peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_at.py
from datetime import ( | |
datetime, | |
timezone, | |
) | |
import numpy as np | |
import pytest | |
from pandas.errors import InvalidIndexError | |
from pandas import ( | |
CategoricalDtype, | |
CategoricalIndex, | |
DataFrame, | |
DatetimeIndex, | |
Index, | |
MultiIndex, | |
Series, | |
Timestamp, | |
) | |
import pandas._testing as tm | |
def test_at_timezone(): | |
# https://github.com/pandas-dev/pandas/issues/33544 | |
result = DataFrame({"foo": [datetime(2000, 1, 1)]}) | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc) | |
expected = DataFrame( | |
{"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_selection_methods_of_assigned_col(): | |
# GH 29282 | |
df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]}) | |
df2 = DataFrame(data={"c": [7, 8, 9]}, index=[2, 1, 0]) | |
df["c"] = df2["c"] | |
df.at[1, "c"] = 11 | |
result = df | |
expected = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [9, 11, 7]}) | |
tm.assert_frame_equal(result, expected) | |
result = df.at[1, "c"] | |
assert result == 11 | |
result = df["c"] | |
expected = Series([9, 11, 7], name="c") | |
tm.assert_series_equal(result, expected) | |
result = df[["c"]] | |
expected = DataFrame({"c": [9, 11, 7]}) | |
tm.assert_frame_equal(result, expected) | |
class TestAtSetItem: | |
def test_at_setitem_item_cache_cleared(self): | |
# GH#22372 Note the multi-step construction is necessary to trigger | |
# the original bug. pandas/issues/22372#issuecomment-413345309 | |
df = DataFrame(index=[0]) | |
df["x"] = 1 | |
df["cost"] = 2 | |
# accessing df["cost"] adds "cost" to the _item_cache | |
df["cost"] | |
# This loc[[0]] lookup used to call _consolidate_inplace at the | |
# BlockManager level, which failed to clear the _item_cache | |
df.loc[[0]] | |
df.at[0, "x"] = 4 | |
df.at[0, "cost"] = 789 | |
expected = DataFrame( | |
{"x": [4], "cost": 789}, | |
index=[0], | |
columns=Index(["x", "cost"], dtype=object), | |
) | |
tm.assert_frame_equal(df, expected) | |
# And in particular, check that the _item_cache has updated correctly. | |
tm.assert_series_equal(df["cost"], expected["cost"]) | |
def test_at_setitem_mixed_index_assignment(self): | |
# GH#19860 | |
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) | |
ser.at["a"] = 11 | |
assert ser.iat[0] == 11 | |
ser.at[1] = 22 | |
assert ser.iat[3] == 22 | |
def test_at_setitem_categorical_missing(self): | |
df = DataFrame( | |
index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"]) | |
) | |
df.at[1, 1] = "foo" | |
expected = DataFrame( | |
[ | |
[np.nan, np.nan, np.nan], | |
[np.nan, "foo", np.nan], | |
[np.nan, np.nan, np.nan], | |
], | |
dtype=CategoricalDtype(["foo", "bar"]), | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_at_setitem_multiindex(self): | |
df = DataFrame( | |
np.zeros((3, 2), dtype="int64"), | |
columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]), | |
) | |
df.at[0, "a"] = 10 | |
expected = DataFrame( | |
[[10, 10], [0, 0], [0, 0]], | |
columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]), | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_at_datetime_index(self, row): | |
# Set float64 dtype to avoid upcast when setting .5 | |
df = DataFrame( | |
data=[[1] * 2], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]) | |
).astype({0: "float64"}) | |
expected = DataFrame( | |
data=[[0.5, 1], [1.0, 1]], | |
index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]), | |
) | |
df.at[row, 0] = 0.5 | |
tm.assert_frame_equal(df, expected) | |
class TestAtSetItemWithExpansion: | |
def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture): | |
# GH#25506 | |
ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture) | |
result = Series(ts) | |
result.at[1] = ts | |
expected = Series([ts, ts]) | |
tm.assert_series_equal(result, expected) | |
class TestAtWithDuplicates: | |
def test_at_with_duplicate_axes_requires_scalar_lookup(self): | |
# GH#33041 check that falling back to loc doesn't allow non-scalar | |
# args to slip in | |
arr = np.random.default_rng(2).standard_normal(6).reshape(3, 2) | |
df = DataFrame(arr, columns=["A", "A"]) | |
msg = "Invalid call for scalar access" | |
with pytest.raises(ValueError, match=msg): | |
df.at[[1, 2]] | |
with pytest.raises(ValueError, match=msg): | |
df.at[1, ["A"]] | |
with pytest.raises(ValueError, match=msg): | |
df.at[:, "A"] | |
with pytest.raises(ValueError, match=msg): | |
df.at[[1, 2]] = 1 | |
with pytest.raises(ValueError, match=msg): | |
df.at[1, ["A"]] = 1 | |
with pytest.raises(ValueError, match=msg): | |
df.at[:, "A"] = 1 | |
class TestAtErrors: | |
# TODO: De-duplicate/parametrize | |
# test_at_series_raises_key_error2, test_at_frame_raises_key_error2 | |
def test_at_series_raises_key_error(self, indexer_al): | |
# GH#31724 .at should match .loc | |
ser = Series([1, 2, 3], index=[3, 2, 1]) | |
result = indexer_al(ser)[1] | |
assert result == 3 | |
with pytest.raises(KeyError, match="a"): | |
indexer_al(ser)["a"] | |
def test_at_frame_raises_key_error(self, indexer_al): | |
# GH#31724 .at should match .loc | |
df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) | |
result = indexer_al(df)[1, 0] | |
assert result == 3 | |
with pytest.raises(KeyError, match="a"): | |
indexer_al(df)["a", 0] | |
with pytest.raises(KeyError, match="a"): | |
indexer_al(df)[1, "a"] | |
def test_at_series_raises_key_error2(self, indexer_al): | |
# at should not fallback | |
# GH#7814 | |
# GH#31724 .at should match .loc | |
ser = Series([1, 2, 3], index=list("abc")) | |
result = indexer_al(ser)["a"] | |
assert result == 1 | |
with pytest.raises(KeyError, match="^0$"): | |
indexer_al(ser)[0] | |
def test_at_frame_raises_key_error2(self, indexer_al): | |
# GH#31724 .at should match .loc | |
df = DataFrame({"A": [1, 2, 3]}, index=list("abc")) | |
result = indexer_al(df)["a", "A"] | |
assert result == 1 | |
with pytest.raises(KeyError, match="^0$"): | |
indexer_al(df)["a", 0] | |
def test_at_frame_multiple_columns(self): | |
# GH#48296 - at shouldn't modify multiple columns | |
df = DataFrame({"a": [1, 2], "b": [3, 4]}) | |
new_row = [6, 7] | |
with pytest.raises( | |
InvalidIndexError, | |
match=f"You can only assign a scalar value not a \\{type(new_row)}", | |
): | |
df.at[5] = new_row | |
def test_at_getitem_mixed_index_no_fallback(self): | |
# GH#19860 | |
ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) | |
with pytest.raises(KeyError, match="^0$"): | |
ser.at[0] | |
with pytest.raises(KeyError, match="^4$"): | |
ser.at[4] | |
def test_at_categorical_integers(self): | |
# CategoricalIndex with integer categories that don't happen to match | |
# the Categorical's codes | |
ci = CategoricalIndex([3, 4]) | |
arr = np.arange(4).reshape(2, 2) | |
frame = DataFrame(arr, index=ci) | |
for df in [frame, frame.T]: | |
for key in [0, 1]: | |
with pytest.raises(KeyError, match=str(key)): | |
df.at[key, key] | |
def test_at_applied_for_rows(self): | |
# GH#48729 .at should raise InvalidIndexError when assigning rows | |
df = DataFrame(index=["a"], columns=["col1", "col2"]) | |
new_row = [123, 15] | |
with pytest.raises( | |
InvalidIndexError, | |
match=f"You can only assign a scalar value not a \\{type(new_row)}", | |
): | |
df.at["a"] = new_row | |