peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_partial.py
""" | |
test setting *parts* of objects both positionally and label based | |
TODO: these should be split among the indexer tests | |
""" | |
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
Period, | |
Series, | |
Timestamp, | |
date_range, | |
period_range, | |
) | |
import pandas._testing as tm | |
class TestEmptyFrameSetitemExpansion: | |
def test_empty_frame_setitem_index_name_retained(self): | |
# GH#31368 empty frame has non-None index.name -> retained | |
df = DataFrame({}, index=pd.RangeIndex(0, name="df_index")) | |
series = Series(1.23, index=pd.RangeIndex(4, name="series_index")) | |
df["series"] = series | |
expected = DataFrame( | |
{"series": [1.23] * 4}, | |
index=pd.RangeIndex(4, name="df_index"), | |
columns=Index(["series"], dtype=object), | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_empty_frame_setitem_index_name_inherited(self): | |
# GH#36527 empty frame has None index.name -> not retained | |
df = DataFrame() | |
series = Series(1.23, index=pd.RangeIndex(4, name="series_index")) | |
df["series"] = series | |
expected = DataFrame( | |
{"series": [1.23] * 4}, | |
index=pd.RangeIndex(4, name="series_index"), | |
columns=Index(["series"], dtype=object), | |
) | |
tm.assert_frame_equal(df, expected) | |
def test_loc_setitem_zerolen_series_columns_align(self): | |
# columns will align | |
df = DataFrame(columns=["A", "B"]) | |
df.loc[0] = Series(1, index=range(4)) | |
expected = DataFrame(columns=["A", "B"], index=[0], dtype=np.float64) | |
tm.assert_frame_equal(df, expected) | |
# columns will align | |
df = DataFrame(columns=["A", "B"]) | |
df.loc[0] = Series(1, index=["B"]) | |
exp = DataFrame([[np.nan, 1]], columns=["A", "B"], index=[0], dtype="float64") | |
tm.assert_frame_equal(df, exp) | |
def test_loc_setitem_zerolen_list_length_must_match_columns(self): | |
# list-like must conform | |
df = DataFrame(columns=["A", "B"]) | |
msg = "cannot set a row with mismatched columns" | |
with pytest.raises(ValueError, match=msg): | |
df.loc[0] = [1, 2, 3] | |
df = DataFrame(columns=["A", "B"]) | |
df.loc[3] = [6, 7] # length matches len(df.columns) --> OK! | |
exp = DataFrame([[6, 7]], index=[3], columns=["A", "B"], dtype=np.int64) | |
tm.assert_frame_equal(df, exp) | |
def test_partial_set_empty_frame(self): | |
# partially set with an empty object | |
# frame | |
df = DataFrame() | |
msg = "cannot set a frame with no defined columns" | |
with pytest.raises(ValueError, match=msg): | |
df.loc[1] = 1 | |
with pytest.raises(ValueError, match=msg): | |
df.loc[1] = Series([1], index=["foo"]) | |
msg = "cannot set a frame with no defined index and a scalar" | |
with pytest.raises(ValueError, match=msg): | |
df.loc[:, 1] = 1 | |
def test_partial_set_empty_frame2(self): | |
# these work as they don't really change | |
# anything but the index | |
# GH#5632 | |
expected = DataFrame( | |
columns=Index(["foo"], dtype=object), index=Index([], dtype="object") | |
) | |
df = DataFrame(index=Index([], dtype="object")) | |
df["foo"] = Series([], dtype="object") | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame(index=Index([])) | |
df["foo"] = Series(df.index) | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame(index=Index([])) | |
df["foo"] = df.index | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_empty_frame3(self): | |
expected = DataFrame( | |
columns=Index(["foo"], dtype=object), index=Index([], dtype="int64") | |
) | |
expected["foo"] = expected["foo"].astype("float64") | |
df = DataFrame(index=Index([], dtype="int64")) | |
df["foo"] = [] | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame(index=Index([], dtype="int64")) | |
df["foo"] = Series(np.arange(len(df)), dtype="float64") | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_empty_frame4(self): | |
df = DataFrame(index=Index([], dtype="int64")) | |
df["foo"] = range(len(df)) | |
expected = DataFrame( | |
columns=Index(["foo"], dtype=object), index=Index([], dtype="int64") | |
) | |
# range is int-dtype-like, so we get int64 dtype | |
expected["foo"] = expected["foo"].astype("int64") | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_empty_frame5(self): | |
df = DataFrame() | |
tm.assert_index_equal(df.columns, pd.RangeIndex(0)) | |
df2 = DataFrame() | |
df2[1] = Series([1], index=["foo"]) | |
df.loc[:, 1] = Series([1], index=["foo"]) | |
tm.assert_frame_equal(df, DataFrame([[1]], index=["foo"], columns=[1])) | |
tm.assert_frame_equal(df, df2) | |
def test_partial_set_empty_frame_no_index(self): | |
# no index to start | |
expected = DataFrame({0: Series(1, index=range(4))}, columns=["A", "B", 0]) | |
df = DataFrame(columns=["A", "B"]) | |
df[0] = Series(1, index=range(4)) | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame(columns=["A", "B"]) | |
df.loc[:, 0] = Series(1, index=range(4)) | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_empty_frame_row(self): | |
# GH#5720, GH#5744 | |
# don't create rows when empty | |
expected = DataFrame(columns=["A", "B", "New"], index=Index([], dtype="int64")) | |
expected["A"] = expected["A"].astype("int64") | |
expected["B"] = expected["B"].astype("float64") | |
expected["New"] = expected["New"].astype("float64") | |
df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) | |
y = df[df.A > 5] | |
y["New"] = np.nan | |
tm.assert_frame_equal(y, expected) | |
expected = DataFrame(columns=["a", "b", "c c", "d"]) | |
expected["d"] = expected["d"].astype("int64") | |
df = DataFrame(columns=["a", "b", "c c"]) | |
df["d"] = 3 | |
tm.assert_frame_equal(df, expected) | |
tm.assert_series_equal(df["c c"], Series(name="c c", dtype=object)) | |
# reindex columns is ok | |
df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) | |
y = df[df.A > 5] | |
result = y.reindex(columns=["A", "B", "C"]) | |
expected = DataFrame(columns=["A", "B", "C"]) | |
expected["A"] = expected["A"].astype("int64") | |
expected["B"] = expected["B"].astype("float64") | |
expected["C"] = expected["C"].astype("float64") | |
tm.assert_frame_equal(result, expected) | |
def test_partial_set_empty_frame_set_series(self): | |
# GH#5756 | |
# setting with empty Series | |
df = DataFrame(Series(dtype=object)) | |
expected = DataFrame({0: Series(dtype=object)}) | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame(Series(name="foo", dtype=object)) | |
expected = DataFrame({"foo": Series(dtype=object)}) | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_empty_frame_empty_copy_assignment(self): | |
# GH#5932 | |
# copy on empty with assignment fails | |
df = DataFrame(index=[0]) | |
df = df.copy() | |
df["a"] = 0 | |
expected = DataFrame(0, index=[0], columns=Index(["a"], dtype=object)) | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_empty_frame_empty_consistencies(self, using_infer_string): | |
# GH#6171 | |
# consistency on empty frames | |
df = DataFrame(columns=["x", "y"]) | |
df["x"] = [1, 2] | |
expected = DataFrame({"x": [1, 2], "y": [np.nan, np.nan]}) | |
tm.assert_frame_equal(df, expected, check_dtype=False) | |
df = DataFrame(columns=["x", "y"]) | |
df["x"] = ["1", "2"] | |
expected = DataFrame( | |
{ | |
"x": Series( | |
["1", "2"], | |
dtype=object if not using_infer_string else "string[pyarrow_numpy]", | |
), | |
"y": Series([np.nan, np.nan], dtype=object), | |
} | |
) | |
tm.assert_frame_equal(df, expected) | |
df = DataFrame(columns=["x", "y"]) | |
df.loc[0, "x"] = 1 | |
expected = DataFrame({"x": [1], "y": [np.nan]}) | |
tm.assert_frame_equal(df, expected, check_dtype=False) | |
class TestPartialSetting: | |
def test_partial_setting(self): | |
# GH2578, allow ix and friends to partially set | |
# series | |
s_orig = Series([1, 2, 3]) | |
s = s_orig.copy() | |
s[5] = 5 | |
expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) | |
tm.assert_series_equal(s, expected) | |
s = s_orig.copy() | |
s.loc[5] = 5 | |
expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) | |
tm.assert_series_equal(s, expected) | |
s = s_orig.copy() | |
s[5] = 5.0 | |
expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5]) | |
tm.assert_series_equal(s, expected) | |
s = s_orig.copy() | |
s.loc[5] = 5.0 | |
expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5]) | |
tm.assert_series_equal(s, expected) | |
# iloc/iat raise | |
s = s_orig.copy() | |
msg = "iloc cannot enlarge its target object" | |
with pytest.raises(IndexError, match=msg): | |
s.iloc[3] = 5.0 | |
msg = "index 3 is out of bounds for axis 0 with size 3" | |
with pytest.raises(IndexError, match=msg): | |
s.iat[3] = 5.0 | |
def test_partial_setting_frame(self, using_array_manager): | |
df_orig = DataFrame( | |
np.arange(6).reshape(3, 2), columns=["A", "B"], dtype="int64" | |
) | |
# iloc/iat raise | |
df = df_orig.copy() | |
msg = "iloc cannot enlarge its target object" | |
with pytest.raises(IndexError, match=msg): | |
df.iloc[4, 2] = 5.0 | |
msg = "index 2 is out of bounds for axis 0 with size 2" | |
if using_array_manager: | |
msg = "list index out of range" | |
with pytest.raises(IndexError, match=msg): | |
df.iat[4, 2] = 5.0 | |
# row setting where it exists | |
expected = DataFrame({"A": [0, 4, 4], "B": [1, 5, 5]}) | |
df = df_orig.copy() | |
df.iloc[1] = df.iloc[2] | |
tm.assert_frame_equal(df, expected) | |
expected = DataFrame({"A": [0, 4, 4], "B": [1, 5, 5]}) | |
df = df_orig.copy() | |
df.loc[1] = df.loc[2] | |
tm.assert_frame_equal(df, expected) | |
# like 2578, partial setting with dtype preservation | |
expected = DataFrame({"A": [0, 2, 4, 4], "B": [1, 3, 5, 5]}) | |
df = df_orig.copy() | |
df.loc[3] = df.loc[2] | |
tm.assert_frame_equal(df, expected) | |
# single dtype frame, overwrite | |
expected = DataFrame({"A": [0, 2, 4], "B": [0, 2, 4]}) | |
df = df_orig.copy() | |
df.loc[:, "B"] = df.loc[:, "A"] | |
tm.assert_frame_equal(df, expected) | |
# mixed dtype frame, overwrite | |
expected = DataFrame({"A": [0, 2, 4], "B": Series([0.0, 2.0, 4.0])}) | |
df = df_orig.copy() | |
df["B"] = df["B"].astype(np.float64) | |
# as of 2.0, df.loc[:, "B"] = ... attempts (and here succeeds) at | |
# setting inplace | |
df.loc[:, "B"] = df.loc[:, "A"] | |
tm.assert_frame_equal(df, expected) | |
# single dtype frame, partial setting | |
expected = df_orig.copy() | |
expected["C"] = df["A"] | |
df = df_orig.copy() | |
df.loc[:, "C"] = df.loc[:, "A"] | |
tm.assert_frame_equal(df, expected) | |
# mixed frame, partial setting | |
expected = df_orig.copy() | |
expected["C"] = df["A"] | |
df = df_orig.copy() | |
df.loc[:, "C"] = df.loc[:, "A"] | |
tm.assert_frame_equal(df, expected) | |
def test_partial_setting2(self): | |
# GH 8473 | |
dates = date_range("1/1/2000", periods=8) | |
df_orig = DataFrame( | |
np.random.default_rng(2).standard_normal((8, 4)), | |
index=dates, | |
columns=["A", "B", "C", "D"], | |
) | |
expected = pd.concat( | |
[df_orig, DataFrame({"A": 7}, index=dates[-1:] + dates.freq)], sort=True | |
) | |
df = df_orig.copy() | |
df.loc[dates[-1] + dates.freq, "A"] = 7 | |
tm.assert_frame_equal(df, expected) | |
df = df_orig.copy() | |
df.at[dates[-1] + dates.freq, "A"] = 7 | |
tm.assert_frame_equal(df, expected) | |
exp_other = DataFrame({0: 7}, index=dates[-1:] + dates.freq) | |
expected = pd.concat([df_orig, exp_other], axis=1) | |
df = df_orig.copy() | |
df.loc[dates[-1] + dates.freq, 0] = 7 | |
tm.assert_frame_equal(df, expected) | |
df = df_orig.copy() | |
df.at[dates[-1] + dates.freq, 0] = 7 | |
tm.assert_frame_equal(df, expected) | |
def test_partial_setting_mixed_dtype(self): | |
# in a mixed dtype environment, try to preserve dtypes | |
# by appending | |
df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) | |
s = df.loc[1].copy() | |
s.name = 2 | |
expected = pd.concat([df, DataFrame(s).T.infer_objects()]) | |
df.loc[2] = df.loc[1] | |
tm.assert_frame_equal(df, expected) | |
def test_series_partial_set(self): | |
# partial set with new index | |
# Regression from GH4825 | |
ser = Series([0.1, 0.2], index=[1, 2]) | |
# loc equiv to .reindex | |
expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) | |
with pytest.raises(KeyError, match=r"not in index"): | |
ser.loc[[3, 2, 3]] | |
result = ser.reindex([3, 2, 3]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, "x"]) | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[[3, 2, 3, "x"]] | |
result = ser.reindex([3, 2, 3, "x"]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) | |
result = ser.loc[[2, 2, 1]] | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, "x", 1]) | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[[2, 2, "x", 1]] | |
result = ser.reindex([2, 2, "x", 1]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
# raises as nothing is in the index | |
msg = ( | |
rf"\"None of \[Index\(\[3, 3, 3\], dtype='{np.dtype(int)}'\)\] " | |
r"are in the \[index\]\"" | |
) | |
with pytest.raises(KeyError, match=msg): | |
ser.loc[[3, 3, 3]] | |
expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[[2, 2, 3]] | |
result = ser.reindex([2, 2, 3]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
s = Series([0.1, 0.2, 0.3], index=[1, 2, 3]) | |
expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[3, 4, 4]] | |
result = s.reindex([3, 4, 4]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) | |
expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[5, 3, 3]] | |
result = s.reindex([5, 3, 3]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) | |
expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[5, 4, 4]] | |
result = s.reindex([5, 4, 4]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
s = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]) | |
expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[7, 2, 2]] | |
result = s.reindex([7, 2, 2]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) | |
expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) | |
with pytest.raises(KeyError, match="not in index"): | |
s.loc[[4, 5, 5]] | |
result = s.reindex([4, 5, 5]) | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
# iloc | |
expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) | |
result = ser.iloc[[1, 1, 0, 0]] | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
def test_series_partial_set_with_name(self): | |
# GH 11497 | |
idx = Index([1, 2], dtype="int64", name="idx") | |
ser = Series([0.1, 0.2], index=idx, name="s") | |
# loc | |
with pytest.raises(KeyError, match=r"\[3\] not in index"): | |
ser.loc[[3, 2, 3]] | |
with pytest.raises(KeyError, match=r"not in index"): | |
ser.loc[[3, 2, 3, "x"]] | |
exp_idx = Index([2, 2, 1], dtype="int64", name="idx") | |
expected = Series([0.2, 0.2, 0.1], index=exp_idx, name="s") | |
result = ser.loc[[2, 2, 1]] | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
with pytest.raises(KeyError, match=r"\['x'\] not in index"): | |
ser.loc[[2, 2, "x", 1]] | |
# raises as nothing is in the index | |
msg = ( | |
rf"\"None of \[Index\(\[3, 3, 3\], dtype='{np.dtype(int)}', " | |
r"name='idx'\)\] are in the \[index\]\"" | |
) | |
with pytest.raises(KeyError, match=msg): | |
ser.loc[[3, 3, 3]] | |
with pytest.raises(KeyError, match="not in index"): | |
ser.loc[[2, 2, 3]] | |
idx = Index([1, 2, 3], dtype="int64", name="idx") | |
with pytest.raises(KeyError, match="not in index"): | |
Series([0.1, 0.2, 0.3], index=idx, name="s").loc[[3, 4, 4]] | |
idx = Index([1, 2, 3, 4], dtype="int64", name="idx") | |
with pytest.raises(KeyError, match="not in index"): | |
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 3, 3]] | |
idx = Index([1, 2, 3, 4], dtype="int64", name="idx") | |
with pytest.raises(KeyError, match="not in index"): | |
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 4, 4]] | |
idx = Index([4, 5, 6, 7], dtype="int64", name="idx") | |
with pytest.raises(KeyError, match="not in index"): | |
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[7, 2, 2]] | |
idx = Index([1, 2, 3, 4], dtype="int64", name="idx") | |
with pytest.raises(KeyError, match="not in index"): | |
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[4, 5, 5]] | |
# iloc | |
exp_idx = Index([2, 2, 1, 1], dtype="int64", name="idx") | |
expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name="s") | |
result = ser.iloc[[1, 1, 0, 0]] | |
tm.assert_series_equal(result, expected, check_index_type=True) | |
def test_setitem_with_expansion_numeric_into_datetimeindex(self, key): | |
# GH#4940 inserting non-strings | |
orig = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
df = orig.copy() | |
df.loc[key, :] = df.iloc[0] | |
ex_index = Index(list(orig.index) + [key], dtype=object, name=orig.index.name) | |
ex_data = np.concatenate([orig.values, df.iloc[[0]].values], axis=0) | |
expected = DataFrame(ex_data, index=ex_index, columns=orig.columns) | |
tm.assert_frame_equal(df, expected) | |
def test_partial_set_invalid(self): | |
# GH 4940 | |
# allow only setting of 'valid' values | |
orig = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
# allow object conversion here | |
df = orig.copy() | |
df.loc["a", :] = df.iloc[0] | |
ser = Series(df.iloc[0], name="a") | |
exp = pd.concat([orig, DataFrame(ser).T.infer_objects()]) | |
tm.assert_frame_equal(df, exp) | |
tm.assert_index_equal(df.index, Index(orig.index.tolist() + ["a"])) | |
assert df.index.dtype == "object" | |
def test_loc_with_list_of_strings_representing_datetimes( | |
self, idx, labels, expected_idx, frame_or_series | |
): | |
# GH 11278 | |
obj = frame_or_series(range(20), index=idx) | |
expected_value = [3, 7, 11] | |
expected = frame_or_series(expected_value, expected_idx) | |
tm.assert_equal(expected, obj.loc[labels]) | |
if frame_or_series is Series: | |
tm.assert_series_equal(expected, obj[labels]) | |
def test_loc_with_list_of_strings_representing_datetimes_missing_value( | |
self, idx, labels | |
): | |
# GH 11278 | |
ser = Series(range(20), index=idx) | |
df = DataFrame(range(20), index=idx) | |
msg = r"not in index" | |
with pytest.raises(KeyError, match=msg): | |
ser.loc[labels] | |
with pytest.raises(KeyError, match=msg): | |
ser[labels] | |
with pytest.raises(KeyError, match=msg): | |
df.loc[labels] | |
def test_loc_with_list_of_strings_representing_datetimes_not_matched_type( | |
self, idx, labels, msg | |
): | |
# GH 11278 | |
ser = Series(range(20), index=idx) | |
df = DataFrame(range(20), index=idx) | |
with pytest.raises(KeyError, match=msg): | |
ser.loc[labels] | |
with pytest.raises(KeyError, match=msg): | |
ser[labels] | |
with pytest.raises(KeyError, match=msg): | |
df.loc[labels] | |
class TestStringSlicing: | |
def test_slice_irregular_datetime_index_with_nan(self): | |
# GH36953 | |
index = pd.to_datetime(["2012-01-01", "2012-01-02", "2012-01-03", None]) | |
df = DataFrame(range(len(index)), index=index) | |
expected = DataFrame(range(len(index[:3])), index=index[:3]) | |
with pytest.raises(KeyError, match="non-existing keys is not allowed"): | |
# Upper bound is not in index (which is unordered) | |
# GH53983 | |
# GH37819 | |
df["2012-01-01":"2012-01-04"] | |
# Need this precision for right bound since the right slice | |
# bound is "rounded" up to the largest timepoint smaller than | |
# the next "resolution"-step of the provided point. | |
# e.g. 2012-01-03 is rounded up to 2012-01-04 - 1ns | |
result = df["2012-01-01":"2012-01-03 00:00:00.000000000"] | |
tm.assert_frame_equal(result, expected) | |