peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/indexing
/test_scalar.py
""" test scalar indexing, including at and iat """ | |
from datetime import ( | |
datetime, | |
timedelta, | |
) | |
import itertools | |
import numpy as np | |
import pytest | |
from pandas import ( | |
DataFrame, | |
Series, | |
Timedelta, | |
Timestamp, | |
date_range, | |
) | |
import pandas._testing as tm | |
def generate_indices(f, values=False): | |
""" | |
generate the indices | |
if values is True , use the axis values | |
is False, use the range | |
""" | |
axes = f.axes | |
if values: | |
axes = (list(range(len(ax))) for ax in axes) | |
return itertools.product(*axes) | |
class TestScalar: | |
def test_iat_set_ints(self, kind, col, request): | |
f = request.getfixturevalue(f"{kind}_{col}") | |
indices = generate_indices(f, True) | |
for i in indices: | |
f.iat[i] = 1 | |
expected = f.values[i] | |
tm.assert_almost_equal(expected, 1) | |
def test_iat_set_other(self, kind, col, request): | |
f = request.getfixturevalue(f"{kind}_{col}") | |
msg = "iAt based indexing can only have integer indexers" | |
with pytest.raises(ValueError, match=msg): | |
idx = next(generate_indices(f, False)) | |
f.iat[idx] = 1 | |
def test_at_set_ints_other(self, kind, col, request): | |
f = request.getfixturevalue(f"{kind}_{col}") | |
indices = generate_indices(f, False) | |
for i in indices: | |
f.at[i] = 1 | |
expected = f.loc[i] | |
tm.assert_almost_equal(expected, 1) | |
class TestAtAndiAT: | |
# at and iat tests that don't need Base class | |
def test_float_index_at_iat(self): | |
ser = Series([1, 2, 3], index=[0.1, 0.2, 0.3]) | |
for el, item in ser.items(): | |
assert ser.at[el] == item | |
for i in range(len(ser)): | |
assert ser.iat[i] == i + 1 | |
def test_at_iat_coercion(self): | |
# as timestamp is not a tuple! | |
dates = date_range("1/1/2000", periods=8) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((8, 4)), | |
index=dates, | |
columns=["A", "B", "C", "D"], | |
) | |
s = df["A"] | |
result = s.at[dates[5]] | |
xp = s.values[5] | |
assert result == xp | |
def test_iloc_iat_coercion_datelike(self, indexer_ial, ser, expected): | |
# GH 7729 | |
# make sure we are boxing the returns | |
result = indexer_ial(ser)[1] | |
assert result == expected | |
def test_imethods_with_dups(self): | |
# GH6493 | |
# iat/iloc with dups | |
s = Series(range(5), index=[1, 1, 2, 2, 3], dtype="int64") | |
result = s.iloc[2] | |
assert result == 2 | |
result = s.iat[2] | |
assert result == 2 | |
msg = "index 10 is out of bounds for axis 0 with size 5" | |
with pytest.raises(IndexError, match=msg): | |
s.iat[10] | |
msg = "index -10 is out of bounds for axis 0 with size 5" | |
with pytest.raises(IndexError, match=msg): | |
s.iat[-10] | |
result = s.iloc[[2, 3]] | |
expected = Series([2, 3], [2, 2], dtype="int64") | |
tm.assert_series_equal(result, expected) | |
df = s.to_frame() | |
result = df.iloc[2] | |
expected = Series(2, index=[0], name=2) | |
tm.assert_series_equal(result, expected) | |
result = df.iat[2, 0] | |
assert result == 2 | |
def test_frame_at_with_duplicate_axes(self): | |
# GH#33041 | |
arr = np.random.default_rng(2).standard_normal(6).reshape(3, 2) | |
df = DataFrame(arr, columns=["A", "A"]) | |
result = df.at[0, "A"] | |
expected = df.iloc[0].copy() | |
tm.assert_series_equal(result, expected) | |
result = df.T.at["A", 0] | |
tm.assert_series_equal(result, expected) | |
# setter | |
df.at[1, "A"] = 2 | |
expected = Series([2.0, 2.0], index=["A", "A"], name=1) | |
tm.assert_series_equal(df.iloc[1], expected) | |
def test_at_getitem_dt64tz_values(self): | |
# gh-15822 | |
df = DataFrame( | |
{ | |
"name": ["John", "Anderson"], | |
"date": [ | |
Timestamp(2017, 3, 13, 13, 32, 56), | |
Timestamp(2017, 2, 16, 12, 10, 3), | |
], | |
} | |
) | |
df["date"] = df["date"].dt.tz_localize("Asia/Shanghai") | |
expected = Timestamp("2017-03-13 13:32:56+0800", tz="Asia/Shanghai") | |
result = df.loc[0, "date"] | |
assert result == expected | |
result = df.at[0, "date"] | |
assert result == expected | |
def test_mixed_index_at_iat_loc_iloc_series(self): | |
# GH 19860 | |
s = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2]) | |
for el, item in s.items(): | |
assert s.at[el] == s.loc[el] == item | |
for i in range(len(s)): | |
assert s.iat[i] == s.iloc[i] == i + 1 | |
with pytest.raises(KeyError, match="^4$"): | |
s.at[4] | |
with pytest.raises(KeyError, match="^4$"): | |
s.loc[4] | |
def test_mixed_index_at_iat_loc_iloc_dataframe(self): | |
# GH 19860 | |
df = DataFrame( | |
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], columns=["a", "b", "c", 1, 2] | |
) | |
for rowIdx, row in df.iterrows(): | |
for el, item in row.items(): | |
assert df.at[rowIdx, el] == df.loc[rowIdx, el] == item | |
for row in range(2): | |
for i in range(5): | |
assert df.iat[row, i] == df.iloc[row, i] == row * 5 + i | |
with pytest.raises(KeyError, match="^3$"): | |
df.at[0, 3] | |
with pytest.raises(KeyError, match="^3$"): | |
df.loc[0, 3] | |
def test_iat_setter_incompatible_assignment(self): | |
# GH 23236 | |
result = DataFrame({"a": [0.0, 1.0], "b": [4, 5]}) | |
result.iat[0, 0] = None | |
expected = DataFrame({"a": [None, 1], "b": [4, 5]}) | |
tm.assert_frame_equal(result, expected) | |
def test_iat_dont_wrap_object_datetimelike(): | |
# GH#32809 .iat calls go through DataFrame._get_value, should not | |
# call maybe_box_datetimelike | |
dti = date_range("2016-01-01", periods=3) | |
tdi = dti - dti | |
ser = Series(dti.to_pydatetime(), dtype=object) | |
ser2 = Series(tdi.to_pytimedelta(), dtype=object) | |
df = DataFrame({"A": ser, "B": ser2}) | |
assert (df.dtypes == object).all() | |
for result in [df.at[0, "A"], df.iat[0, 0], df.loc[0, "A"], df.iloc[0, 0]]: | |
assert result is ser[0] | |
assert isinstance(result, datetime) | |
assert not isinstance(result, Timestamp) | |
for result in [df.at[1, "B"], df.iat[1, 1], df.loc[1, "B"], df.iloc[1, 1]]: | |
assert result is ser2[1] | |
assert isinstance(result, timedelta) | |
assert not isinstance(result, Timedelta) | |
def test_at_with_tuple_index_get(): | |
# GH 26989 | |
# DataFrame.at getter works with Index of tuples | |
df = DataFrame({"a": [1, 2]}, index=[(1, 2), (3, 4)]) | |
assert df.index.nlevels == 1 | |
assert df.at[(1, 2), "a"] == 1 | |
# Series.at getter works with Index of tuples | |
series = df["a"] | |
assert series.index.nlevels == 1 | |
assert series.at[(1, 2)] == 1 | |
def test_at_with_tuple_index_set(): | |
# GH 26989 | |
# DataFrame.at setter works with Index of tuples | |
df = DataFrame({"a": [1, 2]}, index=[(1, 2), (3, 4)]) | |
assert df.index.nlevels == 1 | |
df.at[(1, 2), "a"] = 2 | |
assert df.at[(1, 2), "a"] == 2 | |
# Series.at setter works with Index of tuples | |
series = df["a"] | |
assert series.index.nlevels == 1 | |
series.at[1, 2] = 3 | |
assert series.at[1, 2] == 3 | |
class TestMultiIndexScalar: | |
def test_multiindex_at_get(self): | |
# GH 26989 | |
# DataFrame.at and DataFrame.loc getter works with MultiIndex | |
df = DataFrame({"a": [1, 2]}, index=[[1, 2], [3, 4]]) | |
assert df.index.nlevels == 2 | |
assert df.at[(1, 3), "a"] == 1 | |
assert df.loc[(1, 3), "a"] == 1 | |
# Series.at and Series.loc getter works with MultiIndex | |
series = df["a"] | |
assert series.index.nlevels == 2 | |
assert series.at[1, 3] == 1 | |
assert series.loc[1, 3] == 1 | |
def test_multiindex_at_set(self): | |
# GH 26989 | |
# DataFrame.at and DataFrame.loc setter works with MultiIndex | |
df = DataFrame({"a": [1, 2]}, index=[[1, 2], [3, 4]]) | |
assert df.index.nlevels == 2 | |
df.at[(1, 3), "a"] = 3 | |
assert df.at[(1, 3), "a"] == 3 | |
df.loc[(1, 3), "a"] = 4 | |
assert df.loc[(1, 3), "a"] == 4 | |
# Series.at and Series.loc setter works with MultiIndex | |
series = df["a"] | |
assert series.index.nlevels == 2 | |
series.at[1, 3] = 5 | |
assert series.at[1, 3] == 5 | |
series.loc[1, 3] = 6 | |
assert series.loc[1, 3] == 6 | |
def test_multiindex_at_get_one_level(self): | |
# GH#38053 | |
s2 = Series((0, 1), index=[[False, True]]) | |
result = s2.at[False] | |
assert result == 0 | |