peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/io
/test_compression.py
import gzip | |
import io | |
import os | |
from pathlib import Path | |
import subprocess | |
import sys | |
import tarfile | |
import textwrap | |
import time | |
import zipfile | |
import numpy as np | |
import pytest | |
from pandas.compat import is_platform_windows | |
import pandas as pd | |
import pandas._testing as tm | |
import pandas.io.common as icom | |
def test_compression_size(obj, method, compression_only): | |
if compression_only == "tar": | |
compression_only = {"method": "tar", "mode": "w:gz"} | |
with tm.ensure_clean() as path: | |
getattr(obj, method)(path, compression=compression_only) | |
compressed_size = os.path.getsize(path) | |
getattr(obj, method)(path, compression=None) | |
uncompressed_size = os.path.getsize(path) | |
assert uncompressed_size > compressed_size | |
def test_compression_size_fh(obj, method, compression_only): | |
with tm.ensure_clean() as path: | |
with icom.get_handle( | |
path, | |
"w:gz" if compression_only == "tar" else "w", | |
compression=compression_only, | |
) as handles: | |
getattr(obj, method)(handles.handle) | |
assert not handles.handle.closed | |
compressed_size = os.path.getsize(path) | |
with tm.ensure_clean() as path: | |
with icom.get_handle(path, "w", compression=None) as handles: | |
getattr(obj, method)(handles.handle) | |
assert not handles.handle.closed | |
uncompressed_size = os.path.getsize(path) | |
assert uncompressed_size > compressed_size | |
def test_dataframe_compression_defaults_to_infer( | |
write_method, write_kwargs, read_method, compression_only, compression_to_extension | |
): | |
# GH22004 | |
input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"]) | |
extension = compression_to_extension[compression_only] | |
with tm.ensure_clean("compressed" + extension) as path: | |
getattr(input, write_method)(path, **write_kwargs) | |
output = read_method(path, compression=compression_only) | |
tm.assert_frame_equal(output, input) | |
def test_series_compression_defaults_to_infer( | |
write_method, | |
write_kwargs, | |
read_method, | |
read_kwargs, | |
compression_only, | |
compression_to_extension, | |
): | |
# GH22004 | |
input = pd.Series([0, 5, -2, 10], name="X") | |
extension = compression_to_extension[compression_only] | |
with tm.ensure_clean("compressed" + extension) as path: | |
getattr(input, write_method)(path, **write_kwargs) | |
if "squeeze" in read_kwargs: | |
kwargs = read_kwargs.copy() | |
del kwargs["squeeze"] | |
output = read_method(path, compression=compression_only, **kwargs).squeeze( | |
"columns" | |
) | |
else: | |
output = read_method(path, compression=compression_only, **read_kwargs) | |
tm.assert_series_equal(output, input, check_names=False) | |
def test_compression_warning(compression_only): | |
# Assert that passing a file object to to_csv while explicitly specifying a | |
# compression protocol triggers a RuntimeWarning, as per GH21227. | |
df = pd.DataFrame( | |
100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], | |
columns=["X", "Y", "Z"], | |
) | |
with tm.ensure_clean() as path: | |
with icom.get_handle(path, "w", compression=compression_only) as handles: | |
with tm.assert_produces_warning(RuntimeWarning): | |
df.to_csv(handles.handle, compression=compression_only) | |
def test_compression_binary(compression_only): | |
""" | |
Binary file handles support compression. | |
GH22555 | |
""" | |
df = pd.DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
# with a file | |
with tm.ensure_clean() as path: | |
with open(path, mode="wb") as file: | |
df.to_csv(file, mode="wb", compression=compression_only) | |
file.seek(0) # file shouldn't be closed | |
tm.assert_frame_equal( | |
df, pd.read_csv(path, index_col=0, compression=compression_only) | |
) | |
# with BytesIO | |
file = io.BytesIO() | |
df.to_csv(file, mode="wb", compression=compression_only) | |
file.seek(0) # file shouldn't be closed | |
tm.assert_frame_equal( | |
df, pd.read_csv(file, index_col=0, compression=compression_only) | |
) | |
def test_gzip_reproducibility_file_name(): | |
""" | |
Gzip should create reproducible archives with mtime. | |
Note: Archives created with different filenames will still be different! | |
GH 28103 | |
""" | |
df = pd.DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
compression_options = {"method": "gzip", "mtime": 1} | |
# test for filename | |
with tm.ensure_clean() as path: | |
path = Path(path) | |
df.to_csv(path, compression=compression_options) | |
time.sleep(0.1) | |
output = path.read_bytes() | |
df.to_csv(path, compression=compression_options) | |
assert output == path.read_bytes() | |
def test_gzip_reproducibility_file_object(): | |
""" | |
Gzip should create reproducible archives with mtime. | |
GH 28103 | |
""" | |
df = pd.DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
compression_options = {"method": "gzip", "mtime": 1} | |
# test for file object | |
buffer = io.BytesIO() | |
df.to_csv(buffer, compression=compression_options, mode="wb") | |
output = buffer.getvalue() | |
time.sleep(0.1) | |
buffer = io.BytesIO() | |
df.to_csv(buffer, compression=compression_options, mode="wb") | |
assert output == buffer.getvalue() | |
def test_with_missing_lzma(): | |
"""Tests if import pandas works when lzma is not present.""" | |
# https://github.com/pandas-dev/pandas/issues/27575 | |
code = textwrap.dedent( | |
"""\ | |
import sys | |
sys.modules['lzma'] = None | |
import pandas | |
""" | |
) | |
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE) | |
def test_with_missing_lzma_runtime(): | |
"""Tests if RuntimeError is hit when calling lzma without | |
having the module available. | |
""" | |
code = textwrap.dedent( | |
""" | |
import sys | |
import pytest | |
sys.modules['lzma'] = None | |
import pandas as pd | |
df = pd.DataFrame() | |
with pytest.raises(RuntimeError, match='lzma module'): | |
df.to_csv('foo.csv', compression='xz') | |
""" | |
) | |
subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE) | |
def test_gzip_compression_level(obj, method): | |
# GH33196 | |
with tm.ensure_clean() as path: | |
getattr(obj, method)(path, compression="gzip") | |
compressed_size_default = os.path.getsize(path) | |
getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1}) | |
compressed_size_fast = os.path.getsize(path) | |
assert compressed_size_default < compressed_size_fast | |
def test_xz_compression_level_read(obj, method): | |
with tm.ensure_clean() as path: | |
getattr(obj, method)(path, compression="xz") | |
compressed_size_default = os.path.getsize(path) | |
getattr(obj, method)(path, compression={"method": "xz", "preset": 1}) | |
compressed_size_fast = os.path.getsize(path) | |
assert compressed_size_default < compressed_size_fast | |
if method == "to_csv": | |
pd.read_csv(path, compression="xz") | |
def test_bzip_compression_level(obj, method): | |
"""GH33196 bzip needs file size > 100k to show a size difference between | |
compression levels, so here we just check if the call works when | |
compression is passed as a dict. | |
""" | |
with tm.ensure_clean() as path: | |
getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1}) | |
def test_empty_archive_zip(suffix, archive): | |
with tm.ensure_clean(filename=suffix) as path: | |
with archive(path, "w"): | |
pass | |
with pytest.raises(ValueError, match="Zero files found"): | |
pd.read_csv(path) | |
def test_ambiguous_archive_zip(): | |
with tm.ensure_clean(filename=".zip") as path: | |
with zipfile.ZipFile(path, "w") as file: | |
file.writestr("a.csv", "foo,bar") | |
file.writestr("b.csv", "foo,bar") | |
with pytest.raises(ValueError, match="Multiple files found in ZIP file"): | |
pd.read_csv(path) | |
def test_ambiguous_archive_tar(tmp_path): | |
csvAPath = tmp_path / "a.csv" | |
with open(csvAPath, "w", encoding="utf-8") as a: | |
a.write("foo,bar\n") | |
csvBPath = tmp_path / "b.csv" | |
with open(csvBPath, "w", encoding="utf-8") as b: | |
b.write("foo,bar\n") | |
tarpath = tmp_path / "archive.tar" | |
with tarfile.TarFile(tarpath, "w") as tar: | |
tar.add(csvAPath, "a.csv") | |
tar.add(csvBPath, "b.csv") | |
with pytest.raises(ValueError, match="Multiple files found in TAR archive"): | |
pd.read_csv(tarpath) | |
def test_tar_gz_to_different_filename(): | |
with tm.ensure_clean(filename=".foo") as file: | |
pd.DataFrame( | |
[["1", "2"]], | |
columns=["foo", "bar"], | |
).to_csv(file, compression={"method": "tar", "mode": "w:gz"}, index=False) | |
with gzip.open(file) as uncompressed: | |
with tarfile.TarFile(fileobj=uncompressed) as archive: | |
members = archive.getmembers() | |
assert len(members) == 1 | |
content = archive.extractfile(members[0]).read().decode("utf8") | |
if is_platform_windows(): | |
expected = "foo,bar\r\n1,2\r\n" | |
else: | |
expected = "foo,bar\n1,2\n" | |
assert content == expected | |
def test_tar_no_error_on_close(): | |
with io.BytesIO() as buffer: | |
with icom._BytesTarFile(fileobj=buffer, mode="w"): | |
pass | |