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'sem'", | |
"category dtype does not support aggregation 'sem'", | |
] | |
), | |
), | |
"shift": (None, ""), | |
"size": (None, ""), | |
"skew": ( | |
TypeError, | |
"|".join( | |
[ | |
"category type does not support skew operations", | |
"dtype category does not support reduction 'skew'", | |
] | |
), | |
), | |
"std": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'std'", | |
"category dtype does not support aggregation 'std'", | |
] | |
), | |
), | |
"sum": (TypeError, "category type does not support sum operations"), | |
"var": ( | |
TypeError, | |
"|".join( | |
[ | |
"'Categorical' .* does not support reduction 'var'", | |
"category dtype does not support aggregation 'var'", | |
] | |
), | |
), | |
}[groupby_func] | |
if groupby_func == "fillna": | |
kind = "Series" if groupby_series else "DataFrame" | |
warn_msg = f"{kind}GroupBy.fillna is deprecated" | |
else: | |
warn_msg = "" | |
_call_and_check(klass, msg, how, gb, groupby_func, args, warn_msg) | |
def test_subsetting_columns_axis_1_raises(): | |
# GH 35443 | |
df = DataFrame({"a": [1], "b": [2], "c": [3]}) | |
msg = "DataFrame.groupby with axis=1 is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
gb = df.groupby("a", axis=1) | |
with pytest.raises(ValueError, match="Cannot subset columns when using axis=1"): | |
gb["b"] | |