peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_iloc.py
""" test positional based indexing with iloc """ | |
from datetime import datetime | |
import re | |
import numpy as np | |
import pytest | |
from pandas.errors import IndexingError | |
import pandas.util._test_decorators as td | |
from pandas import ( | |
NA, | |
Categorical, | |
CategoricalDtype, | |
DataFrame, | |
Index, | |
Interval, | |
NaT, | |
Series, | |
Timestamp, | |
array, | |
concat, | |
date_range, | |
interval_range, | |
isna, | |
to_datetime, | |
) | |
import pandas._testing as tm | |
from pandas.api.types import is_scalar | |
from pandas.tests.indexing.common import check_indexing_smoketest_or_raises | |
# We pass through the error message from numpy | |
_slice_iloc_msg = re.escape( | |
"only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) " | |
"and integer or boolean arrays are valid indices" | |
) | |
class TestiLoc: | |
def test_iloc_getitem_int_and_list_int(self, key, kind, col, request): | |
obj = request.getfixturevalue(f"{kind}_{col}") | |
check_indexing_smoketest_or_raises( | |
obj, | |
"iloc", | |
key, | |
fails=IndexError, | |
) | |
# array of ints (GH5006), make sure that a single indexer is returning | |
# the correct type | |
class TestiLocBaseIndependent: | |
"""Tests Independent Of Base Class""" | |
def test_iloc_setitem_fullcol_categorical(self, indexer, key, using_array_manager): | |
frame = DataFrame({0: range(3)}, dtype=object) | |
cat = Categorical(["alpha", "beta", "gamma"]) | |
if not using_array_manager: | |
assert frame._mgr.blocks[0]._can_hold_element(cat) | |
df = frame.copy() | |
orig_vals = df.values | |
indexer(df)[key, 0] = cat | |
expected = DataFrame({0: cat}).astype(object) | |
if not using_array_manager: | |
assert np.shares_memory(df[0].values, orig_vals) | |
tm.assert_frame_equal(df, expected) | |
# check we dont have a view on cat (may be undesired GH#39986) | |
df.iloc[0, 0] = "gamma" | |
assert cat[0] != "gamma" | |
# pre-2.0 with mixed dataframe ("split" path) we always overwrote the | |
# column. as of 2.0 we correctly write "into" the column, so | |
# we retain the object dtype. | |
frame = DataFrame({0: np.array([0, 1, 2], dtype=object), 1: range(3)}) | |
df = frame.copy() | |
indexer(df)[key, 0] = cat | |
expected = DataFrame({0: Series(cat.astype(object), dtype=object), 1: range(3)}) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_ea_inplace(self, frame_or_series, box, using_copy_on_write): | |
# GH#38952 Case with not setting a full column | |
# IntegerArray without NAs | |
arr = array([1, 2, 3, 4]) | |
obj = frame_or_series(arr.to_numpy("i8")) | |
if frame_or_series is Series: | |
values = obj.values | |
else: | |
values = obj._mgr.arrays[0] | |
if frame_or_series is Series: | |
obj.iloc[:2] = box(arr[2:]) | |
else: | |
obj.iloc[:2, 0] = box(arr[2:]) | |
expected = frame_or_series(np.array([3, 4, 3, 4], dtype="i8")) | |
tm.assert_equal(obj, expected) | |
# Check that we are actually in-place | |
if frame_or_series is Series: | |
if using_copy_on_write: | |
assert obj.values is not values | |
assert np.shares_memory(obj.values, values) | |
else: | |
assert obj.values is values | |
else: | |
assert np.shares_memory(obj[0].values, values) | |
def test_is_scalar_access(self): | |
# GH#32085 index with duplicates doesn't matter for _is_scalar_access | |
index = Index([1, 2, 1]) | |
ser = Series(range(3), index=index) | |
assert ser.iloc._is_scalar_access((1,)) | |
df = ser.to_frame() | |
assert df.iloc._is_scalar_access((1, 0)) | |
def test_iloc_exceeds_bounds(self): | |
# GH6296 | |
# iloc should allow indexers that exceed the bounds | |
df = DataFrame(np.random.default_rng(2).random((20, 5)), columns=list("ABCDE")) | |
# lists of positions should raise IndexError! | |
msg = "positional indexers are out-of-bounds" | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[:, [0, 1, 2, 3, 4, 5]] | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[[1, 30]] | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[[1, -30]] | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[[100]] | |
s = df["A"] | |
with pytest.raises(IndexError, match=msg): | |
s.iloc[[100]] | |
with pytest.raises(IndexError, match=msg): | |
s.iloc[[-100]] | |
# still raise on a single indexer | |
msg = "single positional indexer is out-of-bounds" | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[30] | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[-30] | |
# GH10779 | |
# single positive/negative indexer exceeding Series bounds should raise | |
# an IndexError | |
with pytest.raises(IndexError, match=msg): | |
s.iloc[30] | |
with pytest.raises(IndexError, match=msg): | |
s.iloc[-30] | |
# slices are ok | |
result = df.iloc[:, 4:10] # 0 < start < len < stop | |
expected = df.iloc[:, 4:] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, -4:-10] # stop < 0 < start < len | |
expected = df.iloc[:, :0] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) | |
expected = df.iloc[:, :4:-1] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) | |
expected = df.iloc[:, 4::-1] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, -10:4] # start < 0 < stop < len | |
expected = df.iloc[:, :4] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, 10:4] # 0 < stop < len < start | |
expected = df.iloc[:, :0] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) | |
expected = df.iloc[:, :0] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, 10:11] # 0 < len < start < stop | |
expected = df.iloc[:, :0] | |
tm.assert_frame_equal(result, expected) | |
# slice bounds exceeding is ok | |
result = s.iloc[18:30] | |
expected = s.iloc[18:] | |
tm.assert_series_equal(result, expected) | |
result = s.iloc[30:] | |
expected = s.iloc[:0] | |
tm.assert_series_equal(result, expected) | |
result = s.iloc[30::-1] | |
expected = s.iloc[::-1] | |
tm.assert_series_equal(result, expected) | |
# doc example | |
dfl = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB") | |
) | |
tm.assert_frame_equal( | |
dfl.iloc[:, 2:3], | |
DataFrame(index=dfl.index, columns=Index([], dtype=dfl.columns.dtype)), | |
) | |
tm.assert_frame_equal(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) | |
tm.assert_frame_equal(dfl.iloc[4:6], dfl.iloc[[4]]) | |
msg = "positional indexers are out-of-bounds" | |
with pytest.raises(IndexError, match=msg): | |
dfl.iloc[[4, 5, 6]] | |
msg = "single positional indexer is out-of-bounds" | |
with pytest.raises(IndexError, match=msg): | |
dfl.iloc[:, 4] | |
def test_iloc_non_integer_raises(self, index, columns, index_vals, column_vals): | |
# GH 25753 | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(index), len(columns))), | |
index=index, | |
columns=columns, | |
) | |
msg = ".iloc requires numeric indexers, got" | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[index_vals, column_vals] | |
def test_iloc_getitem_invalid_scalar(self, frame_or_series): | |
# GH 21982 | |
obj = DataFrame(np.arange(100).reshape(10, 10)) | |
obj = tm.get_obj(obj, frame_or_series) | |
with pytest.raises(TypeError, match="Cannot index by location index"): | |
obj.iloc["a"] | |
def test_iloc_array_not_mutating_negative_indices(self): | |
# GH 21867 | |
array_with_neg_numbers = np.array([1, 2, -1]) | |
array_copy = array_with_neg_numbers.copy() | |
df = DataFrame( | |
{"A": [100, 101, 102], "B": [103, 104, 105], "C": [106, 107, 108]}, | |
index=[1, 2, 3], | |
) | |
df.iloc[array_with_neg_numbers] | |
tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy) | |
df.iloc[:, array_with_neg_numbers] | |
tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy) | |
def test_iloc_getitem_neg_int_can_reach_first_index(self): | |
# GH10547 and GH10779 | |
# negative integers should be able to reach index 0 | |
df = DataFrame({"A": [2, 3, 5], "B": [7, 11, 13]}) | |
s = df["A"] | |
expected = df.iloc[0] | |
result = df.iloc[-3] | |
tm.assert_series_equal(result, expected) | |
expected = df.iloc[[0]] | |
result = df.iloc[[-3]] | |
tm.assert_frame_equal(result, expected) | |
expected = s.iloc[0] | |
result = s.iloc[-3] | |
assert result == expected | |
expected = s.iloc[[0]] | |
result = s.iloc[[-3]] | |
tm.assert_series_equal(result, expected) | |
# check the length 1 Series case highlighted in GH10547 | |
expected = Series(["a"], index=["A"]) | |
result = expected.iloc[[-1]] | |
tm.assert_series_equal(result, expected) | |
def test_iloc_getitem_dups(self): | |
# GH 6766 | |
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}]) | |
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}]) | |
df = concat([df1, df2], axis=1) | |
# cross-sectional indexing | |
result = df.iloc[0, 0] | |
assert isna(result) | |
result = df.iloc[0, :] | |
expected = Series([np.nan, 1, 3, 3], index=["A", "B", "A", "B"], name=0) | |
tm.assert_series_equal(result, expected) | |
def test_iloc_getitem_array(self): | |
df = DataFrame( | |
[ | |
{"A": 1, "B": 2, "C": 3}, | |
{"A": 100, "B": 200, "C": 300}, | |
{"A": 1000, "B": 2000, "C": 3000}, | |
] | |
) | |
expected = DataFrame([{"A": 1, "B": 2, "C": 3}]) | |
tm.assert_frame_equal(df.iloc[[0]], expected) | |
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}]) | |
tm.assert_frame_equal(df.iloc[[0, 1]], expected) | |
expected = DataFrame([{"B": 2, "C": 3}, {"B": 2000, "C": 3000}], index=[0, 2]) | |
result = df.iloc[[0, 2], [1, 2]] | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_getitem_bool(self): | |
df = DataFrame( | |
[ | |
{"A": 1, "B": 2, "C": 3}, | |
{"A": 100, "B": 200, "C": 300}, | |
{"A": 1000, "B": 2000, "C": 3000}, | |
] | |
) | |
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}]) | |
result = df.iloc[[True, True, False]] | |
tm.assert_frame_equal(result, expected) | |
expected = DataFrame( | |
[{"A": 1, "B": 2, "C": 3}, {"A": 1000, "B": 2000, "C": 3000}], index=[0, 2] | |
) | |
result = df.iloc[lambda x: x.index % 2 == 0] | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_getitem_bool_diff_len(self, index): | |
# GH26658 | |
s = Series([1, 2, 3]) | |
msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}" | |
with pytest.raises(IndexError, match=msg): | |
s.iloc[index] | |
def test_iloc_getitem_slice(self): | |
df = DataFrame( | |
[ | |
{"A": 1, "B": 2, "C": 3}, | |
{"A": 100, "B": 200, "C": 300}, | |
{"A": 1000, "B": 2000, "C": 3000}, | |
] | |
) | |
expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}]) | |
result = df.iloc[:2] | |
tm.assert_frame_equal(result, expected) | |
expected = DataFrame([{"A": 100, "B": 200}], index=[1]) | |
result = df.iloc[1:2, 0:2] | |
tm.assert_frame_equal(result, expected) | |
expected = DataFrame( | |
[{"A": 1, "C": 3}, {"A": 100, "C": 300}, {"A": 1000, "C": 3000}] | |
) | |
result = df.iloc[:, lambda df: [0, 2]] | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_getitem_slice_dups(self): | |
df1 = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=["A", "A", "B", "B"], | |
) | |
df2 = DataFrame( | |
np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2), | |
columns=["A", "C"], | |
) | |
# axis=1 | |
df = concat([df1, df2], axis=1) | |
tm.assert_frame_equal(df.iloc[:, :4], df1) | |
tm.assert_frame_equal(df.iloc[:, 4:], df2) | |
df = concat([df2, df1], axis=1) | |
tm.assert_frame_equal(df.iloc[:, :2], df2) | |
tm.assert_frame_equal(df.iloc[:, 2:], df1) | |
exp = concat([df2, df1.iloc[:, [0]]], axis=1) | |
tm.assert_frame_equal(df.iloc[:, 0:3], exp) | |
# axis=0 | |
df = concat([df, df], axis=0) | |
tm.assert_frame_equal(df.iloc[0:10, :2], df2) | |
tm.assert_frame_equal(df.iloc[0:10, 2:], df1) | |
tm.assert_frame_equal(df.iloc[10:, :2], df2) | |
tm.assert_frame_equal(df.iloc[10:, 2:], df1) | |
def test_iloc_setitem(self, warn_copy_on_write): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((4, 4)), | |
index=np.arange(0, 8, 2), | |
columns=np.arange(0, 12, 3), | |
) | |
df.iloc[1, 1] = 1 | |
result = df.iloc[1, 1] | |
assert result == 1 | |
df.iloc[:, 2:3] = 0 | |
expected = df.iloc[:, 2:3] | |
result = df.iloc[:, 2:3] | |
tm.assert_frame_equal(result, expected) | |
# GH5771 | |
s = Series(0, index=[4, 5, 6]) | |
s.iloc[1:2] += 1 | |
expected = Series([0, 1, 0], index=[4, 5, 6]) | |
tm.assert_series_equal(s, expected) | |
def test_iloc_setitem_axis_argument(self): | |
# GH45032 | |
df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]]) | |
df[1] = df[1].astype(object) | |
expected = DataFrame([[6, "c", 10], [7, "d", 11], [5, 5, 5]]) | |
expected[1] = expected[1].astype(object) | |
df.iloc(axis=0)[2] = 5 | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]]) | |
df[1] = df[1].astype(object) | |
expected = DataFrame([[6, "c", 5], [7, "d", 5], [8, "e", 5]]) | |
expected[1] = expected[1].astype(object) | |
df.iloc(axis=1)[2] = 5 | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_list(self): | |
# setitem with an iloc list | |
df = DataFrame( | |
np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"] | |
) | |
df.iloc[[0, 1], [1, 2]] | |
df.iloc[[0, 1], [1, 2]] += 100 | |
expected = DataFrame( | |
np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), | |
index=["A", "B", "C"], | |
columns=["A", "B", "C"], | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_pandas_object(self): | |
# GH 17193 | |
s_orig = Series([0, 1, 2, 3]) | |
expected = Series([0, -1, -2, 3]) | |
s = s_orig.copy() | |
s.iloc[Series([1, 2])] = [-1, -2] | |
tm.assert_series_equal(s, expected) | |
s = s_orig.copy() | |
s.iloc[Index([1, 2])] = [-1, -2] | |
tm.assert_series_equal(s, expected) | |
def test_iloc_setitem_dups(self): | |
# GH 6766 | |
# iloc with a mask aligning from another iloc | |
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}]) | |
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}]) | |
df = concat([df1, df2], axis=1) | |
expected = df.fillna(3) | |
inds = np.isnan(df.iloc[:, 0]) | |
mask = inds[inds].index | |
df.iloc[mask, 0] = df.iloc[mask, 2] | |
tm.assert_frame_equal(df, expected) | |
# del a dup column across blocks | |
expected = DataFrame({0: [1, 2], 1: [3, 4]}) | |
expected.columns = ["B", "B"] | |
del df["A"] | |
tm.assert_frame_equal(df, expected) | |
# assign back to self | |
df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] | |
tm.assert_frame_equal(df, expected) | |
# reversed x 2 | |
df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True) | |
df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_frame_duplicate_columns_multiple_blocks( | |
self, using_array_manager | |
): | |
# Same as the "assign back to self" check in test_iloc_setitem_dups | |
# but on a DataFrame with multiple blocks | |
df = DataFrame([[0, 1], [2, 3]], columns=["B", "B"]) | |
# setting float values that can be held by existing integer arrays | |
# is inplace | |
df.iloc[:, 0] = df.iloc[:, 0].astype("f8") | |
if not using_array_manager: | |
assert len(df._mgr.blocks) == 1 | |
# if the assigned values cannot be held by existing integer arrays, | |
# we cast | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
df.iloc[:, 0] = df.iloc[:, 0] + 0.5 | |
if not using_array_manager: | |
assert len(df._mgr.blocks) == 2 | |
expected = df.copy() | |
# assign back to self | |
df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] | |
tm.assert_frame_equal(df, expected) | |
# TODO: GH#27620 this test used to compare iloc against ix; check if this | |
# is redundant with another test comparing iloc against loc | |
def test_iloc_getitem_frame(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
index=range(0, 20, 2), | |
columns=range(0, 8, 2), | |
) | |
result = df.iloc[2] | |
exp = df.loc[4] | |
tm.assert_series_equal(result, exp) | |
result = df.iloc[2, 2] | |
exp = df.loc[4, 4] | |
assert result == exp | |
# slice | |
result = df.iloc[4:8] | |
expected = df.loc[8:14] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[:, 2:3] | |
expected = df.loc[:, 4:5] | |
tm.assert_frame_equal(result, expected) | |
# list of integers | |
result = df.iloc[[0, 1, 3]] | |
expected = df.loc[[0, 2, 6]] | |
tm.assert_frame_equal(result, expected) | |
result = df.iloc[[0, 1, 3], [0, 1]] | |
expected = df.loc[[0, 2, 6], [0, 2]] | |
tm.assert_frame_equal(result, expected) | |
# neg indices | |
result = df.iloc[[-1, 1, 3], [-1, 1]] | |
expected = df.loc[[18, 2, 6], [6, 2]] | |
tm.assert_frame_equal(result, expected) | |
# dups indices | |
result = df.iloc[[-1, -1, 1, 3], [-1, 1]] | |
expected = df.loc[[18, 18, 2, 6], [6, 2]] | |
tm.assert_frame_equal(result, expected) | |
# with index-like | |
s = Series(index=range(1, 5), dtype=object) | |
result = df.iloc[s.index] | |
expected = df.loc[[2, 4, 6, 8]] | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_getitem_labelled_frame(self): | |
# try with labelled frame | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
index=list("abcdefghij"), | |
columns=list("ABCD"), | |
) | |
result = df.iloc[1, 1] | |
exp = df.loc["b", "B"] | |
assert result == exp | |
result = df.iloc[:, 2:3] | |
expected = df.loc[:, ["C"]] | |
tm.assert_frame_equal(result, expected) | |
# negative indexing | |
result = df.iloc[-1, -1] | |
exp = df.loc["j", "D"] | |
assert result == exp | |
# out-of-bounds exception | |
msg = "index 5 is out of bounds for axis 0 with size 4|index out of bounds" | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[10, 5] | |
# trying to use a label | |
msg = ( | |
r"Location based indexing can only have \[integer, integer " | |
r"slice \(START point is INCLUDED, END point is EXCLUDED\), " | |
r"listlike of integers, boolean array\] types" | |
) | |
with pytest.raises(ValueError, match=msg): | |
df.iloc["j", "D"] | |
def test_iloc_getitem_doc_issue(self, using_array_manager): | |
# multi axis slicing issue with single block | |
# surfaced in GH 6059 | |
arr = np.random.default_rng(2).standard_normal((6, 4)) | |
index = date_range("20130101", periods=6) | |
columns = list("ABCD") | |
df = DataFrame(arr, index=index, columns=columns) | |
# defines ref_locs | |
df.describe() | |
result = df.iloc[3:5, 0:2] | |
expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) | |
tm.assert_frame_equal(result, expected) | |
# for dups | |
df.columns = list("aaaa") | |
result = df.iloc[3:5, 0:2] | |
expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list("aa")) | |
tm.assert_frame_equal(result, expected) | |
# related | |
arr = np.random.default_rng(2).standard_normal((6, 4)) | |
index = list(range(0, 12, 2)) | |
columns = list(range(0, 8, 2)) | |
df = DataFrame(arr, index=index, columns=columns) | |
if not using_array_manager: | |
df._mgr.blocks[0].mgr_locs | |
result = df.iloc[1:5, 2:4] | |
expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_setitem_series(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
index=list("abcdefghij"), | |
columns=list("ABCD"), | |
) | |
df.iloc[1, 1] = 1 | |
result = df.iloc[1, 1] | |
assert result == 1 | |
df.iloc[:, 2:3] = 0 | |
expected = df.iloc[:, 2:3] | |
result = df.iloc[:, 2:3] | |
tm.assert_frame_equal(result, expected) | |
s = Series(np.random.default_rng(2).standard_normal(10), index=range(0, 20, 2)) | |
s.iloc[1] = 1 | |
result = s.iloc[1] | |
assert result == 1 | |
s.iloc[:4] = 0 | |
expected = s.iloc[:4] | |
result = s.iloc[:4] | |
tm.assert_series_equal(result, expected) | |
s = Series([-1] * 6) | |
s.iloc[0::2] = [0, 2, 4] | |
s.iloc[1::2] = [1, 3, 5] | |
result = s | |
expected = Series([0, 1, 2, 3, 4, 5]) | |
tm.assert_series_equal(result, expected) | |
def test_iloc_setitem_list_of_lists(self): | |
# GH 7551 | |
# list-of-list is set incorrectly in mixed vs. single dtyped frames | |
df = DataFrame( | |
{"A": np.arange(5, dtype="int64"), "B": np.arange(5, 10, dtype="int64")} | |
) | |
df.iloc[2:4] = [[10, 11], [12, 13]] | |
expected = DataFrame({"A": [0, 1, 10, 12, 4], "B": [5, 6, 11, 13, 9]}) | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame( | |
{"A": ["a", "b", "c", "d", "e"], "B": np.arange(5, 10, dtype="int64")} | |
) | |
df.iloc[2:4] = [["x", 11], ["y", 13]] | |
expected = DataFrame({"A": ["a", "b", "x", "y", "e"], "B": [5, 6, 11, 13, 9]}) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_with_scalar_index(self, indexer, value): | |
# GH #19474 | |
# assigning like "df.iloc[0, [0]] = ['Z']" should be evaluated | |
# elementwisely, not using "setter('A', ['Z'])". | |
# Set object type to avoid upcast when setting "Z" | |
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object}) | |
df.iloc[0, indexer] = value | |
result = df.iloc[0, 0] | |
assert is_scalar(result) and result == "Z" | |
def test_iloc_mask(self): | |
# GH 3631, iloc with a mask (of a series) should raise | |
df = DataFrame(list(range(5)), index=list("ABCDE"), columns=["a"]) | |
mask = df.a % 2 == 0 | |
msg = "iLocation based boolean indexing cannot use an indexable as a mask" | |
with pytest.raises(ValueError, match=msg): | |
df.iloc[mask] | |
mask.index = range(len(mask)) | |
msg = "iLocation based boolean indexing on an integer type is not available" | |
with pytest.raises(NotImplementedError, match=msg): | |
df.iloc[mask] | |
# ndarray ok | |
result = df.iloc[np.array([True] * len(mask), dtype=bool)] | |
tm.assert_frame_equal(result, df) | |
# the possibilities | |
locs = np.arange(4) | |
nums = 2**locs | |
reps = [bin(num) for num in nums] | |
df = DataFrame({"locs": locs, "nums": nums}, reps) | |
expected = { | |
(None, ""): "0b1100", | |
(None, ".loc"): "0b1100", | |
(None, ".iloc"): "0b1100", | |
("index", ""): "0b11", | |
("index", ".loc"): "0b11", | |
("index", ".iloc"): ( | |
"iLocation based boolean indexing cannot use an indexable as a mask" | |
), | |
("locs", ""): "Unalignable boolean Series provided as indexer " | |
"(index of the boolean Series and of the indexed " | |
"object do not match).", | |
("locs", ".loc"): "Unalignable boolean Series provided as indexer " | |
"(index of the boolean Series and of the " | |
"indexed object do not match).", | |
("locs", ".iloc"): ( | |
"iLocation based boolean indexing on an " | |
"integer type is not available" | |
), | |
} | |
# UserWarnings from reindex of a boolean mask | |
for idx in [None, "index", "locs"]: | |
mask = (df.nums > 2).values | |
if idx: | |
mask_index = getattr(df, idx)[::-1] | |
mask = Series(mask, list(mask_index)) | |
for method in ["", ".loc", ".iloc"]: | |
try: | |
if method: | |
accessor = getattr(df, method[1:]) | |
else: | |
accessor = df | |
answer = str(bin(accessor[mask]["nums"].sum())) | |
except (ValueError, IndexingError, NotImplementedError) as err: | |
answer = str(err) | |
key = ( | |
idx, | |
method, | |
) | |
r = expected.get(key) | |
if r != answer: | |
raise AssertionError( | |
f"[{key}] does not match [{answer}], received [{r}]" | |
) | |
def test_iloc_non_unique_indexing(self): | |
# GH 4017, non-unique indexing (on the axis) | |
df = DataFrame({"A": [0.1] * 3000, "B": [1] * 3000}) | |
idx = np.arange(30) * 99 | |
expected = df.iloc[idx] | |
df3 = concat([df, 2 * df, 3 * df]) | |
result = df3.iloc[idx] | |
tm.assert_frame_equal(result, expected) | |
df2 = DataFrame({"A": [0.1] * 1000, "B": [1] * 1000}) | |
df2 = concat([df2, 2 * df2, 3 * df2]) | |
with pytest.raises(KeyError, match="not in index"): | |
df2.loc[idx] | |
def test_iloc_empty_list_indexer_is_ok(self): | |
df = DataFrame( | |
np.ones((5, 2)), | |
index=Index([f"i-{i}" for i in range(5)], name="a"), | |
columns=Index([f"i-{i}" for i in range(2)], name="a"), | |
) | |
# vertical empty | |
tm.assert_frame_equal( | |
df.iloc[:, []], | |
df.iloc[:, :0], | |
check_index_type=True, | |
check_column_type=True, | |
) | |
# horizontal empty | |
tm.assert_frame_equal( | |
df.iloc[[], :], | |
df.iloc[:0, :], | |
check_index_type=True, | |
check_column_type=True, | |
) | |
# horizontal empty | |
tm.assert_frame_equal( | |
df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True | |
) | |
def test_identity_slice_returns_new_object( | |
self, using_copy_on_write, warn_copy_on_write | |
): | |
# GH13873 | |
original_df = DataFrame({"a": [1, 2, 3]}) | |
sliced_df = original_df.iloc[:] | |
assert sliced_df is not original_df | |
# should be a shallow copy | |
assert np.shares_memory(original_df["a"], sliced_df["a"]) | |
# Setting using .loc[:, "a"] sets inplace so alters both sliced and orig | |
# depending on CoW | |
with tm.assert_cow_warning(warn_copy_on_write): | |
original_df.loc[:, "a"] = [4, 4, 4] | |
if using_copy_on_write: | |
assert (sliced_df["a"] == [1, 2, 3]).all() | |
else: | |
assert (sliced_df["a"] == 4).all() | |
original_series = Series([1, 2, 3, 4, 5, 6]) | |
sliced_series = original_series.iloc[:] | |
assert sliced_series is not original_series | |
# should also be a shallow copy | |
with tm.assert_cow_warning(warn_copy_on_write): | |
original_series[:3] = [7, 8, 9] | |
if using_copy_on_write: | |
# shallow copy not updated (CoW) | |
assert all(sliced_series[:3] == [1, 2, 3]) | |
else: | |
assert all(sliced_series[:3] == [7, 8, 9]) | |
def test_indexing_zerodim_np_array(self): | |
# GH24919 | |
df = DataFrame([[1, 2], [3, 4]]) | |
result = df.iloc[np.array(0)] | |
s = Series([1, 2], name=0) | |
tm.assert_series_equal(result, s) | |
def test_series_indexing_zerodim_np_array(self): | |
# GH24919 | |
s = Series([1, 2]) | |
result = s.iloc[np.array(0)] | |
assert result == 1 | |
def test_iloc_setitem_categorical_updates_inplace(self): | |
# Mixed dtype ensures we go through take_split_path in setitem_with_indexer | |
cat = Categorical(["A", "B", "C"]) | |
df = DataFrame({1: cat, 2: [1, 2, 3]}, copy=False) | |
assert tm.shares_memory(df[1], cat) | |
# With the enforcement of GH#45333 in 2.0, this modifies original | |
# values inplace | |
df.iloc[:, 0] = cat[::-1] | |
assert tm.shares_memory(df[1], cat) | |
expected = Categorical(["C", "B", "A"], categories=["A", "B", "C"]) | |
tm.assert_categorical_equal(cat, expected) | |
def test_iloc_with_boolean_operation(self): | |
# GH 20627 | |
result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]]) | |
result.iloc[result.index <= 2] *= 2 | |
expected = DataFrame([[0, 2], [4, 6], [8, 10], [6, np.nan]]) | |
tm.assert_frame_equal(result, expected) | |
result.iloc[result.index > 2] *= 2 | |
expected = DataFrame([[0, 2], [4, 6], [8, 10], [12, np.nan]]) | |
tm.assert_frame_equal(result, expected) | |
result.iloc[[True, True, False, False]] *= 2 | |
expected = DataFrame([[0, 4], [8, 12], [8, 10], [12, np.nan]]) | |
tm.assert_frame_equal(result, expected) | |
result.iloc[[False, False, True, True]] /= 2 | |
expected = DataFrame([[0, 4.0], [8, 12.0], [4, 5.0], [6, np.nan]]) | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_getitem_singlerow_slice_categoricaldtype_gives_series(self): | |
# GH#29521 | |
df = DataFrame({"x": Categorical("a b c d e".split())}) | |
result = df.iloc[0] | |
raw_cat = Categorical(["a"], categories=["a", "b", "c", "d", "e"]) | |
expected = Series(raw_cat, index=["x"], name=0, dtype="category") | |
tm.assert_series_equal(result, expected) | |
def test_iloc_getitem_categorical_values(self): | |
# GH#14580 | |
# test iloc() on Series with Categorical data | |
ser = Series([1, 2, 3]).astype("category") | |
# get slice | |
result = ser.iloc[0:2] | |
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3])) | |
tm.assert_series_equal(result, expected) | |
# get list of indexes | |
result = ser.iloc[[0, 1]] | |
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3])) | |
tm.assert_series_equal(result, expected) | |
# get boolean array | |
result = ser.iloc[[True, False, False]] | |
expected = Series([1]).astype(CategoricalDtype([1, 2, 3])) | |
tm.assert_series_equal(result, expected) | |
def test_iloc_setitem_td64_values_cast_na(self, value): | |
# GH#18586 | |
series = Series([0, 1, 2], dtype="timedelta64[ns]") | |
series.iloc[0] = value | |
expected = Series([NaT, 1, 2], dtype="timedelta64[ns]") | |
tm.assert_series_equal(series, expected) | |
def test_setitem_mix_of_nan_and_interval(self, not_na, nulls_fixture): | |
# GH#27937 | |
dtype = CategoricalDtype(categories=[not_na]) | |
ser = Series( | |
[nulls_fixture, nulls_fixture, nulls_fixture, nulls_fixture], dtype=dtype | |
) | |
ser.iloc[:3] = [nulls_fixture, not_na, nulls_fixture] | |
exp = Series([nulls_fixture, not_na, nulls_fixture, nulls_fixture], dtype=dtype) | |
tm.assert_series_equal(ser, exp) | |
def test_iloc_setitem_empty_frame_raises_with_3d_ndarray(self): | |
idx = Index([]) | |
obj = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), len(idx))), | |
index=idx, | |
columns=idx, | |
) | |
nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2)) | |
msg = f"Cannot set values with ndim > {obj.ndim}" | |
with pytest.raises(ValueError, match=msg): | |
obj.iloc[nd3] = 0 | |
def test_iloc_getitem_read_only_values(self, indexer): | |
# GH#10043 this is fundamentally a test for iloc, but test loc while | |
# we're here | |
rw_array = np.eye(10) | |
rw_df = DataFrame(rw_array) | |
ro_array = np.eye(10) | |
ro_array.setflags(write=False) | |
ro_df = DataFrame(ro_array) | |
tm.assert_frame_equal(indexer(rw_df)[[1, 2, 3]], indexer(ro_df)[[1, 2, 3]]) | |
tm.assert_frame_equal(indexer(rw_df)[[1]], indexer(ro_df)[[1]]) | |
tm.assert_series_equal(indexer(rw_df)[1], indexer(ro_df)[1]) | |
tm.assert_frame_equal(indexer(rw_df)[1:3], indexer(ro_df)[1:3]) | |
def test_iloc_getitem_readonly_key(self): | |
# GH#17192 iloc with read-only array raising TypeError | |
df = DataFrame({"data": np.ones(100, dtype="float64")}) | |
indices = np.array([1, 3, 6]) | |
indices.flags.writeable = False | |
result = df.iloc[indices] | |
expected = df.loc[[1, 3, 6]] | |
tm.assert_frame_equal(result, expected) | |
result = df["data"].iloc[indices] | |
expected = df["data"].loc[[1, 3, 6]] | |
tm.assert_series_equal(result, expected) | |
def test_iloc_assign_series_to_df_cell(self): | |
# GH 37593 | |
df = DataFrame(columns=["a"], index=[0]) | |
df.iloc[0, 0] = Series([1, 2, 3]) | |
expected = DataFrame({"a": [Series([1, 2, 3])]}, columns=["a"], index=[0]) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_bool_indexer(self, klass): | |
# GH#36741 | |
df = DataFrame({"flag": ["x", "y", "z"], "value": [1, 3, 4]}) | |
indexer = klass([True, False, False]) | |
df.iloc[indexer, 1] = df.iloc[indexer, 1] * 2 | |
expected = DataFrame({"flag": ["x", "y", "z"], "value": [2, 3, 4]}) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_pure_position_based(self, indexer): | |
# GH#22046 | |
df1 = DataFrame({"a2": [11, 12, 13], "b2": [14, 15, 16]}) | |
df2 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) | |
df2.iloc[:, indexer] = df1.iloc[:, [0]] | |
expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]}) | |
tm.assert_frame_equal(df2, expected) | |
def test_iloc_setitem_dictionary_value(self): | |
# GH#37728 | |
df = DataFrame({"x": [1, 2], "y": [2, 2]}) | |
rhs = {"x": 9, "y": 99} | |
df.iloc[1] = rhs | |
expected = DataFrame({"x": [1, 9], "y": [2, 99]}) | |
tm.assert_frame_equal(df, expected) | |
# GH#38335 same thing, mixed dtypes | |
df = DataFrame({"x": [1, 2], "y": [2.0, 2.0]}) | |
df.iloc[1] = rhs | |
expected = DataFrame({"x": [1, 9], "y": [2.0, 99.0]}) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_getitem_float_duplicates(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((3, 3)), | |
index=[0.1, 0.2, 0.2], | |
columns=list("abc"), | |
) | |
expect = df.iloc[1:] | |
tm.assert_frame_equal(df.loc[0.2], expect) | |
expect = df.iloc[1:, 0] | |
tm.assert_series_equal(df.loc[0.2, "a"], expect) | |
df.index = [1, 0.2, 0.2] | |
expect = df.iloc[1:] | |
tm.assert_frame_equal(df.loc[0.2], expect) | |
expect = df.iloc[1:, 0] | |
tm.assert_series_equal(df.loc[0.2, "a"], expect) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((4, 3)), | |
index=[1, 0.2, 0.2, 1], | |
columns=list("abc"), | |
) | |
expect = df.iloc[1:-1] | |
tm.assert_frame_equal(df.loc[0.2], expect) | |
expect = df.iloc[1:-1, 0] | |
tm.assert_series_equal(df.loc[0.2, "a"], expect) | |
df.index = [0.1, 0.2, 2, 0.2] | |
expect = df.iloc[[1, -1]] | |
tm.assert_frame_equal(df.loc[0.2], expect) | |
expect = df.iloc[[1, -1], 0] | |
tm.assert_series_equal(df.loc[0.2, "a"], expect) | |
def test_iloc_setitem_custom_object(self): | |
# iloc with an object | |
class TO: | |
def __init__(self, value) -> None: | |
self.value = value | |
def __str__(self) -> str: | |
return f"[{self.value}]" | |
__repr__ = __str__ | |
def __eq__(self, other) -> bool: | |
return self.value == other.value | |
def view(self): | |
return self | |
df = DataFrame(index=[0, 1], columns=[0]) | |
df.iloc[1, 0] = TO(1) | |
df.iloc[1, 0] = TO(2) | |
result = DataFrame(index=[0, 1], columns=[0]) | |
result.iloc[1, 0] = TO(2) | |
tm.assert_frame_equal(result, df) | |
# remains object dtype even after setting it back | |
df = DataFrame(index=[0, 1], columns=[0]) | |
df.iloc[1, 0] = TO(1) | |
df.iloc[1, 0] = np.nan | |
result = DataFrame(index=[0, 1], columns=[0]) | |
tm.assert_frame_equal(result, df) | |
def test_iloc_getitem_with_duplicates(self): | |
df = DataFrame( | |
np.random.default_rng(2).random((3, 3)), | |
columns=list("ABC"), | |
index=list("aab"), | |
) | |
result = df.iloc[0] | |
assert isinstance(result, Series) | |
tm.assert_almost_equal(result.values, df.values[0]) | |
result = df.T.iloc[:, 0] | |
assert isinstance(result, Series) | |
tm.assert_almost_equal(result.values, df.values[0]) | |
def test_iloc_getitem_with_duplicates2(self): | |
# GH#2259 | |
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2]) | |
result = df.iloc[:, [0]] | |
expected = df.take([0], axis=1) | |
tm.assert_frame_equal(result, expected) | |
def test_iloc_interval(self): | |
# GH#17130 | |
df = DataFrame({Interval(1, 2): [1, 2]}) | |
result = df.iloc[0] | |
expected = Series({Interval(1, 2): 1}, name=0) | |
tm.assert_series_equal(result, expected) | |
result = df.iloc[:, 0] | |
expected = Series([1, 2], name=Interval(1, 2)) | |
tm.assert_series_equal(result, expected) | |
result = df.copy() | |
result.iloc[:, 0] += 1 | |
expected = DataFrame({Interval(1, 2): [2, 3]}) | |
tm.assert_frame_equal(result, expected) | |
def test_loc_setitem_boolean_list(self, rhs_func, indexing_func): | |
# GH#20438 testing specifically list key, not arraylike | |
ser = Series([0, 1, 2]) | |
ser.iloc[indexing_func([True, False, True])] = rhs_func([5, 10]) | |
expected = Series([5, 1, 10]) | |
tm.assert_series_equal(ser, expected) | |
df = DataFrame({"a": [0, 1, 2]}) | |
df.iloc[indexing_func([True, False, True])] = rhs_func([[5], [10]]) | |
expected = DataFrame({"a": [5, 1, 10]}) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_getitem_slice_negative_step_ea_block(self): | |
# GH#44551 | |
df = DataFrame({"A": [1, 2, 3]}, dtype="Int64") | |
res = df.iloc[:, ::-1] | |
tm.assert_frame_equal(res, df) | |
df["B"] = "foo" | |
res = df.iloc[:, ::-1] | |
expected = DataFrame({"B": df["B"], "A": df["A"]}) | |
tm.assert_frame_equal(res, expected) | |
def test_iloc_setitem_2d_ndarray_into_ea_block(self): | |
# GH#44703 | |
df = DataFrame({"status": ["a", "b", "c"]}, dtype="category") | |
df.iloc[np.array([0, 1]), np.array([0])] = np.array([["a"], ["a"]]) | |
expected = DataFrame({"status": ["a", "a", "c"]}, dtype=df["status"].dtype) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_getitem_int_single_ea_block_view(self): | |
# GH#45241 | |
# TODO: make an extension interface test for this? | |
arr = interval_range(1, 10.0)._values | |
df = DataFrame(arr) | |
# ser should be a *view* on the DataFrame data | |
ser = df.iloc[2] | |
# if we have a view, then changing arr[2] should also change ser[0] | |
assert arr[2] != arr[-1] # otherwise the rest isn't meaningful | |
arr[2] = arr[-1] | |
assert ser[0] == arr[-1] | |
def test_iloc_setitem_multicolumn_to_datetime(self): | |
# GH#20511 | |
df = DataFrame({"A": ["2022-01-01", "2022-01-02"], "B": ["2021", "2022"]}) | |
df.iloc[:, [0]] = DataFrame({"A": to_datetime(["2021", "2022"])}) | |
expected = DataFrame( | |
{ | |
"A": [ | |
Timestamp("2021-01-01 00:00:00"), | |
Timestamp("2022-01-01 00:00:00"), | |
], | |
"B": ["2021", "2022"], | |
} | |
) | |
tm.assert_frame_equal(df, expected, check_dtype=False) | |
class TestILocErrors: | |
# NB: this test should work for _any_ Series we can pass as | |
# series_with_simple_index | |
def test_iloc_float_raises( | |
self, series_with_simple_index, frame_or_series, warn_copy_on_write | |
): | |
# GH#4892 | |
# float_indexers should raise exceptions | |
# on appropriate Index types & accessors | |
# this duplicates the code below | |
# but is specifically testing for the error | |
# message | |
obj = series_with_simple_index | |
if frame_or_series is DataFrame: | |
obj = obj.to_frame() | |
msg = "Cannot index by location index with a non-integer key" | |
with pytest.raises(TypeError, match=msg): | |
obj.iloc[3.0] | |
with pytest.raises(IndexError, match=_slice_iloc_msg): | |
with tm.assert_cow_warning( | |
warn_copy_on_write and frame_or_series is DataFrame | |
): | |
obj.iloc[3.0] = 0 | |
def test_iloc_getitem_setitem_fancy_exceptions(self, float_frame): | |
with pytest.raises(IndexingError, match="Too many indexers"): | |
float_frame.iloc[:, :, :] | |
with pytest.raises(IndexError, match="too many indices for array"): | |
# GH#32257 we let numpy do validation, get their exception | |
float_frame.iloc[:, :, :] = 1 | |
def test_iloc_frame_indexer(self): | |
# GH#39004 | |
df = DataFrame({"a": [1, 2, 3]}) | |
indexer = DataFrame({"a": [True, False, True]}) | |
msg = "DataFrame indexer for .iloc is not supported. Consider using .loc" | |
with pytest.raises(TypeError, match=msg): | |
df.iloc[indexer] = 1 | |
msg = ( | |
"DataFrame indexer is not allowed for .iloc\n" | |
"Consider using .loc for automatic alignment." | |
) | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[indexer] | |
class TestILocSetItemDuplicateColumns: | |
def test_iloc_setitem_scalar_duplicate_columns(self): | |
# GH#15686, duplicate columns and mixed dtype | |
df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}]) | |
df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}]) | |
df = concat([df1, df2], axis=1) | |
df.iloc[0, 0] = -1 | |
assert df.iloc[0, 0] == -1 | |
assert df.iloc[0, 2] == 3 | |
assert df.dtypes.iloc[2] == np.int64 | |
def test_iloc_setitem_list_duplicate_columns(self): | |
# GH#22036 setting with same-sized list | |
df = DataFrame([[0, "str", "str2"]], columns=["a", "b", "b"]) | |
df.iloc[:, 2] = ["str3"] | |
expected = DataFrame([[0, "str", "str3"]], columns=["a", "b", "b"]) | |
tm.assert_frame_equal(df, expected) | |
def test_iloc_setitem_series_duplicate_columns(self): | |
df = DataFrame( | |
np.arange(8, dtype=np.int64).reshape(2, 4), columns=["A", "B", "A", "B"] | |
) | |
df.iloc[:, 0] = df.iloc[:, 0].astype(np.float64) | |
assert df.dtypes.iloc[2] == np.int64 | |
def test_iloc_setitem_dtypes_duplicate_columns( | |
self, dtypes, init_value, expected_value | |
): | |
# GH#22035 | |
df = DataFrame( | |
[[init_value, "str", "str2"]], columns=["a", "b", "b"], dtype=object | |
) | |
# with the enforcement of GH#45333 in 2.0, this sets values inplace, | |
# so we retain object dtype | |
df.iloc[:, 0] = df.iloc[:, 0].astype(dtypes) | |
expected_df = DataFrame( | |
[[expected_value, "str", "str2"]], | |
columns=["a", "b", "b"], | |
dtype=object, | |
) | |
tm.assert_frame_equal(df, expected_df) | |
class TestILocCallable: | |
def test_frame_iloc_getitem_callable(self): | |
# GH#11485 | |
df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD")) | |
# return location | |
res = df.iloc[lambda x: [1, 3]] | |
tm.assert_frame_equal(res, df.iloc[[1, 3]]) | |
res = df.iloc[lambda x: [1, 3], :] | |
tm.assert_frame_equal(res, df.iloc[[1, 3], :]) | |
res = df.iloc[lambda x: [1, 3], lambda x: 0] | |
tm.assert_series_equal(res, df.iloc[[1, 3], 0]) | |
res = df.iloc[lambda x: [1, 3], lambda x: [0]] | |
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]]) | |
# mixture | |
res = df.iloc[[1, 3], lambda x: 0] | |
tm.assert_series_equal(res, df.iloc[[1, 3], 0]) | |
res = df.iloc[[1, 3], lambda x: [0]] | |
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]]) | |
res = df.iloc[lambda x: [1, 3], 0] | |
tm.assert_series_equal(res, df.iloc[[1, 3], 0]) | |
res = df.iloc[lambda x: [1, 3], [0]] | |
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]]) | |
def test_frame_iloc_setitem_callable(self): | |
# GH#11485 | |
df = DataFrame( | |
{"X": [1, 2, 3, 4], "Y": Series(list("aabb"), dtype=object)}, | |
index=list("ABCD"), | |
) | |
# return location | |
res = df.copy() | |
res.iloc[lambda x: [1, 3]] = 0 | |
exp = df.copy() | |
exp.iloc[[1, 3]] = 0 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.iloc[lambda x: [1, 3], :] = -1 | |
exp = df.copy() | |
exp.iloc[[1, 3], :] = -1 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.iloc[lambda x: [1, 3], lambda x: 0] = 5 | |
exp = df.copy() | |
exp.iloc[[1, 3], 0] = 5 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.iloc[lambda x: [1, 3], lambda x: [0]] = 25 | |
exp = df.copy() | |
exp.iloc[[1, 3], [0]] = 25 | |
tm.assert_frame_equal(res, exp) | |
# mixture | |
res = df.copy() | |
res.iloc[[1, 3], lambda x: 0] = -3 | |
exp = df.copy() | |
exp.iloc[[1, 3], 0] = -3 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.iloc[[1, 3], lambda x: [0]] = -5 | |
exp = df.copy() | |
exp.iloc[[1, 3], [0]] = -5 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.iloc[lambda x: [1, 3], 0] = 10 | |
exp = df.copy() | |
exp.iloc[[1, 3], 0] = 10 | |
tm.assert_frame_equal(res, exp) | |
res = df.copy() | |
res.iloc[lambda x: [1, 3], [0]] = [-5, -5] | |
exp = df.copy() | |
exp.iloc[[1, 3], [0]] = [-5, -5] | |
tm.assert_frame_equal(res, exp) | |
class TestILocSeries: | |
def test_iloc(self, using_copy_on_write, warn_copy_on_write): | |
ser = Series( | |
np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2)) | |
) | |
ser_original = ser.copy() | |
for i in range(len(ser)): | |
result = ser.iloc[i] | |
exp = ser[ser.index[i]] | |
tm.assert_almost_equal(result, exp) | |
# pass a slice | |
result = ser.iloc[slice(1, 3)] | |
expected = ser.loc[2:4] | |
tm.assert_series_equal(result, expected) | |
# test slice is a view | |
with tm.assert_produces_warning(None): | |
# GH#45324 make sure we aren't giving a spurious FutureWarning | |
with tm.assert_cow_warning(warn_copy_on_write): | |
result[:] = 0 | |
if using_copy_on_write: | |
tm.assert_series_equal(ser, ser_original) | |
else: | |
assert (ser.iloc[1:3] == 0).all() | |
# list of integers | |
result = ser.iloc[[0, 2, 3, 4, 5]] | |
expected = ser.reindex(ser.index[[0, 2, 3, 4, 5]]) | |
tm.assert_series_equal(result, expected) | |
def test_iloc_getitem_nonunique(self): | |
ser = Series([0, 1, 2], index=[0, 1, 0]) | |
assert ser.iloc[2] == 2 | |
def test_iloc_setitem_pure_position_based(self): | |
# GH#22046 | |
ser1 = Series([1, 2, 3]) | |
ser2 = Series([4, 5, 6], index=[1, 0, 2]) | |
ser1.iloc[1:3] = ser2.iloc[1:3] | |
expected = Series([1, 5, 6]) | |
tm.assert_series_equal(ser1, expected) | |
def test_iloc_nullable_int64_size_1_nan(self): | |
# GH 31861 | |
result = DataFrame({"a": ["test"], "b": [np.nan]}) | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
result.loc[:, "b"] = result.loc[:, "b"].astype("Int64") | |
expected = DataFrame({"a": ["test"], "b": array([NA], dtype="Int64")}) | |
tm.assert_frame_equal(result, expected) | |