Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_118_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_130_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_151_mp_rank_00_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_206_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_226_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_algos.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_analytics.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_map.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_missing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_operators.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_sorting.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_take.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_warnings.py +19 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/conftest.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_astype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_comparison.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_concat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_construction.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_contains.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_function.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_repr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_to_numpy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/conftest.py +48 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_arithmetic.py +244 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_astype.py +128 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_comparison.py +65 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_concat.py +20 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_contains.py +12 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_function.py +194 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_repr.py +47 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_to_numpy.py +132 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_accessor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_arithmetics.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_array.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_constructors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_dtype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_libsparse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_accessor.py +253 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_arithmetics.py +514 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_array.py +480 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_astype.py +133 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_118_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11ce736f46139e8bb1a4ca551c21a1b16c3d2c0082d406e446b57b621a2f0b66
|
3 |
+
size 41830212
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_130_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e605a188bb4dbf418021f1328676b909121c48cbe680b92bea9888aa6c355831
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_151_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7c1f1fd247ecf958bbc383572b994d0e9c9d7c5c9ae9ca9107f60b92a9688cd
|
3 |
+
size 41830212
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_206_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f2cadbb259049f17448810ebca1523d800cfee80ec14acafcd379fe1e2854cb
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_226_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da37dcda622caaa5a9a392c6b00284a8f97a2c244a7be4684f5fabdec35f6df7
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4cc02a48e597e11d876fc659787e1d604c4544be0332dfac1007b227f914b68
|
3 |
+
size 41830192
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_algos.cpython-310.pyc
ADDED
Binary file (2.84 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_analytics.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_api.cpython-310.pyc
ADDED
Binary file (14.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_map.cpython-310.pyc
ADDED
Binary file (4.34 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_missing.cpython-310.pyc
ADDED
Binary file (6.72 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_operators.cpython-310.pyc
ADDED
Binary file (12.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_sorting.cpython-310.pyc
ADDED
Binary file (3.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_take.cpython-310.pyc
ADDED
Binary file (3.89 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_warnings.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import pandas._testing as tm
|
4 |
+
|
5 |
+
|
6 |
+
class TestCategoricalWarnings:
|
7 |
+
def test_tab_complete_warning(self, ip):
|
8 |
+
# https://github.com/pandas-dev/pandas/issues/16409
|
9 |
+
pytest.importorskip("IPython", minversion="6.0.0")
|
10 |
+
from IPython.core.completer import provisionalcompleter
|
11 |
+
|
12 |
+
code = "import pandas as pd; c = pd.Categorical([])"
|
13 |
+
ip.run_cell(code)
|
14 |
+
|
15 |
+
# GH 31324 newer jedi version raises Deprecation warning;
|
16 |
+
# appears resolved 2021-02-02
|
17 |
+
with tm.assert_produces_warning(None, raise_on_extra_warnings=False):
|
18 |
+
with provisionalcompleter("ignore"):
|
19 |
+
list(ip.Completer.completions("c.", 1))
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (196 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (6.56 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_astype.cpython-310.pyc
ADDED
Binary file (3.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_comparison.cpython-310.pyc
ADDED
Binary file (2.12 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_concat.cpython-310.pyc
ADDED
Binary file (919 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_construction.cpython-310.pyc
ADDED
Binary file (6.07 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_contains.cpython-310.pyc
ADDED
Binary file (488 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_function.cpython-310.pyc
ADDED
Binary file (5.86 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_repr.cpython-310.pyc
ADDED
Binary file (1.63 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_to_numpy.cpython-310.pyc
ADDED
Binary file (4.01 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/conftest.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas.core.arrays.floating import (
|
6 |
+
Float32Dtype,
|
7 |
+
Float64Dtype,
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.fixture(params=[Float32Dtype, Float64Dtype])
|
12 |
+
def dtype(request):
|
13 |
+
"""Parametrized fixture returning a float 'dtype'"""
|
14 |
+
return request.param()
|
15 |
+
|
16 |
+
|
17 |
+
@pytest.fixture
|
18 |
+
def data(dtype):
|
19 |
+
"""Fixture returning 'data' array according to parametrized float 'dtype'"""
|
20 |
+
return pd.array(
|
21 |
+
list(np.arange(0.1, 0.9, 0.1))
|
22 |
+
+ [pd.NA]
|
23 |
+
+ list(np.arange(1, 9.8, 0.1))
|
24 |
+
+ [pd.NA]
|
25 |
+
+ [9.9, 10.0],
|
26 |
+
dtype=dtype,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
@pytest.fixture
|
31 |
+
def data_missing(dtype):
|
32 |
+
"""
|
33 |
+
Fixture returning array with missing data according to parametrized float
|
34 |
+
'dtype'.
|
35 |
+
"""
|
36 |
+
return pd.array([np.nan, 0.1], dtype=dtype)
|
37 |
+
|
38 |
+
|
39 |
+
@pytest.fixture(params=["data", "data_missing"])
|
40 |
+
def all_data(request, data, data_missing):
|
41 |
+
"""Parametrized fixture returning 'data' or 'data_missing' float arrays.
|
42 |
+
|
43 |
+
Used to test dtype conversion with and without missing values.
|
44 |
+
"""
|
45 |
+
if request.param == "data":
|
46 |
+
return data
|
47 |
+
elif request.param == "data_missing":
|
48 |
+
return data_missing
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_arithmetic.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.core.arrays import FloatingArray
|
9 |
+
|
10 |
+
# Basic test for the arithmetic array ops
|
11 |
+
# -----------------------------------------------------------------------------
|
12 |
+
|
13 |
+
|
14 |
+
@pytest.mark.parametrize(
|
15 |
+
"opname, exp",
|
16 |
+
[
|
17 |
+
("add", [1.1, 2.2, None, None, 5.5]),
|
18 |
+
("mul", [0.1, 0.4, None, None, 2.5]),
|
19 |
+
("sub", [0.9, 1.8, None, None, 4.5]),
|
20 |
+
("truediv", [10.0, 10.0, None, None, 10.0]),
|
21 |
+
("floordiv", [9.0, 9.0, None, None, 10.0]),
|
22 |
+
("mod", [0.1, 0.2, None, None, 0.0]),
|
23 |
+
],
|
24 |
+
ids=["add", "mul", "sub", "div", "floordiv", "mod"],
|
25 |
+
)
|
26 |
+
def test_array_op(dtype, opname, exp):
|
27 |
+
a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype)
|
28 |
+
b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype)
|
29 |
+
|
30 |
+
op = getattr(operator, opname)
|
31 |
+
|
32 |
+
result = op(a, b)
|
33 |
+
expected = pd.array(exp, dtype=dtype)
|
34 |
+
tm.assert_extension_array_equal(result, expected)
|
35 |
+
|
36 |
+
|
37 |
+
@pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
|
38 |
+
def test_divide_by_zero(dtype, zero, negative):
|
39 |
+
# TODO pending NA/NaN discussion
|
40 |
+
# https://github.com/pandas-dev/pandas/issues/32265/
|
41 |
+
a = pd.array([0, 1, -1, None], dtype=dtype)
|
42 |
+
result = a / zero
|
43 |
+
expected = FloatingArray(
|
44 |
+
np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype),
|
45 |
+
np.array([False, False, False, True]),
|
46 |
+
)
|
47 |
+
if negative:
|
48 |
+
expected *= -1
|
49 |
+
tm.assert_extension_array_equal(result, expected)
|
50 |
+
|
51 |
+
|
52 |
+
def test_pow_scalar(dtype):
|
53 |
+
a = pd.array([-1, 0, 1, None, 2], dtype=dtype)
|
54 |
+
result = a**0
|
55 |
+
expected = pd.array([1, 1, 1, 1, 1], dtype=dtype)
|
56 |
+
tm.assert_extension_array_equal(result, expected)
|
57 |
+
|
58 |
+
result = a**1
|
59 |
+
expected = pd.array([-1, 0, 1, None, 2], dtype=dtype)
|
60 |
+
tm.assert_extension_array_equal(result, expected)
|
61 |
+
|
62 |
+
result = a**pd.NA
|
63 |
+
expected = pd.array([None, None, 1, None, None], dtype=dtype)
|
64 |
+
tm.assert_extension_array_equal(result, expected)
|
65 |
+
|
66 |
+
result = a**np.nan
|
67 |
+
# TODO np.nan should be converted to pd.NA / missing before operation?
|
68 |
+
expected = FloatingArray(
|
69 |
+
np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype),
|
70 |
+
mask=a._mask,
|
71 |
+
)
|
72 |
+
tm.assert_extension_array_equal(result, expected)
|
73 |
+
|
74 |
+
# reversed
|
75 |
+
a = a[1:] # Can't raise integers to negative powers.
|
76 |
+
|
77 |
+
result = 0**a
|
78 |
+
expected = pd.array([1, 0, None, 0], dtype=dtype)
|
79 |
+
tm.assert_extension_array_equal(result, expected)
|
80 |
+
|
81 |
+
result = 1**a
|
82 |
+
expected = pd.array([1, 1, 1, 1], dtype=dtype)
|
83 |
+
tm.assert_extension_array_equal(result, expected)
|
84 |
+
|
85 |
+
result = pd.NA**a
|
86 |
+
expected = pd.array([1, None, None, None], dtype=dtype)
|
87 |
+
tm.assert_extension_array_equal(result, expected)
|
88 |
+
|
89 |
+
result = np.nan**a
|
90 |
+
expected = FloatingArray(
|
91 |
+
np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask
|
92 |
+
)
|
93 |
+
tm.assert_extension_array_equal(result, expected)
|
94 |
+
|
95 |
+
|
96 |
+
def test_pow_array(dtype):
|
97 |
+
a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype)
|
98 |
+
b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype)
|
99 |
+
result = a**b
|
100 |
+
expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype)
|
101 |
+
tm.assert_extension_array_equal(result, expected)
|
102 |
+
|
103 |
+
|
104 |
+
def test_rpow_one_to_na():
|
105 |
+
# https://github.com/pandas-dev/pandas/issues/22022
|
106 |
+
# https://github.com/pandas-dev/pandas/issues/29997
|
107 |
+
arr = pd.array([np.nan, np.nan], dtype="Float64")
|
108 |
+
result = np.array([1.0, 2.0]) ** arr
|
109 |
+
expected = pd.array([1.0, np.nan], dtype="Float64")
|
110 |
+
tm.assert_extension_array_equal(result, expected)
|
111 |
+
|
112 |
+
|
113 |
+
@pytest.mark.parametrize("other", [0, 0.5])
|
114 |
+
def test_arith_zero_dim_ndarray(other):
|
115 |
+
arr = pd.array([1, None, 2], dtype="Float64")
|
116 |
+
result = arr + np.array(other)
|
117 |
+
expected = arr + other
|
118 |
+
tm.assert_equal(result, expected)
|
119 |
+
|
120 |
+
|
121 |
+
# Test generic characteristics / errors
|
122 |
+
# -----------------------------------------------------------------------------
|
123 |
+
|
124 |
+
|
125 |
+
def test_error_invalid_values(data, all_arithmetic_operators, using_infer_string):
|
126 |
+
op = all_arithmetic_operators
|
127 |
+
s = pd.Series(data)
|
128 |
+
ops = getattr(s, op)
|
129 |
+
|
130 |
+
if using_infer_string:
|
131 |
+
import pyarrow as pa
|
132 |
+
|
133 |
+
errs = (TypeError, pa.lib.ArrowNotImplementedError, NotImplementedError)
|
134 |
+
else:
|
135 |
+
errs = TypeError
|
136 |
+
|
137 |
+
# invalid scalars
|
138 |
+
msg = "|".join(
|
139 |
+
[
|
140 |
+
r"can only perform ops with numeric values",
|
141 |
+
r"FloatingArray cannot perform the operation mod",
|
142 |
+
"unsupported operand type",
|
143 |
+
"not all arguments converted during string formatting",
|
144 |
+
"can't multiply sequence by non-int of type 'float'",
|
145 |
+
"ufunc 'subtract' cannot use operands with types dtype",
|
146 |
+
r"can only concatenate str \(not \"float\"\) to str",
|
147 |
+
"ufunc '.*' not supported for the input types, and the inputs could not",
|
148 |
+
"ufunc '.*' did not contain a loop with signature matching types",
|
149 |
+
"Concatenation operation is not implemented for NumPy arrays",
|
150 |
+
"has no kernel",
|
151 |
+
"not implemented",
|
152 |
+
]
|
153 |
+
)
|
154 |
+
with pytest.raises(errs, match=msg):
|
155 |
+
ops("foo")
|
156 |
+
with pytest.raises(errs, match=msg):
|
157 |
+
ops(pd.Timestamp("20180101"))
|
158 |
+
|
159 |
+
# invalid array-likes
|
160 |
+
with pytest.raises(errs, match=msg):
|
161 |
+
ops(pd.Series("foo", index=s.index))
|
162 |
+
|
163 |
+
msg = "|".join(
|
164 |
+
[
|
165 |
+
"can only perform ops with numeric values",
|
166 |
+
"cannot perform .* with this index type: DatetimeArray",
|
167 |
+
"Addition/subtraction of integers and integer-arrays "
|
168 |
+
"with DatetimeArray is no longer supported. *",
|
169 |
+
"unsupported operand type",
|
170 |
+
"not all arguments converted during string formatting",
|
171 |
+
"can't multiply sequence by non-int of type 'float'",
|
172 |
+
"ufunc 'subtract' cannot use operands with types dtype",
|
173 |
+
(
|
174 |
+
"ufunc 'add' cannot use operands with types "
|
175 |
+
rf"dtype\('{tm.ENDIAN}M8\[ns\]'\)"
|
176 |
+
),
|
177 |
+
r"ufunc 'add' cannot use operands with types dtype\('float\d{2}'\)",
|
178 |
+
"cannot subtract DatetimeArray from ndarray",
|
179 |
+
"has no kernel",
|
180 |
+
"not implemented",
|
181 |
+
]
|
182 |
+
)
|
183 |
+
with pytest.raises(errs, match=msg):
|
184 |
+
ops(pd.Series(pd.date_range("20180101", periods=len(s))))
|
185 |
+
|
186 |
+
|
187 |
+
# Various
|
188 |
+
# -----------------------------------------------------------------------------
|
189 |
+
|
190 |
+
|
191 |
+
def test_cross_type_arithmetic():
|
192 |
+
df = pd.DataFrame(
|
193 |
+
{
|
194 |
+
"A": pd.array([1, 2, np.nan], dtype="Float64"),
|
195 |
+
"B": pd.array([1, np.nan, 3], dtype="Float32"),
|
196 |
+
"C": np.array([1, 2, 3], dtype="float64"),
|
197 |
+
}
|
198 |
+
)
|
199 |
+
|
200 |
+
result = df.A + df.C
|
201 |
+
expected = pd.Series([2, 4, np.nan], dtype="Float64")
|
202 |
+
tm.assert_series_equal(result, expected)
|
203 |
+
|
204 |
+
result = (df.A + df.C) * 3 == 12
|
205 |
+
expected = pd.Series([False, True, None], dtype="boolean")
|
206 |
+
tm.assert_series_equal(result, expected)
|
207 |
+
|
208 |
+
result = df.A + df.B
|
209 |
+
expected = pd.Series([2, np.nan, np.nan], dtype="Float64")
|
210 |
+
tm.assert_series_equal(result, expected)
|
211 |
+
|
212 |
+
|
213 |
+
@pytest.mark.parametrize(
|
214 |
+
"source, neg_target, abs_target",
|
215 |
+
[
|
216 |
+
([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]),
|
217 |
+
([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]),
|
218 |
+
([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]),
|
219 |
+
],
|
220 |
+
)
|
221 |
+
def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target):
|
222 |
+
# GH38794
|
223 |
+
dtype = float_ea_dtype
|
224 |
+
arr = pd.array(source, dtype=dtype)
|
225 |
+
neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
|
226 |
+
neg_target = pd.array(neg_target, dtype=dtype)
|
227 |
+
abs_target = pd.array(abs_target, dtype=dtype)
|
228 |
+
|
229 |
+
tm.assert_extension_array_equal(neg_result, neg_target)
|
230 |
+
tm.assert_extension_array_equal(pos_result, arr)
|
231 |
+
assert not tm.shares_memory(pos_result, arr)
|
232 |
+
tm.assert_extension_array_equal(abs_result, abs_target)
|
233 |
+
|
234 |
+
|
235 |
+
def test_bitwise(dtype):
|
236 |
+
left = pd.array([1, None, 3, 4], dtype=dtype)
|
237 |
+
right = pd.array([None, 3, 5, 4], dtype=dtype)
|
238 |
+
|
239 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
240 |
+
left | right
|
241 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
242 |
+
left & right
|
243 |
+
with pytest.raises(TypeError, match="unsupported operand type"):
|
244 |
+
left ^ right
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_astype.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
def test_astype():
|
9 |
+
# with missing values
|
10 |
+
arr = pd.array([0.1, 0.2, None], dtype="Float64")
|
11 |
+
|
12 |
+
with pytest.raises(ValueError, match="cannot convert NA to integer"):
|
13 |
+
arr.astype("int64")
|
14 |
+
|
15 |
+
with pytest.raises(ValueError, match="cannot convert float NaN to bool"):
|
16 |
+
arr.astype("bool")
|
17 |
+
|
18 |
+
result = arr.astype("float64")
|
19 |
+
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
|
20 |
+
tm.assert_numpy_array_equal(result, expected)
|
21 |
+
|
22 |
+
# no missing values
|
23 |
+
arr = pd.array([0.0, 1.0, 0.5], dtype="Float64")
|
24 |
+
result = arr.astype("int64")
|
25 |
+
expected = np.array([0, 1, 0], dtype="int64")
|
26 |
+
tm.assert_numpy_array_equal(result, expected)
|
27 |
+
|
28 |
+
result = arr.astype("bool")
|
29 |
+
expected = np.array([False, True, True], dtype="bool")
|
30 |
+
tm.assert_numpy_array_equal(result, expected)
|
31 |
+
|
32 |
+
|
33 |
+
def test_astype_to_floating_array():
|
34 |
+
# astype to FloatingArray
|
35 |
+
arr = pd.array([0.0, 1.0, None], dtype="Float64")
|
36 |
+
|
37 |
+
result = arr.astype("Float64")
|
38 |
+
tm.assert_extension_array_equal(result, arr)
|
39 |
+
result = arr.astype(pd.Float64Dtype())
|
40 |
+
tm.assert_extension_array_equal(result, arr)
|
41 |
+
result = arr.astype("Float32")
|
42 |
+
expected = pd.array([0.0, 1.0, None], dtype="Float32")
|
43 |
+
tm.assert_extension_array_equal(result, expected)
|
44 |
+
|
45 |
+
|
46 |
+
def test_astype_to_boolean_array():
|
47 |
+
# astype to BooleanArray
|
48 |
+
arr = pd.array([0.0, 1.0, None], dtype="Float64")
|
49 |
+
|
50 |
+
result = arr.astype("boolean")
|
51 |
+
expected = pd.array([False, True, None], dtype="boolean")
|
52 |
+
tm.assert_extension_array_equal(result, expected)
|
53 |
+
result = arr.astype(pd.BooleanDtype())
|
54 |
+
tm.assert_extension_array_equal(result, expected)
|
55 |
+
|
56 |
+
|
57 |
+
def test_astype_to_integer_array():
|
58 |
+
# astype to IntegerArray
|
59 |
+
arr = pd.array([0.0, 1.5, None], dtype="Float64")
|
60 |
+
|
61 |
+
result = arr.astype("Int64")
|
62 |
+
expected = pd.array([0, 1, None], dtype="Int64")
|
63 |
+
tm.assert_extension_array_equal(result, expected)
|
64 |
+
|
65 |
+
|
66 |
+
def test_astype_str():
|
67 |
+
a = pd.array([0.1, 0.2, None], dtype="Float64")
|
68 |
+
expected = np.array(["0.1", "0.2", "<NA>"], dtype="U32")
|
69 |
+
|
70 |
+
tm.assert_numpy_array_equal(a.astype(str), expected)
|
71 |
+
tm.assert_numpy_array_equal(a.astype("str"), expected)
|
72 |
+
|
73 |
+
|
74 |
+
def test_astype_copy():
|
75 |
+
arr = pd.array([0.1, 0.2, None], dtype="Float64")
|
76 |
+
orig = pd.array([0.1, 0.2, None], dtype="Float64")
|
77 |
+
|
78 |
+
# copy=True -> ensure both data and mask are actual copies
|
79 |
+
result = arr.astype("Float64", copy=True)
|
80 |
+
assert result is not arr
|
81 |
+
assert not tm.shares_memory(result, arr)
|
82 |
+
result[0] = 10
|
83 |
+
tm.assert_extension_array_equal(arr, orig)
|
84 |
+
result[0] = pd.NA
|
85 |
+
tm.assert_extension_array_equal(arr, orig)
|
86 |
+
|
87 |
+
# copy=False
|
88 |
+
result = arr.astype("Float64", copy=False)
|
89 |
+
assert result is arr
|
90 |
+
assert np.shares_memory(result._data, arr._data)
|
91 |
+
assert np.shares_memory(result._mask, arr._mask)
|
92 |
+
result[0] = 10
|
93 |
+
assert arr[0] == 10
|
94 |
+
result[0] = pd.NA
|
95 |
+
assert arr[0] is pd.NA
|
96 |
+
|
97 |
+
# astype to different dtype -> always needs a copy -> even with copy=False
|
98 |
+
# we need to ensure that also the mask is actually copied
|
99 |
+
arr = pd.array([0.1, 0.2, None], dtype="Float64")
|
100 |
+
orig = pd.array([0.1, 0.2, None], dtype="Float64")
|
101 |
+
|
102 |
+
result = arr.astype("Float32", copy=False)
|
103 |
+
assert not tm.shares_memory(result, arr)
|
104 |
+
result[0] = 10
|
105 |
+
tm.assert_extension_array_equal(arr, orig)
|
106 |
+
result[0] = pd.NA
|
107 |
+
tm.assert_extension_array_equal(arr, orig)
|
108 |
+
|
109 |
+
|
110 |
+
def test_astype_object(dtype):
|
111 |
+
arr = pd.array([1.0, pd.NA], dtype=dtype)
|
112 |
+
|
113 |
+
result = arr.astype(object)
|
114 |
+
expected = np.array([1.0, pd.NA], dtype=object)
|
115 |
+
tm.assert_numpy_array_equal(result, expected)
|
116 |
+
# check exact element types
|
117 |
+
assert isinstance(result[0], float)
|
118 |
+
assert result[1] is pd.NA
|
119 |
+
|
120 |
+
|
121 |
+
def test_Float64_conversion():
|
122 |
+
# GH#40729
|
123 |
+
testseries = pd.Series(["1", "2", "3", "4"], dtype="object")
|
124 |
+
result = testseries.astype(pd.Float64Dtype())
|
125 |
+
|
126 |
+
expected = pd.Series([1.0, 2.0, 3.0, 4.0], dtype=pd.Float64Dtype())
|
127 |
+
|
128 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_comparison.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
from pandas.core.arrays import FloatingArray
|
7 |
+
from pandas.tests.arrays.masked_shared import (
|
8 |
+
ComparisonOps,
|
9 |
+
NumericOps,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
class TestComparisonOps(NumericOps, ComparisonOps):
|
14 |
+
@pytest.mark.parametrize("other", [True, False, pd.NA, -1.0, 0.0, 1])
|
15 |
+
def test_scalar(self, other, comparison_op, dtype):
|
16 |
+
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
17 |
+
|
18 |
+
def test_compare_with_integerarray(self, comparison_op):
|
19 |
+
op = comparison_op
|
20 |
+
a = pd.array([0, 1, None] * 3, dtype="Int64")
|
21 |
+
b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Float64")
|
22 |
+
other = b.astype("Int64")
|
23 |
+
expected = op(a, other)
|
24 |
+
result = op(a, b)
|
25 |
+
tm.assert_extension_array_equal(result, expected)
|
26 |
+
expected = op(other, a)
|
27 |
+
result = op(b, a)
|
28 |
+
tm.assert_extension_array_equal(result, expected)
|
29 |
+
|
30 |
+
|
31 |
+
def test_equals():
|
32 |
+
# GH-30652
|
33 |
+
# equals is generally tested in /tests/extension/base/methods, but this
|
34 |
+
# specifically tests that two arrays of the same class but different dtype
|
35 |
+
# do not evaluate equal
|
36 |
+
a1 = pd.array([1, 2, None], dtype="Float64")
|
37 |
+
a2 = pd.array([1, 2, None], dtype="Float32")
|
38 |
+
assert a1.equals(a2) is False
|
39 |
+
|
40 |
+
|
41 |
+
def test_equals_nan_vs_na():
|
42 |
+
# GH#44382
|
43 |
+
|
44 |
+
mask = np.zeros(3, dtype=bool)
|
45 |
+
data = np.array([1.0, np.nan, 3.0], dtype=np.float64)
|
46 |
+
|
47 |
+
left = FloatingArray(data, mask)
|
48 |
+
assert left.equals(left)
|
49 |
+
tm.assert_extension_array_equal(left, left)
|
50 |
+
|
51 |
+
assert left.equals(left.copy())
|
52 |
+
assert left.equals(FloatingArray(data.copy(), mask.copy()))
|
53 |
+
|
54 |
+
mask2 = np.array([False, True, False], dtype=bool)
|
55 |
+
data2 = np.array([1.0, 2.0, 3.0], dtype=np.float64)
|
56 |
+
right = FloatingArray(data2, mask2)
|
57 |
+
assert right.equals(right)
|
58 |
+
tm.assert_extension_array_equal(right, right)
|
59 |
+
|
60 |
+
assert not left.equals(right)
|
61 |
+
|
62 |
+
# with mask[1] = True, the only difference is data[1], which should
|
63 |
+
# not matter for equals
|
64 |
+
mask[1] = True
|
65 |
+
assert left.equals(right)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_concat.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
import pandas._testing as tm
|
5 |
+
|
6 |
+
|
7 |
+
@pytest.mark.parametrize(
|
8 |
+
"to_concat_dtypes, result_dtype",
|
9 |
+
[
|
10 |
+
(["Float64", "Float64"], "Float64"),
|
11 |
+
(["Float32", "Float64"], "Float64"),
|
12 |
+
(["Float32", "Float32"], "Float32"),
|
13 |
+
],
|
14 |
+
)
|
15 |
+
def test_concat_series(to_concat_dtypes, result_dtype):
|
16 |
+
result = pd.concat([pd.Series([1, 2, pd.NA], dtype=t) for t in to_concat_dtypes])
|
17 |
+
expected = pd.concat([pd.Series([1, 2, pd.NA], dtype=object)] * 2).astype(
|
18 |
+
result_dtype
|
19 |
+
)
|
20 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_contains.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
|
6 |
+
def test_contains_nan():
|
7 |
+
# GH#52840
|
8 |
+
arr = pd.array(range(5)) / 0
|
9 |
+
|
10 |
+
assert np.isnan(arr._data[0])
|
11 |
+
assert not arr.isna()[0]
|
12 |
+
assert np.nan in arr
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_function.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.compat import IS64
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.mark.parametrize("ufunc", [np.abs, np.sign])
|
11 |
+
# np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
|
12 |
+
@pytest.mark.filterwarnings("ignore:invalid value encountered in sign:RuntimeWarning")
|
13 |
+
def test_ufuncs_single(ufunc):
|
14 |
+
a = pd.array([1, 2, -3, np.nan], dtype="Float64")
|
15 |
+
result = ufunc(a)
|
16 |
+
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
|
17 |
+
tm.assert_extension_array_equal(result, expected)
|
18 |
+
|
19 |
+
s = pd.Series(a)
|
20 |
+
result = ufunc(s)
|
21 |
+
expected = pd.Series(expected)
|
22 |
+
tm.assert_series_equal(result, expected)
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
|
26 |
+
def test_ufuncs_single_float(ufunc):
|
27 |
+
a = pd.array([1.0, 0.2, 3.0, np.nan], dtype="Float64")
|
28 |
+
with np.errstate(invalid="ignore"):
|
29 |
+
result = ufunc(a)
|
30 |
+
expected = pd.array(ufunc(a.astype(float)), dtype="Float64")
|
31 |
+
tm.assert_extension_array_equal(result, expected)
|
32 |
+
|
33 |
+
s = pd.Series(a)
|
34 |
+
with np.errstate(invalid="ignore"):
|
35 |
+
result = ufunc(s)
|
36 |
+
expected = pd.Series(ufunc(s.astype(float)), dtype="Float64")
|
37 |
+
tm.assert_series_equal(result, expected)
|
38 |
+
|
39 |
+
|
40 |
+
@pytest.mark.parametrize("ufunc", [np.add, np.subtract])
|
41 |
+
def test_ufuncs_binary_float(ufunc):
|
42 |
+
# two FloatingArrays
|
43 |
+
a = pd.array([1, 0.2, -3, np.nan], dtype="Float64")
|
44 |
+
result = ufunc(a, a)
|
45 |
+
expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Float64")
|
46 |
+
tm.assert_extension_array_equal(result, expected)
|
47 |
+
|
48 |
+
# FloatingArray with numpy array
|
49 |
+
arr = np.array([1, 2, 3, 4])
|
50 |
+
result = ufunc(a, arr)
|
51 |
+
expected = pd.array(ufunc(a.astype(float), arr), dtype="Float64")
|
52 |
+
tm.assert_extension_array_equal(result, expected)
|
53 |
+
|
54 |
+
result = ufunc(arr, a)
|
55 |
+
expected = pd.array(ufunc(arr, a.astype(float)), dtype="Float64")
|
56 |
+
tm.assert_extension_array_equal(result, expected)
|
57 |
+
|
58 |
+
# FloatingArray with scalar
|
59 |
+
result = ufunc(a, 1)
|
60 |
+
expected = pd.array(ufunc(a.astype(float), 1), dtype="Float64")
|
61 |
+
tm.assert_extension_array_equal(result, expected)
|
62 |
+
|
63 |
+
result = ufunc(1, a)
|
64 |
+
expected = pd.array(ufunc(1, a.astype(float)), dtype="Float64")
|
65 |
+
tm.assert_extension_array_equal(result, expected)
|
66 |
+
|
67 |
+
|
68 |
+
@pytest.mark.parametrize("values", [[0, 1], [0, None]])
|
69 |
+
def test_ufunc_reduce_raises(values):
|
70 |
+
arr = pd.array(values, dtype="Float64")
|
71 |
+
|
72 |
+
res = np.add.reduce(arr)
|
73 |
+
expected = arr.sum(skipna=False)
|
74 |
+
tm.assert_almost_equal(res, expected)
|
75 |
+
|
76 |
+
|
77 |
+
@pytest.mark.skipif(not IS64, reason="GH 36579: fail on 32-bit system")
|
78 |
+
@pytest.mark.parametrize(
|
79 |
+
"pandasmethname, kwargs",
|
80 |
+
[
|
81 |
+
("var", {"ddof": 0}),
|
82 |
+
("var", {"ddof": 1}),
|
83 |
+
("std", {"ddof": 0}),
|
84 |
+
("std", {"ddof": 1}),
|
85 |
+
("kurtosis", {}),
|
86 |
+
("skew", {}),
|
87 |
+
("sem", {}),
|
88 |
+
],
|
89 |
+
)
|
90 |
+
def test_stat_method(pandasmethname, kwargs):
|
91 |
+
s = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, np.nan, np.nan], dtype="Float64")
|
92 |
+
pandasmeth = getattr(s, pandasmethname)
|
93 |
+
result = pandasmeth(**kwargs)
|
94 |
+
s2 = pd.Series(data=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype="float64")
|
95 |
+
pandasmeth = getattr(s2, pandasmethname)
|
96 |
+
expected = pandasmeth(**kwargs)
|
97 |
+
assert expected == result
|
98 |
+
|
99 |
+
|
100 |
+
def test_value_counts_na():
|
101 |
+
arr = pd.array([0.1, 0.2, 0.1, pd.NA], dtype="Float64")
|
102 |
+
result = arr.value_counts(dropna=False)
|
103 |
+
idx = pd.Index([0.1, 0.2, pd.NA], dtype=arr.dtype)
|
104 |
+
assert idx.dtype == arr.dtype
|
105 |
+
expected = pd.Series([2, 1, 1], index=idx, dtype="Int64", name="count")
|
106 |
+
tm.assert_series_equal(result, expected)
|
107 |
+
|
108 |
+
result = arr.value_counts(dropna=True)
|
109 |
+
expected = pd.Series([2, 1], index=idx[:-1], dtype="Int64", name="count")
|
110 |
+
tm.assert_series_equal(result, expected)
|
111 |
+
|
112 |
+
|
113 |
+
def test_value_counts_empty():
|
114 |
+
ser = pd.Series([], dtype="Float64")
|
115 |
+
result = ser.value_counts()
|
116 |
+
idx = pd.Index([], dtype="Float64")
|
117 |
+
assert idx.dtype == "Float64"
|
118 |
+
expected = pd.Series([], index=idx, dtype="Int64", name="count")
|
119 |
+
tm.assert_series_equal(result, expected)
|
120 |
+
|
121 |
+
|
122 |
+
def test_value_counts_with_normalize():
|
123 |
+
ser = pd.Series([0.1, 0.2, 0.1, pd.NA], dtype="Float64")
|
124 |
+
result = ser.value_counts(normalize=True)
|
125 |
+
expected = pd.Series([2, 1], index=ser[:2], dtype="Float64", name="proportion") / 3
|
126 |
+
assert expected.index.dtype == ser.dtype
|
127 |
+
tm.assert_series_equal(result, expected)
|
128 |
+
|
129 |
+
|
130 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
131 |
+
@pytest.mark.parametrize("min_count", [0, 4])
|
132 |
+
def test_floating_array_sum(skipna, min_count, dtype):
|
133 |
+
arr = pd.array([1, 2, 3, None], dtype=dtype)
|
134 |
+
result = arr.sum(skipna=skipna, min_count=min_count)
|
135 |
+
if skipna and min_count == 0:
|
136 |
+
assert result == 6.0
|
137 |
+
else:
|
138 |
+
assert result is pd.NA
|
139 |
+
|
140 |
+
|
141 |
+
@pytest.mark.parametrize(
|
142 |
+
"values, expected", [([1, 2, 3], 6.0), ([1, 2, 3, None], 6.0), ([None], 0.0)]
|
143 |
+
)
|
144 |
+
def test_floating_array_numpy_sum(values, expected):
|
145 |
+
arr = pd.array(values, dtype="Float64")
|
146 |
+
result = np.sum(arr)
|
147 |
+
assert result == expected
|
148 |
+
|
149 |
+
|
150 |
+
@pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
|
151 |
+
def test_preserve_dtypes(op):
|
152 |
+
df = pd.DataFrame(
|
153 |
+
{
|
154 |
+
"A": ["a", "b", "b"],
|
155 |
+
"B": [1, None, 3],
|
156 |
+
"C": pd.array([0.1, None, 3.0], dtype="Float64"),
|
157 |
+
}
|
158 |
+
)
|
159 |
+
|
160 |
+
# op
|
161 |
+
result = getattr(df.C, op)()
|
162 |
+
assert isinstance(result, np.float64)
|
163 |
+
|
164 |
+
# groupby
|
165 |
+
result = getattr(df.groupby("A"), op)()
|
166 |
+
|
167 |
+
expected = pd.DataFrame(
|
168 |
+
{"B": np.array([1.0, 3.0]), "C": pd.array([0.1, 3], dtype="Float64")},
|
169 |
+
index=pd.Index(["a", "b"], name="A"),
|
170 |
+
)
|
171 |
+
tm.assert_frame_equal(result, expected)
|
172 |
+
|
173 |
+
|
174 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
175 |
+
@pytest.mark.parametrize("method", ["min", "max"])
|
176 |
+
def test_floating_array_min_max(skipna, method, dtype):
|
177 |
+
arr = pd.array([0.0, 1.0, None], dtype=dtype)
|
178 |
+
func = getattr(arr, method)
|
179 |
+
result = func(skipna=skipna)
|
180 |
+
if skipna:
|
181 |
+
assert result == (0 if method == "min" else 1)
|
182 |
+
else:
|
183 |
+
assert result is pd.NA
|
184 |
+
|
185 |
+
|
186 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
187 |
+
@pytest.mark.parametrize("min_count", [0, 9])
|
188 |
+
def test_floating_array_prod(skipna, min_count, dtype):
|
189 |
+
arr = pd.array([1.0, 2.0, None], dtype=dtype)
|
190 |
+
result = arr.prod(skipna=skipna, min_count=min_count)
|
191 |
+
if skipna and min_count == 0:
|
192 |
+
assert result == 2
|
193 |
+
else:
|
194 |
+
assert result is pd.NA
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_repr.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas.core.arrays.floating import (
|
6 |
+
Float32Dtype,
|
7 |
+
Float64Dtype,
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
def test_dtypes(dtype):
|
12 |
+
# smoke tests on auto dtype construction
|
13 |
+
|
14 |
+
np.dtype(dtype.type).kind == "f"
|
15 |
+
assert dtype.name is not None
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.mark.parametrize(
|
19 |
+
"dtype, expected",
|
20 |
+
[(Float32Dtype(), "Float32Dtype()"), (Float64Dtype(), "Float64Dtype()")],
|
21 |
+
)
|
22 |
+
def test_repr_dtype(dtype, expected):
|
23 |
+
assert repr(dtype) == expected
|
24 |
+
|
25 |
+
|
26 |
+
def test_repr_array():
|
27 |
+
result = repr(pd.array([1.0, None, 3.0]))
|
28 |
+
expected = "<FloatingArray>\n[1.0, <NA>, 3.0]\nLength: 3, dtype: Float64"
|
29 |
+
assert result == expected
|
30 |
+
|
31 |
+
|
32 |
+
def test_repr_array_long():
|
33 |
+
data = pd.array([1.0, 2.0, None] * 1000)
|
34 |
+
expected = """<FloatingArray>
|
35 |
+
[ 1.0, 2.0, <NA>, 1.0, 2.0, <NA>, 1.0, 2.0, <NA>, 1.0,
|
36 |
+
...
|
37 |
+
<NA>, 1.0, 2.0, <NA>, 1.0, 2.0, <NA>, 1.0, 2.0, <NA>]
|
38 |
+
Length: 3000, dtype: Float64"""
|
39 |
+
result = repr(data)
|
40 |
+
assert result == expected
|
41 |
+
|
42 |
+
|
43 |
+
def test_frame_repr(data_missing):
|
44 |
+
df = pd.DataFrame({"A": data_missing})
|
45 |
+
result = repr(df)
|
46 |
+
expected = " A\n0 <NA>\n1 0.1"
|
47 |
+
assert result == expected
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_to_numpy.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
from pandas.core.arrays import FloatingArray
|
7 |
+
|
8 |
+
|
9 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
10 |
+
def test_to_numpy(box):
|
11 |
+
con = pd.Series if box else pd.array
|
12 |
+
|
13 |
+
# default (with or without missing values) -> object dtype
|
14 |
+
arr = con([0.1, 0.2, 0.3], dtype="Float64")
|
15 |
+
result = arr.to_numpy()
|
16 |
+
expected = np.array([0.1, 0.2, 0.3], dtype="float64")
|
17 |
+
tm.assert_numpy_array_equal(result, expected)
|
18 |
+
|
19 |
+
arr = con([0.1, 0.2, None], dtype="Float64")
|
20 |
+
result = arr.to_numpy()
|
21 |
+
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
|
22 |
+
tm.assert_numpy_array_equal(result, expected)
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
26 |
+
def test_to_numpy_float(box):
|
27 |
+
con = pd.Series if box else pd.array
|
28 |
+
|
29 |
+
# no missing values -> can convert to float, otherwise raises
|
30 |
+
arr = con([0.1, 0.2, 0.3], dtype="Float64")
|
31 |
+
result = arr.to_numpy(dtype="float64")
|
32 |
+
expected = np.array([0.1, 0.2, 0.3], dtype="float64")
|
33 |
+
tm.assert_numpy_array_equal(result, expected)
|
34 |
+
|
35 |
+
arr = con([0.1, 0.2, None], dtype="Float64")
|
36 |
+
result = arr.to_numpy(dtype="float64")
|
37 |
+
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
|
38 |
+
tm.assert_numpy_array_equal(result, expected)
|
39 |
+
|
40 |
+
result = arr.to_numpy(dtype="float64", na_value=np.nan)
|
41 |
+
expected = np.array([0.1, 0.2, np.nan], dtype="float64")
|
42 |
+
tm.assert_numpy_array_equal(result, expected)
|
43 |
+
|
44 |
+
|
45 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
46 |
+
def test_to_numpy_int(box):
|
47 |
+
con = pd.Series if box else pd.array
|
48 |
+
|
49 |
+
# no missing values -> can convert to int, otherwise raises
|
50 |
+
arr = con([1.0, 2.0, 3.0], dtype="Float64")
|
51 |
+
result = arr.to_numpy(dtype="int64")
|
52 |
+
expected = np.array([1, 2, 3], dtype="int64")
|
53 |
+
tm.assert_numpy_array_equal(result, expected)
|
54 |
+
|
55 |
+
arr = con([1.0, 2.0, None], dtype="Float64")
|
56 |
+
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
|
57 |
+
result = arr.to_numpy(dtype="int64")
|
58 |
+
|
59 |
+
# automatic casting (floors the values)
|
60 |
+
arr = con([0.1, 0.9, 1.1], dtype="Float64")
|
61 |
+
result = arr.to_numpy(dtype="int64")
|
62 |
+
expected = np.array([0, 0, 1], dtype="int64")
|
63 |
+
tm.assert_numpy_array_equal(result, expected)
|
64 |
+
|
65 |
+
|
66 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
67 |
+
def test_to_numpy_na_value(box):
|
68 |
+
con = pd.Series if box else pd.array
|
69 |
+
|
70 |
+
arr = con([0.0, 1.0, None], dtype="Float64")
|
71 |
+
result = arr.to_numpy(dtype=object, na_value=None)
|
72 |
+
expected = np.array([0.0, 1.0, None], dtype="object")
|
73 |
+
tm.assert_numpy_array_equal(result, expected)
|
74 |
+
|
75 |
+
result = arr.to_numpy(dtype=bool, na_value=False)
|
76 |
+
expected = np.array([False, True, False], dtype="bool")
|
77 |
+
tm.assert_numpy_array_equal(result, expected)
|
78 |
+
|
79 |
+
result = arr.to_numpy(dtype="int64", na_value=-99)
|
80 |
+
expected = np.array([0, 1, -99], dtype="int64")
|
81 |
+
tm.assert_numpy_array_equal(result, expected)
|
82 |
+
|
83 |
+
|
84 |
+
def test_to_numpy_na_value_with_nan():
|
85 |
+
# array with both NaN and NA -> only fill NA with `na_value`
|
86 |
+
arr = FloatingArray(np.array([0.0, np.nan, 0.0]), np.array([False, False, True]))
|
87 |
+
result = arr.to_numpy(dtype="float64", na_value=-1)
|
88 |
+
expected = np.array([0.0, np.nan, -1.0], dtype="float64")
|
89 |
+
tm.assert_numpy_array_equal(result, expected)
|
90 |
+
|
91 |
+
|
92 |
+
@pytest.mark.parametrize("dtype", ["float64", "float32", "int32", "int64", "bool"])
|
93 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
94 |
+
def test_to_numpy_dtype(box, dtype):
|
95 |
+
con = pd.Series if box else pd.array
|
96 |
+
arr = con([0.0, 1.0], dtype="Float64")
|
97 |
+
|
98 |
+
result = arr.to_numpy(dtype=dtype)
|
99 |
+
expected = np.array([0, 1], dtype=dtype)
|
100 |
+
tm.assert_numpy_array_equal(result, expected)
|
101 |
+
|
102 |
+
|
103 |
+
@pytest.mark.parametrize("dtype", ["int32", "int64", "bool"])
|
104 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
105 |
+
def test_to_numpy_na_raises(box, dtype):
|
106 |
+
con = pd.Series if box else pd.array
|
107 |
+
arr = con([0.0, 1.0, None], dtype="Float64")
|
108 |
+
with pytest.raises(ValueError, match=dtype):
|
109 |
+
arr.to_numpy(dtype=dtype)
|
110 |
+
|
111 |
+
|
112 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
113 |
+
def test_to_numpy_string(box, dtype):
|
114 |
+
con = pd.Series if box else pd.array
|
115 |
+
arr = con([0.0, 1.0, None], dtype="Float64")
|
116 |
+
|
117 |
+
result = arr.to_numpy(dtype="str")
|
118 |
+
expected = np.array([0.0, 1.0, pd.NA], dtype=f"{tm.ENDIAN}U32")
|
119 |
+
tm.assert_numpy_array_equal(result, expected)
|
120 |
+
|
121 |
+
|
122 |
+
def test_to_numpy_copy():
|
123 |
+
# to_numpy can be zero-copy if no missing values
|
124 |
+
arr = pd.array([0.1, 0.2, 0.3], dtype="Float64")
|
125 |
+
result = arr.to_numpy(dtype="float64")
|
126 |
+
result[0] = 10
|
127 |
+
tm.assert_extension_array_equal(arr, pd.array([10, 0.2, 0.3], dtype="Float64"))
|
128 |
+
|
129 |
+
arr = pd.array([0.1, 0.2, 0.3], dtype="Float64")
|
130 |
+
result = arr.to_numpy(dtype="float64", copy=True)
|
131 |
+
result[0] = 10
|
132 |
+
tm.assert_extension_array_equal(arr, pd.array([0.1, 0.2, 0.3], dtype="Float64"))
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_accessor.cpython-310.pyc
ADDED
Binary file (9.09 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_arithmetics.cpython-310.pyc
ADDED
Binary file (14.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_array.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_constructors.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_dtype.cpython-310.pyc
ADDED
Binary file (5.73 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/__pycache__/test_libsparse.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_accessor.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import string
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import SparseDtype
|
8 |
+
import pandas._testing as tm
|
9 |
+
from pandas.core.arrays.sparse import SparseArray
|
10 |
+
|
11 |
+
|
12 |
+
class TestSeriesAccessor:
|
13 |
+
def test_to_dense(self):
|
14 |
+
ser = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]")
|
15 |
+
result = ser.sparse.to_dense()
|
16 |
+
expected = pd.Series([0, 1, 0, 10])
|
17 |
+
tm.assert_series_equal(result, expected)
|
18 |
+
|
19 |
+
@pytest.mark.parametrize("attr", ["npoints", "density", "fill_value", "sp_values"])
|
20 |
+
def test_get_attributes(self, attr):
|
21 |
+
arr = SparseArray([0, 1])
|
22 |
+
ser = pd.Series(arr)
|
23 |
+
|
24 |
+
result = getattr(ser.sparse, attr)
|
25 |
+
expected = getattr(arr, attr)
|
26 |
+
assert result == expected
|
27 |
+
|
28 |
+
def test_from_coo(self):
|
29 |
+
scipy_sparse = pytest.importorskip("scipy.sparse")
|
30 |
+
|
31 |
+
row = [0, 3, 1, 0]
|
32 |
+
col = [0, 3, 1, 2]
|
33 |
+
data = [4, 5, 7, 9]
|
34 |
+
|
35 |
+
sp_array = scipy_sparse.coo_matrix((data, (row, col)))
|
36 |
+
result = pd.Series.sparse.from_coo(sp_array)
|
37 |
+
|
38 |
+
index = pd.MultiIndex.from_arrays(
|
39 |
+
[
|
40 |
+
np.array([0, 0, 1, 3], dtype=np.int32),
|
41 |
+
np.array([0, 2, 1, 3], dtype=np.int32),
|
42 |
+
],
|
43 |
+
)
|
44 |
+
expected = pd.Series([4, 9, 7, 5], index=index, dtype="Sparse[int]")
|
45 |
+
tm.assert_series_equal(result, expected)
|
46 |
+
|
47 |
+
@pytest.mark.parametrize(
|
48 |
+
"sort_labels, expected_rows, expected_cols, expected_values_pos",
|
49 |
+
[
|
50 |
+
(
|
51 |
+
False,
|
52 |
+
[("b", 2), ("a", 2), ("b", 1), ("a", 1)],
|
53 |
+
[("z", 1), ("z", 2), ("x", 2), ("z", 0)],
|
54 |
+
{1: (1, 0), 3: (3, 3)},
|
55 |
+
),
|
56 |
+
(
|
57 |
+
True,
|
58 |
+
[("a", 1), ("a", 2), ("b", 1), ("b", 2)],
|
59 |
+
[("x", 2), ("z", 0), ("z", 1), ("z", 2)],
|
60 |
+
{1: (1, 2), 3: (0, 1)},
|
61 |
+
),
|
62 |
+
],
|
63 |
+
)
|
64 |
+
def test_to_coo(
|
65 |
+
self, sort_labels, expected_rows, expected_cols, expected_values_pos
|
66 |
+
):
|
67 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
68 |
+
|
69 |
+
values = SparseArray([0, np.nan, 1, 0, None, 3], fill_value=0)
|
70 |
+
index = pd.MultiIndex.from_tuples(
|
71 |
+
[
|
72 |
+
("b", 2, "z", 1),
|
73 |
+
("a", 2, "z", 2),
|
74 |
+
("a", 2, "z", 1),
|
75 |
+
("a", 2, "x", 2),
|
76 |
+
("b", 1, "z", 1),
|
77 |
+
("a", 1, "z", 0),
|
78 |
+
]
|
79 |
+
)
|
80 |
+
ss = pd.Series(values, index=index)
|
81 |
+
|
82 |
+
expected_A = np.zeros((4, 4))
|
83 |
+
for value, (row, col) in expected_values_pos.items():
|
84 |
+
expected_A[row, col] = value
|
85 |
+
|
86 |
+
A, rows, cols = ss.sparse.to_coo(
|
87 |
+
row_levels=(0, 1), column_levels=(2, 3), sort_labels=sort_labels
|
88 |
+
)
|
89 |
+
assert isinstance(A, sp_sparse.coo_matrix)
|
90 |
+
tm.assert_numpy_array_equal(A.toarray(), expected_A)
|
91 |
+
assert rows == expected_rows
|
92 |
+
assert cols == expected_cols
|
93 |
+
|
94 |
+
def test_non_sparse_raises(self):
|
95 |
+
ser = pd.Series([1, 2, 3])
|
96 |
+
with pytest.raises(AttributeError, match=".sparse"):
|
97 |
+
ser.sparse.density
|
98 |
+
|
99 |
+
|
100 |
+
class TestFrameAccessor:
|
101 |
+
def test_accessor_raises(self):
|
102 |
+
df = pd.DataFrame({"A": [0, 1]})
|
103 |
+
with pytest.raises(AttributeError, match="sparse"):
|
104 |
+
df.sparse
|
105 |
+
|
106 |
+
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
|
107 |
+
@pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])])
|
108 |
+
@pytest.mark.parametrize("dtype", ["float64", "int64"])
|
109 |
+
def test_from_spmatrix(self, format, labels, dtype):
|
110 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
111 |
+
|
112 |
+
sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item())
|
113 |
+
|
114 |
+
mat = sp_sparse.eye(10, format=format, dtype=dtype)
|
115 |
+
result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels)
|
116 |
+
expected = pd.DataFrame(
|
117 |
+
np.eye(10, dtype=dtype), index=labels, columns=labels
|
118 |
+
).astype(sp_dtype)
|
119 |
+
tm.assert_frame_equal(result, expected)
|
120 |
+
|
121 |
+
@pytest.mark.parametrize("format", ["csc", "csr", "coo"])
|
122 |
+
def test_from_spmatrix_including_explicit_zero(self, format):
|
123 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
124 |
+
|
125 |
+
mat = sp_sparse.random(10, 2, density=0.5, format=format)
|
126 |
+
mat.data[0] = 0
|
127 |
+
result = pd.DataFrame.sparse.from_spmatrix(mat)
|
128 |
+
dtype = SparseDtype("float64", 0.0)
|
129 |
+
expected = pd.DataFrame(mat.todense()).astype(dtype)
|
130 |
+
tm.assert_frame_equal(result, expected)
|
131 |
+
|
132 |
+
@pytest.mark.parametrize(
|
133 |
+
"columns",
|
134 |
+
[["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]],
|
135 |
+
)
|
136 |
+
def test_from_spmatrix_columns(self, columns):
|
137 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
138 |
+
|
139 |
+
dtype = SparseDtype("float64", 0.0)
|
140 |
+
|
141 |
+
mat = sp_sparse.random(10, 2, density=0.5)
|
142 |
+
result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns)
|
143 |
+
expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype)
|
144 |
+
tm.assert_frame_equal(result, expected)
|
145 |
+
|
146 |
+
@pytest.mark.parametrize(
|
147 |
+
"colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2), ("x", "x"), (0, 0)]
|
148 |
+
)
|
149 |
+
def test_to_coo(self, colnames):
|
150 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
151 |
+
|
152 |
+
df = pd.DataFrame(
|
153 |
+
{colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]"
|
154 |
+
)
|
155 |
+
result = df.sparse.to_coo()
|
156 |
+
expected = sp_sparse.coo_matrix(np.asarray(df))
|
157 |
+
assert (result != expected).nnz == 0
|
158 |
+
|
159 |
+
@pytest.mark.parametrize("fill_value", [1, np.nan])
|
160 |
+
def test_to_coo_nonzero_fill_val_raises(self, fill_value):
|
161 |
+
pytest.importorskip("scipy")
|
162 |
+
df = pd.DataFrame(
|
163 |
+
{
|
164 |
+
"A": SparseArray(
|
165 |
+
[fill_value, fill_value, fill_value, 2], fill_value=fill_value
|
166 |
+
),
|
167 |
+
"B": SparseArray(
|
168 |
+
[fill_value, 2, fill_value, fill_value], fill_value=fill_value
|
169 |
+
),
|
170 |
+
}
|
171 |
+
)
|
172 |
+
with pytest.raises(ValueError, match="fill value must be 0"):
|
173 |
+
df.sparse.to_coo()
|
174 |
+
|
175 |
+
def test_to_coo_midx_categorical(self):
|
176 |
+
# GH#50996
|
177 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
178 |
+
|
179 |
+
midx = pd.MultiIndex.from_arrays(
|
180 |
+
[
|
181 |
+
pd.CategoricalIndex(list("ab"), name="x"),
|
182 |
+
pd.CategoricalIndex([0, 1], name="y"),
|
183 |
+
]
|
184 |
+
)
|
185 |
+
|
186 |
+
ser = pd.Series(1, index=midx, dtype="Sparse[int]")
|
187 |
+
result = ser.sparse.to_coo(row_levels=["x"], column_levels=["y"])[0]
|
188 |
+
expected = sp_sparse.coo_matrix(
|
189 |
+
(np.array([1, 1]), (np.array([0, 1]), np.array([0, 1]))), shape=(2, 2)
|
190 |
+
)
|
191 |
+
assert (result != expected).nnz == 0
|
192 |
+
|
193 |
+
def test_to_dense(self):
|
194 |
+
df = pd.DataFrame(
|
195 |
+
{
|
196 |
+
"A": SparseArray([1, 0], dtype=SparseDtype("int64", 0)),
|
197 |
+
"B": SparseArray([1, 0], dtype=SparseDtype("int64", 1)),
|
198 |
+
"C": SparseArray([1.0, 0.0], dtype=SparseDtype("float64", 0.0)),
|
199 |
+
},
|
200 |
+
index=["b", "a"],
|
201 |
+
)
|
202 |
+
result = df.sparse.to_dense()
|
203 |
+
expected = pd.DataFrame(
|
204 |
+
{"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"]
|
205 |
+
)
|
206 |
+
tm.assert_frame_equal(result, expected)
|
207 |
+
|
208 |
+
def test_density(self):
|
209 |
+
df = pd.DataFrame(
|
210 |
+
{
|
211 |
+
"A": SparseArray([1, 0, 2, 1], fill_value=0),
|
212 |
+
"B": SparseArray([0, 1, 1, 1], fill_value=0),
|
213 |
+
}
|
214 |
+
)
|
215 |
+
res = df.sparse.density
|
216 |
+
expected = 0.75
|
217 |
+
assert res == expected
|
218 |
+
|
219 |
+
@pytest.mark.parametrize("dtype", ["int64", "float64"])
|
220 |
+
@pytest.mark.parametrize("dense_index", [True, False])
|
221 |
+
def test_series_from_coo(self, dtype, dense_index):
|
222 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
223 |
+
|
224 |
+
A = sp_sparse.eye(3, format="coo", dtype=dtype)
|
225 |
+
result = pd.Series.sparse.from_coo(A, dense_index=dense_index)
|
226 |
+
|
227 |
+
index = pd.MultiIndex.from_tuples(
|
228 |
+
[
|
229 |
+
np.array([0, 0], dtype=np.int32),
|
230 |
+
np.array([1, 1], dtype=np.int32),
|
231 |
+
np.array([2, 2], dtype=np.int32),
|
232 |
+
],
|
233 |
+
)
|
234 |
+
expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index)
|
235 |
+
if dense_index:
|
236 |
+
expected = expected.reindex(pd.MultiIndex.from_product(index.levels))
|
237 |
+
|
238 |
+
tm.assert_series_equal(result, expected)
|
239 |
+
|
240 |
+
def test_series_from_coo_incorrect_format_raises(self):
|
241 |
+
# gh-26554
|
242 |
+
sp_sparse = pytest.importorskip("scipy.sparse")
|
243 |
+
|
244 |
+
m = sp_sparse.csr_matrix(np.array([[0, 1], [0, 0]]))
|
245 |
+
with pytest.raises(
|
246 |
+
TypeError, match="Expected coo_matrix. Got csr_matrix instead."
|
247 |
+
):
|
248 |
+
pd.Series.sparse.from_coo(m)
|
249 |
+
|
250 |
+
def test_with_column_named_sparse(self):
|
251 |
+
# https://github.com/pandas-dev/pandas/issues/30758
|
252 |
+
df = pd.DataFrame({"sparse": pd.arrays.SparseArray([1, 2])})
|
253 |
+
assert isinstance(df.sparse, pd.core.arrays.sparse.accessor.SparseFrameAccessor)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_arithmetics.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import SparseDtype
|
8 |
+
import pandas._testing as tm
|
9 |
+
from pandas.core.arrays.sparse import SparseArray
|
10 |
+
|
11 |
+
|
12 |
+
@pytest.fixture(params=["integer", "block"])
|
13 |
+
def kind(request):
|
14 |
+
"""kind kwarg to pass to SparseArray"""
|
15 |
+
return request.param
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.fixture(params=[True, False])
|
19 |
+
def mix(request):
|
20 |
+
"""
|
21 |
+
Fixture returning True or False, determining whether to operate
|
22 |
+
op(sparse, dense) instead of op(sparse, sparse)
|
23 |
+
"""
|
24 |
+
return request.param
|
25 |
+
|
26 |
+
|
27 |
+
class TestSparseArrayArithmetics:
|
28 |
+
def _assert(self, a, b):
|
29 |
+
# We have to use tm.assert_sp_array_equal. See GH #45126
|
30 |
+
tm.assert_numpy_array_equal(a, b)
|
31 |
+
|
32 |
+
def _check_numeric_ops(self, a, b, a_dense, b_dense, mix: bool, op):
|
33 |
+
# Check that arithmetic behavior matches non-Sparse Series arithmetic
|
34 |
+
|
35 |
+
if isinstance(a_dense, np.ndarray):
|
36 |
+
expected = op(pd.Series(a_dense), b_dense).values
|
37 |
+
elif isinstance(b_dense, np.ndarray):
|
38 |
+
expected = op(a_dense, pd.Series(b_dense)).values
|
39 |
+
else:
|
40 |
+
raise NotImplementedError
|
41 |
+
|
42 |
+
with np.errstate(invalid="ignore", divide="ignore"):
|
43 |
+
if mix:
|
44 |
+
result = op(a, b_dense).to_dense()
|
45 |
+
else:
|
46 |
+
result = op(a, b).to_dense()
|
47 |
+
|
48 |
+
self._assert(result, expected)
|
49 |
+
|
50 |
+
def _check_bool_result(self, res):
|
51 |
+
assert isinstance(res, SparseArray)
|
52 |
+
assert isinstance(res.dtype, SparseDtype)
|
53 |
+
assert res.dtype.subtype == np.bool_
|
54 |
+
assert isinstance(res.fill_value, bool)
|
55 |
+
|
56 |
+
def _check_comparison_ops(self, a, b, a_dense, b_dense):
|
57 |
+
with np.errstate(invalid="ignore"):
|
58 |
+
# Unfortunately, trying to wrap the computation of each expected
|
59 |
+
# value is with np.errstate() is too tedious.
|
60 |
+
#
|
61 |
+
# sparse & sparse
|
62 |
+
self._check_bool_result(a == b)
|
63 |
+
self._assert((a == b).to_dense(), a_dense == b_dense)
|
64 |
+
|
65 |
+
self._check_bool_result(a != b)
|
66 |
+
self._assert((a != b).to_dense(), a_dense != b_dense)
|
67 |
+
|
68 |
+
self._check_bool_result(a >= b)
|
69 |
+
self._assert((a >= b).to_dense(), a_dense >= b_dense)
|
70 |
+
|
71 |
+
self._check_bool_result(a <= b)
|
72 |
+
self._assert((a <= b).to_dense(), a_dense <= b_dense)
|
73 |
+
|
74 |
+
self._check_bool_result(a > b)
|
75 |
+
self._assert((a > b).to_dense(), a_dense > b_dense)
|
76 |
+
|
77 |
+
self._check_bool_result(a < b)
|
78 |
+
self._assert((a < b).to_dense(), a_dense < b_dense)
|
79 |
+
|
80 |
+
# sparse & dense
|
81 |
+
self._check_bool_result(a == b_dense)
|
82 |
+
self._assert((a == b_dense).to_dense(), a_dense == b_dense)
|
83 |
+
|
84 |
+
self._check_bool_result(a != b_dense)
|
85 |
+
self._assert((a != b_dense).to_dense(), a_dense != b_dense)
|
86 |
+
|
87 |
+
self._check_bool_result(a >= b_dense)
|
88 |
+
self._assert((a >= b_dense).to_dense(), a_dense >= b_dense)
|
89 |
+
|
90 |
+
self._check_bool_result(a <= b_dense)
|
91 |
+
self._assert((a <= b_dense).to_dense(), a_dense <= b_dense)
|
92 |
+
|
93 |
+
self._check_bool_result(a > b_dense)
|
94 |
+
self._assert((a > b_dense).to_dense(), a_dense > b_dense)
|
95 |
+
|
96 |
+
self._check_bool_result(a < b_dense)
|
97 |
+
self._assert((a < b_dense).to_dense(), a_dense < b_dense)
|
98 |
+
|
99 |
+
def _check_logical_ops(self, a, b, a_dense, b_dense):
|
100 |
+
# sparse & sparse
|
101 |
+
self._check_bool_result(a & b)
|
102 |
+
self._assert((a & b).to_dense(), a_dense & b_dense)
|
103 |
+
|
104 |
+
self._check_bool_result(a | b)
|
105 |
+
self._assert((a | b).to_dense(), a_dense | b_dense)
|
106 |
+
# sparse & dense
|
107 |
+
self._check_bool_result(a & b_dense)
|
108 |
+
self._assert((a & b_dense).to_dense(), a_dense & b_dense)
|
109 |
+
|
110 |
+
self._check_bool_result(a | b_dense)
|
111 |
+
self._assert((a | b_dense).to_dense(), a_dense | b_dense)
|
112 |
+
|
113 |
+
@pytest.mark.parametrize("scalar", [0, 1, 3])
|
114 |
+
@pytest.mark.parametrize("fill_value", [None, 0, 2])
|
115 |
+
def test_float_scalar(
|
116 |
+
self, kind, mix, all_arithmetic_functions, fill_value, scalar, request
|
117 |
+
):
|
118 |
+
op = all_arithmetic_functions
|
119 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
120 |
+
a = SparseArray(values, kind=kind, fill_value=fill_value)
|
121 |
+
self._check_numeric_ops(a, scalar, values, scalar, mix, op)
|
122 |
+
|
123 |
+
def test_float_scalar_comparison(self, kind):
|
124 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
125 |
+
|
126 |
+
a = SparseArray(values, kind=kind)
|
127 |
+
self._check_comparison_ops(a, 1, values, 1)
|
128 |
+
self._check_comparison_ops(a, 0, values, 0)
|
129 |
+
self._check_comparison_ops(a, 3, values, 3)
|
130 |
+
|
131 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
132 |
+
self._check_comparison_ops(a, 1, values, 1)
|
133 |
+
self._check_comparison_ops(a, 0, values, 0)
|
134 |
+
self._check_comparison_ops(a, 3, values, 3)
|
135 |
+
|
136 |
+
a = SparseArray(values, kind=kind, fill_value=2)
|
137 |
+
self._check_comparison_ops(a, 1, values, 1)
|
138 |
+
self._check_comparison_ops(a, 0, values, 0)
|
139 |
+
self._check_comparison_ops(a, 3, values, 3)
|
140 |
+
|
141 |
+
def test_float_same_index_without_nans(self, kind, mix, all_arithmetic_functions):
|
142 |
+
# when sp_index are the same
|
143 |
+
op = all_arithmetic_functions
|
144 |
+
|
145 |
+
values = np.array([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
|
146 |
+
rvalues = np.array([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
|
147 |
+
|
148 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
149 |
+
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
150 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
151 |
+
|
152 |
+
def test_float_same_index_with_nans(
|
153 |
+
self, kind, mix, all_arithmetic_functions, request
|
154 |
+
):
|
155 |
+
# when sp_index are the same
|
156 |
+
op = all_arithmetic_functions
|
157 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
158 |
+
rvalues = np.array([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
|
159 |
+
|
160 |
+
a = SparseArray(values, kind=kind)
|
161 |
+
b = SparseArray(rvalues, kind=kind)
|
162 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
163 |
+
|
164 |
+
def test_float_same_index_comparison(self, kind):
|
165 |
+
# when sp_index are the same
|
166 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
167 |
+
rvalues = np.array([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan])
|
168 |
+
|
169 |
+
a = SparseArray(values, kind=kind)
|
170 |
+
b = SparseArray(rvalues, kind=kind)
|
171 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
172 |
+
|
173 |
+
values = np.array([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0])
|
174 |
+
rvalues = np.array([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0])
|
175 |
+
|
176 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
177 |
+
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
178 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
179 |
+
|
180 |
+
def test_float_array(self, kind, mix, all_arithmetic_functions):
|
181 |
+
op = all_arithmetic_functions
|
182 |
+
|
183 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
184 |
+
rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
185 |
+
|
186 |
+
a = SparseArray(values, kind=kind)
|
187 |
+
b = SparseArray(rvalues, kind=kind)
|
188 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
189 |
+
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
190 |
+
|
191 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
192 |
+
b = SparseArray(rvalues, kind=kind)
|
193 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
194 |
+
|
195 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
196 |
+
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
197 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
198 |
+
|
199 |
+
a = SparseArray(values, kind=kind, fill_value=1)
|
200 |
+
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
201 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
202 |
+
|
203 |
+
def test_float_array_different_kind(self, mix, all_arithmetic_functions):
|
204 |
+
op = all_arithmetic_functions
|
205 |
+
|
206 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
207 |
+
rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
208 |
+
|
209 |
+
a = SparseArray(values, kind="integer")
|
210 |
+
b = SparseArray(rvalues, kind="block")
|
211 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
212 |
+
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
213 |
+
|
214 |
+
a = SparseArray(values, kind="integer", fill_value=0)
|
215 |
+
b = SparseArray(rvalues, kind="block")
|
216 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
217 |
+
|
218 |
+
a = SparseArray(values, kind="integer", fill_value=0)
|
219 |
+
b = SparseArray(rvalues, kind="block", fill_value=0)
|
220 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
221 |
+
|
222 |
+
a = SparseArray(values, kind="integer", fill_value=1)
|
223 |
+
b = SparseArray(rvalues, kind="block", fill_value=2)
|
224 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
225 |
+
|
226 |
+
def test_float_array_comparison(self, kind):
|
227 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
228 |
+
rvalues = np.array([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan])
|
229 |
+
|
230 |
+
a = SparseArray(values, kind=kind)
|
231 |
+
b = SparseArray(rvalues, kind=kind)
|
232 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
233 |
+
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
234 |
+
|
235 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
236 |
+
b = SparseArray(rvalues, kind=kind)
|
237 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
238 |
+
|
239 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
240 |
+
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
241 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
242 |
+
|
243 |
+
a = SparseArray(values, kind=kind, fill_value=1)
|
244 |
+
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
245 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
246 |
+
|
247 |
+
def test_int_array(self, kind, mix, all_arithmetic_functions):
|
248 |
+
op = all_arithmetic_functions
|
249 |
+
|
250 |
+
# have to specify dtype explicitly until fixing GH 667
|
251 |
+
dtype = np.int64
|
252 |
+
|
253 |
+
values = np.array([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
|
254 |
+
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
|
255 |
+
|
256 |
+
a = SparseArray(values, dtype=dtype, kind=kind)
|
257 |
+
assert a.dtype == SparseDtype(dtype)
|
258 |
+
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
259 |
+
assert b.dtype == SparseDtype(dtype)
|
260 |
+
|
261 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
262 |
+
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
263 |
+
|
264 |
+
a = SparseArray(values, fill_value=0, dtype=dtype, kind=kind)
|
265 |
+
assert a.dtype == SparseDtype(dtype)
|
266 |
+
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
267 |
+
assert b.dtype == SparseDtype(dtype)
|
268 |
+
|
269 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
270 |
+
|
271 |
+
a = SparseArray(values, fill_value=0, dtype=dtype, kind=kind)
|
272 |
+
assert a.dtype == SparseDtype(dtype)
|
273 |
+
b = SparseArray(rvalues, fill_value=0, dtype=dtype, kind=kind)
|
274 |
+
assert b.dtype == SparseDtype(dtype)
|
275 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
276 |
+
|
277 |
+
a = SparseArray(values, fill_value=1, dtype=dtype, kind=kind)
|
278 |
+
assert a.dtype == SparseDtype(dtype, fill_value=1)
|
279 |
+
b = SparseArray(rvalues, fill_value=2, dtype=dtype, kind=kind)
|
280 |
+
assert b.dtype == SparseDtype(dtype, fill_value=2)
|
281 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
282 |
+
|
283 |
+
def test_int_array_comparison(self, kind):
|
284 |
+
dtype = "int64"
|
285 |
+
# int32 NI ATM
|
286 |
+
|
287 |
+
values = np.array([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype)
|
288 |
+
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype)
|
289 |
+
|
290 |
+
a = SparseArray(values, dtype=dtype, kind=kind)
|
291 |
+
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
292 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
293 |
+
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
294 |
+
|
295 |
+
a = SparseArray(values, dtype=dtype, kind=kind, fill_value=0)
|
296 |
+
b = SparseArray(rvalues, dtype=dtype, kind=kind)
|
297 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
298 |
+
|
299 |
+
a = SparseArray(values, dtype=dtype, kind=kind, fill_value=0)
|
300 |
+
b = SparseArray(rvalues, dtype=dtype, kind=kind, fill_value=0)
|
301 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
302 |
+
|
303 |
+
a = SparseArray(values, dtype=dtype, kind=kind, fill_value=1)
|
304 |
+
b = SparseArray(rvalues, dtype=dtype, kind=kind, fill_value=2)
|
305 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
306 |
+
|
307 |
+
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
|
308 |
+
def test_bool_same_index(self, kind, fill_value):
|
309 |
+
# GH 14000
|
310 |
+
# when sp_index are the same
|
311 |
+
values = np.array([True, False, True, True], dtype=np.bool_)
|
312 |
+
rvalues = np.array([True, False, True, True], dtype=np.bool_)
|
313 |
+
|
314 |
+
a = SparseArray(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
315 |
+
b = SparseArray(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
316 |
+
self._check_logical_ops(a, b, values, rvalues)
|
317 |
+
|
318 |
+
@pytest.mark.parametrize("fill_value", [True, False, np.nan])
|
319 |
+
def test_bool_array_logical(self, kind, fill_value):
|
320 |
+
# GH 14000
|
321 |
+
# when sp_index are the same
|
322 |
+
values = np.array([True, False, True, False, True, True], dtype=np.bool_)
|
323 |
+
rvalues = np.array([True, False, False, True, False, True], dtype=np.bool_)
|
324 |
+
|
325 |
+
a = SparseArray(values, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
326 |
+
b = SparseArray(rvalues, kind=kind, dtype=np.bool_, fill_value=fill_value)
|
327 |
+
self._check_logical_ops(a, b, values, rvalues)
|
328 |
+
|
329 |
+
def test_mixed_array_float_int(self, kind, mix, all_arithmetic_functions, request):
|
330 |
+
op = all_arithmetic_functions
|
331 |
+
rdtype = "int64"
|
332 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
333 |
+
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
|
334 |
+
|
335 |
+
a = SparseArray(values, kind=kind)
|
336 |
+
b = SparseArray(rvalues, kind=kind)
|
337 |
+
assert b.dtype == SparseDtype(rdtype)
|
338 |
+
|
339 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
340 |
+
self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op)
|
341 |
+
|
342 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
343 |
+
b = SparseArray(rvalues, kind=kind)
|
344 |
+
assert b.dtype == SparseDtype(rdtype)
|
345 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
346 |
+
|
347 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
348 |
+
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
349 |
+
assert b.dtype == SparseDtype(rdtype)
|
350 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
351 |
+
|
352 |
+
a = SparseArray(values, kind=kind, fill_value=1)
|
353 |
+
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
354 |
+
assert b.dtype == SparseDtype(rdtype, fill_value=2)
|
355 |
+
self._check_numeric_ops(a, b, values, rvalues, mix, op)
|
356 |
+
|
357 |
+
def test_mixed_array_comparison(self, kind):
|
358 |
+
rdtype = "int64"
|
359 |
+
# int32 NI ATM
|
360 |
+
|
361 |
+
values = np.array([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan])
|
362 |
+
rvalues = np.array([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype)
|
363 |
+
|
364 |
+
a = SparseArray(values, kind=kind)
|
365 |
+
b = SparseArray(rvalues, kind=kind)
|
366 |
+
assert b.dtype == SparseDtype(rdtype)
|
367 |
+
|
368 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
369 |
+
self._check_comparison_ops(a, b * 0, values, rvalues * 0)
|
370 |
+
|
371 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
372 |
+
b = SparseArray(rvalues, kind=kind)
|
373 |
+
assert b.dtype == SparseDtype(rdtype)
|
374 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
375 |
+
|
376 |
+
a = SparseArray(values, kind=kind, fill_value=0)
|
377 |
+
b = SparseArray(rvalues, kind=kind, fill_value=0)
|
378 |
+
assert b.dtype == SparseDtype(rdtype)
|
379 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
380 |
+
|
381 |
+
a = SparseArray(values, kind=kind, fill_value=1)
|
382 |
+
b = SparseArray(rvalues, kind=kind, fill_value=2)
|
383 |
+
assert b.dtype == SparseDtype(rdtype, fill_value=2)
|
384 |
+
self._check_comparison_ops(a, b, values, rvalues)
|
385 |
+
|
386 |
+
def test_xor(self):
|
387 |
+
s = SparseArray([True, True, False, False])
|
388 |
+
t = SparseArray([True, False, True, False])
|
389 |
+
result = s ^ t
|
390 |
+
sp_index = pd.core.arrays.sparse.IntIndex(4, np.array([0, 1, 2], dtype="int32"))
|
391 |
+
expected = SparseArray([False, True, True], sparse_index=sp_index)
|
392 |
+
tm.assert_sp_array_equal(result, expected)
|
393 |
+
|
394 |
+
|
395 |
+
@pytest.mark.parametrize("op", [operator.eq, operator.add])
|
396 |
+
def test_with_list(op):
|
397 |
+
arr = SparseArray([0, 1], fill_value=0)
|
398 |
+
result = op(arr, [0, 1])
|
399 |
+
expected = op(arr, SparseArray([0, 1]))
|
400 |
+
tm.assert_sp_array_equal(result, expected)
|
401 |
+
|
402 |
+
|
403 |
+
def test_with_dataframe():
|
404 |
+
# GH#27910
|
405 |
+
arr = SparseArray([0, 1], fill_value=0)
|
406 |
+
df = pd.DataFrame([[1, 2], [3, 4]])
|
407 |
+
result = arr.__add__(df)
|
408 |
+
assert result is NotImplemented
|
409 |
+
|
410 |
+
|
411 |
+
def test_with_zerodim_ndarray():
|
412 |
+
# GH#27910
|
413 |
+
arr = SparseArray([0, 1], fill_value=0)
|
414 |
+
|
415 |
+
result = arr * np.array(2)
|
416 |
+
expected = arr * 2
|
417 |
+
tm.assert_sp_array_equal(result, expected)
|
418 |
+
|
419 |
+
|
420 |
+
@pytest.mark.parametrize("ufunc", [np.abs, np.exp])
|
421 |
+
@pytest.mark.parametrize(
|
422 |
+
"arr", [SparseArray([0, 0, -1, 1]), SparseArray([None, None, -1, 1])]
|
423 |
+
)
|
424 |
+
def test_ufuncs(ufunc, arr):
|
425 |
+
result = ufunc(arr)
|
426 |
+
fill_value = ufunc(arr.fill_value)
|
427 |
+
expected = SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value)
|
428 |
+
tm.assert_sp_array_equal(result, expected)
|
429 |
+
|
430 |
+
|
431 |
+
@pytest.mark.parametrize(
|
432 |
+
"a, b",
|
433 |
+
[
|
434 |
+
(SparseArray([0, 0, 0]), np.array([0, 1, 2])),
|
435 |
+
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
436 |
+
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
437 |
+
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
438 |
+
(SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])),
|
439 |
+
],
|
440 |
+
)
|
441 |
+
@pytest.mark.parametrize("ufunc", [np.add, np.greater])
|
442 |
+
def test_binary_ufuncs(ufunc, a, b):
|
443 |
+
# can't say anything about fill value here.
|
444 |
+
result = ufunc(a, b)
|
445 |
+
expected = ufunc(np.asarray(a), np.asarray(b))
|
446 |
+
assert isinstance(result, SparseArray)
|
447 |
+
tm.assert_numpy_array_equal(np.asarray(result), expected)
|
448 |
+
|
449 |
+
|
450 |
+
def test_ndarray_inplace():
|
451 |
+
sparray = SparseArray([0, 2, 0, 0])
|
452 |
+
ndarray = np.array([0, 1, 2, 3])
|
453 |
+
ndarray += sparray
|
454 |
+
expected = np.array([0, 3, 2, 3])
|
455 |
+
tm.assert_numpy_array_equal(ndarray, expected)
|
456 |
+
|
457 |
+
|
458 |
+
def test_sparray_inplace():
|
459 |
+
sparray = SparseArray([0, 2, 0, 0])
|
460 |
+
ndarray = np.array([0, 1, 2, 3])
|
461 |
+
sparray += ndarray
|
462 |
+
expected = SparseArray([0, 3, 2, 3], fill_value=0)
|
463 |
+
tm.assert_sp_array_equal(sparray, expected)
|
464 |
+
|
465 |
+
|
466 |
+
@pytest.mark.parametrize("cons", [list, np.array, SparseArray])
|
467 |
+
def test_mismatched_length_cmp_op(cons):
|
468 |
+
left = SparseArray([True, True])
|
469 |
+
right = cons([True, True, True])
|
470 |
+
with pytest.raises(ValueError, match="operands have mismatched length"):
|
471 |
+
left & right
|
472 |
+
|
473 |
+
|
474 |
+
@pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"])
|
475 |
+
@pytest.mark.parametrize("fill_value", [np.nan, 3])
|
476 |
+
def test_binary_operators(op, fill_value):
|
477 |
+
op = getattr(operator, op)
|
478 |
+
data1 = np.random.default_rng(2).standard_normal(20)
|
479 |
+
data2 = np.random.default_rng(2).standard_normal(20)
|
480 |
+
|
481 |
+
data1[::2] = fill_value
|
482 |
+
data2[::3] = fill_value
|
483 |
+
|
484 |
+
first = SparseArray(data1, fill_value=fill_value)
|
485 |
+
second = SparseArray(data2, fill_value=fill_value)
|
486 |
+
|
487 |
+
with np.errstate(all="ignore"):
|
488 |
+
res = op(first, second)
|
489 |
+
exp = SparseArray(
|
490 |
+
op(first.to_dense(), second.to_dense()), fill_value=first.fill_value
|
491 |
+
)
|
492 |
+
assert isinstance(res, SparseArray)
|
493 |
+
tm.assert_almost_equal(res.to_dense(), exp.to_dense())
|
494 |
+
|
495 |
+
res2 = op(first, second.to_dense())
|
496 |
+
assert isinstance(res2, SparseArray)
|
497 |
+
tm.assert_sp_array_equal(res, res2)
|
498 |
+
|
499 |
+
res3 = op(first.to_dense(), second)
|
500 |
+
assert isinstance(res3, SparseArray)
|
501 |
+
tm.assert_sp_array_equal(res, res3)
|
502 |
+
|
503 |
+
res4 = op(first, 4)
|
504 |
+
assert isinstance(res4, SparseArray)
|
505 |
+
|
506 |
+
# Ignore this if the actual op raises (e.g. pow).
|
507 |
+
try:
|
508 |
+
exp = op(first.to_dense(), 4)
|
509 |
+
exp_fv = op(first.fill_value, 4)
|
510 |
+
except ValueError:
|
511 |
+
pass
|
512 |
+
else:
|
513 |
+
tm.assert_almost_equal(res4.fill_value, exp_fv)
|
514 |
+
tm.assert_almost_equal(res4.to_dense(), exp)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_array.py
ADDED
@@ -0,0 +1,480 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas._libs.sparse import IntIndex
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
SparseDtype,
|
11 |
+
isna,
|
12 |
+
)
|
13 |
+
import pandas._testing as tm
|
14 |
+
from pandas.core.arrays.sparse import SparseArray
|
15 |
+
|
16 |
+
|
17 |
+
@pytest.fixture
|
18 |
+
def arr_data():
|
19 |
+
"""Fixture returning numpy array with valid and missing entries"""
|
20 |
+
return np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
|
21 |
+
|
22 |
+
|
23 |
+
@pytest.fixture
|
24 |
+
def arr(arr_data):
|
25 |
+
"""Fixture returning SparseArray from 'arr_data'"""
|
26 |
+
return SparseArray(arr_data)
|
27 |
+
|
28 |
+
|
29 |
+
@pytest.fixture
|
30 |
+
def zarr():
|
31 |
+
"""Fixture returning SparseArray with integer entries and 'fill_value=0'"""
|
32 |
+
return SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0)
|
33 |
+
|
34 |
+
|
35 |
+
class TestSparseArray:
|
36 |
+
@pytest.mark.parametrize("fill_value", [0, None, np.nan])
|
37 |
+
def test_shift_fill_value(self, fill_value):
|
38 |
+
# GH #24128
|
39 |
+
sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0)
|
40 |
+
res = sparse.shift(1, fill_value=fill_value)
|
41 |
+
if isna(fill_value):
|
42 |
+
fill_value = res.dtype.na_value
|
43 |
+
exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0)
|
44 |
+
tm.assert_sp_array_equal(res, exp)
|
45 |
+
|
46 |
+
def test_set_fill_value(self):
|
47 |
+
arr = SparseArray([1.0, np.nan, 2.0], fill_value=np.nan)
|
48 |
+
arr.fill_value = 2
|
49 |
+
assert arr.fill_value == 2
|
50 |
+
|
51 |
+
arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64)
|
52 |
+
arr.fill_value = 2
|
53 |
+
assert arr.fill_value == 2
|
54 |
+
|
55 |
+
msg = "Allowing arbitrary scalar fill_value in SparseDtype is deprecated"
|
56 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
57 |
+
arr.fill_value = 3.1
|
58 |
+
assert arr.fill_value == 3.1
|
59 |
+
|
60 |
+
arr.fill_value = np.nan
|
61 |
+
assert np.isnan(arr.fill_value)
|
62 |
+
|
63 |
+
arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool_)
|
64 |
+
arr.fill_value = True
|
65 |
+
assert arr.fill_value is True
|
66 |
+
|
67 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
68 |
+
arr.fill_value = 0
|
69 |
+
|
70 |
+
arr.fill_value = np.nan
|
71 |
+
assert np.isnan(arr.fill_value)
|
72 |
+
|
73 |
+
@pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)])
|
74 |
+
def test_set_fill_invalid_non_scalar(self, val):
|
75 |
+
arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool_)
|
76 |
+
msg = "fill_value must be a scalar"
|
77 |
+
|
78 |
+
with pytest.raises(ValueError, match=msg):
|
79 |
+
arr.fill_value = val
|
80 |
+
|
81 |
+
def test_copy(self, arr):
|
82 |
+
arr2 = arr.copy()
|
83 |
+
assert arr2.sp_values is not arr.sp_values
|
84 |
+
assert arr2.sp_index is arr.sp_index
|
85 |
+
|
86 |
+
def test_values_asarray(self, arr_data, arr):
|
87 |
+
tm.assert_almost_equal(arr.to_dense(), arr_data)
|
88 |
+
|
89 |
+
@pytest.mark.parametrize(
|
90 |
+
"data,shape,dtype",
|
91 |
+
[
|
92 |
+
([0, 0, 0, 0, 0], (5,), None),
|
93 |
+
([], (0,), None),
|
94 |
+
([0], (1,), None),
|
95 |
+
(["A", "A", np.nan, "B"], (4,), object),
|
96 |
+
],
|
97 |
+
)
|
98 |
+
def test_shape(self, data, shape, dtype):
|
99 |
+
# GH 21126
|
100 |
+
out = SparseArray(data, dtype=dtype)
|
101 |
+
assert out.shape == shape
|
102 |
+
|
103 |
+
@pytest.mark.parametrize(
|
104 |
+
"vals",
|
105 |
+
[
|
106 |
+
[np.nan, np.nan, np.nan, np.nan, np.nan],
|
107 |
+
[1, np.nan, np.nan, 3, np.nan],
|
108 |
+
[1, np.nan, 0, 3, 0],
|
109 |
+
],
|
110 |
+
)
|
111 |
+
@pytest.mark.parametrize("fill_value", [None, 0])
|
112 |
+
def test_dense_repr(self, vals, fill_value):
|
113 |
+
vals = np.array(vals)
|
114 |
+
arr = SparseArray(vals, fill_value=fill_value)
|
115 |
+
|
116 |
+
res = arr.to_dense()
|
117 |
+
tm.assert_numpy_array_equal(res, vals)
|
118 |
+
|
119 |
+
@pytest.mark.parametrize("fix", ["arr", "zarr"])
|
120 |
+
def test_pickle(self, fix, request):
|
121 |
+
obj = request.getfixturevalue(fix)
|
122 |
+
unpickled = tm.round_trip_pickle(obj)
|
123 |
+
tm.assert_sp_array_equal(unpickled, obj)
|
124 |
+
|
125 |
+
def test_generator_warnings(self):
|
126 |
+
sp_arr = SparseArray([1, 2, 3])
|
127 |
+
with tm.assert_produces_warning(None):
|
128 |
+
for _ in sp_arr:
|
129 |
+
pass
|
130 |
+
|
131 |
+
def test_where_retain_fill_value(self):
|
132 |
+
# GH#45691 don't lose fill_value on _where
|
133 |
+
arr = SparseArray([np.nan, 1.0], fill_value=0)
|
134 |
+
|
135 |
+
mask = np.array([True, False])
|
136 |
+
|
137 |
+
res = arr._where(~mask, 1)
|
138 |
+
exp = SparseArray([1, 1.0], fill_value=0)
|
139 |
+
tm.assert_sp_array_equal(res, exp)
|
140 |
+
|
141 |
+
ser = pd.Series(arr)
|
142 |
+
res = ser.where(~mask, 1)
|
143 |
+
tm.assert_series_equal(res, pd.Series(exp))
|
144 |
+
|
145 |
+
def test_fillna(self):
|
146 |
+
s = SparseArray([1, np.nan, np.nan, 3, np.nan])
|
147 |
+
res = s.fillna(-1)
|
148 |
+
exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64)
|
149 |
+
tm.assert_sp_array_equal(res, exp)
|
150 |
+
|
151 |
+
s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0)
|
152 |
+
res = s.fillna(-1)
|
153 |
+
exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64)
|
154 |
+
tm.assert_sp_array_equal(res, exp)
|
155 |
+
|
156 |
+
s = SparseArray([1, np.nan, 0, 3, 0])
|
157 |
+
res = s.fillna(-1)
|
158 |
+
exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64)
|
159 |
+
tm.assert_sp_array_equal(res, exp)
|
160 |
+
|
161 |
+
s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0)
|
162 |
+
res = s.fillna(-1)
|
163 |
+
exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64)
|
164 |
+
tm.assert_sp_array_equal(res, exp)
|
165 |
+
|
166 |
+
s = SparseArray([np.nan, np.nan, np.nan, np.nan])
|
167 |
+
res = s.fillna(-1)
|
168 |
+
exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64)
|
169 |
+
tm.assert_sp_array_equal(res, exp)
|
170 |
+
|
171 |
+
s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0)
|
172 |
+
res = s.fillna(-1)
|
173 |
+
exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64)
|
174 |
+
tm.assert_sp_array_equal(res, exp)
|
175 |
+
|
176 |
+
# float dtype's fill_value is np.nan, replaced by -1
|
177 |
+
s = SparseArray([0.0, 0.0, 0.0, 0.0])
|
178 |
+
res = s.fillna(-1)
|
179 |
+
exp = SparseArray([0.0, 0.0, 0.0, 0.0], fill_value=-1)
|
180 |
+
tm.assert_sp_array_equal(res, exp)
|
181 |
+
|
182 |
+
# int dtype shouldn't have missing. No changes.
|
183 |
+
s = SparseArray([0, 0, 0, 0])
|
184 |
+
assert s.dtype == SparseDtype(np.int64)
|
185 |
+
assert s.fill_value == 0
|
186 |
+
res = s.fillna(-1)
|
187 |
+
tm.assert_sp_array_equal(res, s)
|
188 |
+
|
189 |
+
s = SparseArray([0, 0, 0, 0], fill_value=0)
|
190 |
+
assert s.dtype == SparseDtype(np.int64)
|
191 |
+
assert s.fill_value == 0
|
192 |
+
res = s.fillna(-1)
|
193 |
+
exp = SparseArray([0, 0, 0, 0], fill_value=0)
|
194 |
+
tm.assert_sp_array_equal(res, exp)
|
195 |
+
|
196 |
+
# fill_value can be nan if there is no missing hole.
|
197 |
+
# only fill_value will be changed
|
198 |
+
s = SparseArray([0, 0, 0, 0], fill_value=np.nan)
|
199 |
+
assert s.dtype == SparseDtype(np.int64, fill_value=np.nan)
|
200 |
+
assert np.isnan(s.fill_value)
|
201 |
+
res = s.fillna(-1)
|
202 |
+
exp = SparseArray([0, 0, 0, 0], fill_value=-1)
|
203 |
+
tm.assert_sp_array_equal(res, exp)
|
204 |
+
|
205 |
+
def test_fillna_overlap(self):
|
206 |
+
s = SparseArray([1, np.nan, np.nan, 3, np.nan])
|
207 |
+
# filling with existing value doesn't replace existing value with
|
208 |
+
# fill_value, i.e. existing 3 remains in sp_values
|
209 |
+
res = s.fillna(3)
|
210 |
+
exp = np.array([1, 3, 3, 3, 3], dtype=np.float64)
|
211 |
+
tm.assert_numpy_array_equal(res.to_dense(), exp)
|
212 |
+
|
213 |
+
s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0)
|
214 |
+
res = s.fillna(3)
|
215 |
+
exp = SparseArray([1, 3, 3, 3, 3], fill_value=0, dtype=np.float64)
|
216 |
+
tm.assert_sp_array_equal(res, exp)
|
217 |
+
|
218 |
+
def test_nonzero(self):
|
219 |
+
# Tests regression #21172.
|
220 |
+
sa = SparseArray([float("nan"), float("nan"), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0])
|
221 |
+
expected = np.array([2, 5, 9], dtype=np.int32)
|
222 |
+
(result,) = sa.nonzero()
|
223 |
+
tm.assert_numpy_array_equal(expected, result)
|
224 |
+
|
225 |
+
sa = SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0])
|
226 |
+
(result,) = sa.nonzero()
|
227 |
+
tm.assert_numpy_array_equal(expected, result)
|
228 |
+
|
229 |
+
|
230 |
+
class TestSparseArrayAnalytics:
|
231 |
+
@pytest.mark.parametrize(
|
232 |
+
"data,expected",
|
233 |
+
[
|
234 |
+
(
|
235 |
+
np.array([1, 2, 3, 4, 5], dtype=float), # non-null data
|
236 |
+
SparseArray(np.array([1.0, 3.0, 6.0, 10.0, 15.0])),
|
237 |
+
),
|
238 |
+
(
|
239 |
+
np.array([1, 2, np.nan, 4, 5], dtype=float), # null data
|
240 |
+
SparseArray(np.array([1.0, 3.0, np.nan, 7.0, 12.0])),
|
241 |
+
),
|
242 |
+
],
|
243 |
+
)
|
244 |
+
@pytest.mark.parametrize("numpy", [True, False])
|
245 |
+
def test_cumsum(self, data, expected, numpy):
|
246 |
+
cumsum = np.cumsum if numpy else lambda s: s.cumsum()
|
247 |
+
|
248 |
+
out = cumsum(SparseArray(data))
|
249 |
+
tm.assert_sp_array_equal(out, expected)
|
250 |
+
|
251 |
+
out = cumsum(SparseArray(data, fill_value=np.nan))
|
252 |
+
tm.assert_sp_array_equal(out, expected)
|
253 |
+
|
254 |
+
out = cumsum(SparseArray(data, fill_value=2))
|
255 |
+
tm.assert_sp_array_equal(out, expected)
|
256 |
+
|
257 |
+
if numpy: # numpy compatibility checks.
|
258 |
+
msg = "the 'dtype' parameter is not supported"
|
259 |
+
with pytest.raises(ValueError, match=msg):
|
260 |
+
np.cumsum(SparseArray(data), dtype=np.int64)
|
261 |
+
|
262 |
+
msg = "the 'out' parameter is not supported"
|
263 |
+
with pytest.raises(ValueError, match=msg):
|
264 |
+
np.cumsum(SparseArray(data), out=out)
|
265 |
+
else:
|
266 |
+
axis = 1 # SparseArray currently 1-D, so only axis = 0 is valid.
|
267 |
+
msg = re.escape(f"axis(={axis}) out of bounds")
|
268 |
+
with pytest.raises(ValueError, match=msg):
|
269 |
+
SparseArray(data).cumsum(axis=axis)
|
270 |
+
|
271 |
+
def test_ufunc(self):
|
272 |
+
# GH 13853 make sure ufunc is applied to fill_value
|
273 |
+
sparse = SparseArray([1, np.nan, 2, np.nan, -2])
|
274 |
+
result = SparseArray([1, np.nan, 2, np.nan, 2])
|
275 |
+
tm.assert_sp_array_equal(abs(sparse), result)
|
276 |
+
tm.assert_sp_array_equal(np.abs(sparse), result)
|
277 |
+
|
278 |
+
sparse = SparseArray([1, -1, 2, -2], fill_value=1)
|
279 |
+
result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1)
|
280 |
+
tm.assert_sp_array_equal(abs(sparse), result)
|
281 |
+
tm.assert_sp_array_equal(np.abs(sparse), result)
|
282 |
+
|
283 |
+
sparse = SparseArray([1, -1, 2, -2], fill_value=-1)
|
284 |
+
exp = SparseArray([1, 1, 2, 2], fill_value=1)
|
285 |
+
tm.assert_sp_array_equal(abs(sparse), exp)
|
286 |
+
tm.assert_sp_array_equal(np.abs(sparse), exp)
|
287 |
+
|
288 |
+
sparse = SparseArray([1, np.nan, 2, np.nan, -2])
|
289 |
+
result = SparseArray(np.sin([1, np.nan, 2, np.nan, -2]))
|
290 |
+
tm.assert_sp_array_equal(np.sin(sparse), result)
|
291 |
+
|
292 |
+
sparse = SparseArray([1, -1, 2, -2], fill_value=1)
|
293 |
+
result = SparseArray(np.sin([1, -1, 2, -2]), fill_value=np.sin(1))
|
294 |
+
tm.assert_sp_array_equal(np.sin(sparse), result)
|
295 |
+
|
296 |
+
sparse = SparseArray([1, -1, 0, -2], fill_value=0)
|
297 |
+
result = SparseArray(np.sin([1, -1, 0, -2]), fill_value=np.sin(0))
|
298 |
+
tm.assert_sp_array_equal(np.sin(sparse), result)
|
299 |
+
|
300 |
+
def test_ufunc_args(self):
|
301 |
+
# GH 13853 make sure ufunc is applied to fill_value, including its arg
|
302 |
+
sparse = SparseArray([1, np.nan, 2, np.nan, -2])
|
303 |
+
result = SparseArray([2, np.nan, 3, np.nan, -1])
|
304 |
+
tm.assert_sp_array_equal(np.add(sparse, 1), result)
|
305 |
+
|
306 |
+
sparse = SparseArray([1, -1, 2, -2], fill_value=1)
|
307 |
+
result = SparseArray([2, 0, 3, -1], fill_value=2)
|
308 |
+
tm.assert_sp_array_equal(np.add(sparse, 1), result)
|
309 |
+
|
310 |
+
sparse = SparseArray([1, -1, 0, -2], fill_value=0)
|
311 |
+
result = SparseArray([2, 0, 1, -1], fill_value=1)
|
312 |
+
tm.assert_sp_array_equal(np.add(sparse, 1), result)
|
313 |
+
|
314 |
+
@pytest.mark.parametrize("fill_value", [0.0, np.nan])
|
315 |
+
def test_modf(self, fill_value):
|
316 |
+
# https://github.com/pandas-dev/pandas/issues/26946
|
317 |
+
sparse = SparseArray([fill_value] * 10 + [1.1, 2.2], fill_value=fill_value)
|
318 |
+
r1, r2 = np.modf(sparse)
|
319 |
+
e1, e2 = np.modf(np.asarray(sparse))
|
320 |
+
tm.assert_sp_array_equal(r1, SparseArray(e1, fill_value=fill_value))
|
321 |
+
tm.assert_sp_array_equal(r2, SparseArray(e2, fill_value=fill_value))
|
322 |
+
|
323 |
+
def test_nbytes_integer(self):
|
324 |
+
arr = SparseArray([1, 0, 0, 0, 2], kind="integer")
|
325 |
+
result = arr.nbytes
|
326 |
+
# (2 * 8) + 2 * 4
|
327 |
+
assert result == 24
|
328 |
+
|
329 |
+
def test_nbytes_block(self):
|
330 |
+
arr = SparseArray([1, 2, 0, 0, 0], kind="block")
|
331 |
+
result = arr.nbytes
|
332 |
+
# (2 * 8) + 4 + 4
|
333 |
+
# sp_values, blocs, blengths
|
334 |
+
assert result == 24
|
335 |
+
|
336 |
+
def test_asarray_datetime64(self):
|
337 |
+
s = SparseArray(pd.to_datetime(["2012", None, None, "2013"]))
|
338 |
+
np.asarray(s)
|
339 |
+
|
340 |
+
def test_density(self):
|
341 |
+
arr = SparseArray([0, 1])
|
342 |
+
assert arr.density == 0.5
|
343 |
+
|
344 |
+
def test_npoints(self):
|
345 |
+
arr = SparseArray([0, 1])
|
346 |
+
assert arr.npoints == 1
|
347 |
+
|
348 |
+
|
349 |
+
def test_setting_fill_value_fillna_still_works():
|
350 |
+
# This is why letting users update fill_value / dtype is bad
|
351 |
+
# astype has the same problem.
|
352 |
+
arr = SparseArray([1.0, np.nan, 1.0], fill_value=0.0)
|
353 |
+
arr.fill_value = np.nan
|
354 |
+
result = arr.isna()
|
355 |
+
# Can't do direct comparison, since the sp_index will be different
|
356 |
+
# So let's convert to ndarray and check there.
|
357 |
+
result = np.asarray(result)
|
358 |
+
|
359 |
+
expected = np.array([False, True, False])
|
360 |
+
tm.assert_numpy_array_equal(result, expected)
|
361 |
+
|
362 |
+
|
363 |
+
def test_setting_fill_value_updates():
|
364 |
+
arr = SparseArray([0.0, np.nan], fill_value=0)
|
365 |
+
arr.fill_value = np.nan
|
366 |
+
# use private constructor to get the index right
|
367 |
+
# otherwise both nans would be un-stored.
|
368 |
+
expected = SparseArray._simple_new(
|
369 |
+
sparse_array=np.array([np.nan]),
|
370 |
+
sparse_index=IntIndex(2, [1]),
|
371 |
+
dtype=SparseDtype(float, np.nan),
|
372 |
+
)
|
373 |
+
tm.assert_sp_array_equal(arr, expected)
|
374 |
+
|
375 |
+
|
376 |
+
@pytest.mark.parametrize(
|
377 |
+
"arr,fill_value,loc",
|
378 |
+
[
|
379 |
+
([None, 1, 2], None, 0),
|
380 |
+
([0, None, 2], None, 1),
|
381 |
+
([0, 1, None], None, 2),
|
382 |
+
([0, 1, 1, None, None], None, 3),
|
383 |
+
([1, 1, 1, 2], None, -1),
|
384 |
+
([], None, -1),
|
385 |
+
([None, 1, 0, 0, None, 2], None, 0),
|
386 |
+
([None, 1, 0, 0, None, 2], 1, 1),
|
387 |
+
([None, 1, 0, 0, None, 2], 2, 5),
|
388 |
+
([None, 1, 0, 0, None, 2], 3, -1),
|
389 |
+
([None, 0, 0, 1, 2, 1], 0, 1),
|
390 |
+
([None, 0, 0, 1, 2, 1], 1, 3),
|
391 |
+
],
|
392 |
+
)
|
393 |
+
def test_first_fill_value_loc(arr, fill_value, loc):
|
394 |
+
result = SparseArray(arr, fill_value=fill_value)._first_fill_value_loc()
|
395 |
+
assert result == loc
|
396 |
+
|
397 |
+
|
398 |
+
@pytest.mark.parametrize(
|
399 |
+
"arr",
|
400 |
+
[
|
401 |
+
[1, 2, np.nan, np.nan],
|
402 |
+
[1, np.nan, 2, np.nan],
|
403 |
+
[1, 2, np.nan],
|
404 |
+
[np.nan, 1, 0, 0, np.nan, 2],
|
405 |
+
[np.nan, 0, 0, 1, 2, 1],
|
406 |
+
],
|
407 |
+
)
|
408 |
+
@pytest.mark.parametrize("fill_value", [np.nan, 0, 1])
|
409 |
+
def test_unique_na_fill(arr, fill_value):
|
410 |
+
a = SparseArray(arr, fill_value=fill_value).unique()
|
411 |
+
b = pd.Series(arr).unique()
|
412 |
+
assert isinstance(a, SparseArray)
|
413 |
+
a = np.asarray(a)
|
414 |
+
tm.assert_numpy_array_equal(a, b)
|
415 |
+
|
416 |
+
|
417 |
+
def test_unique_all_sparse():
|
418 |
+
# https://github.com/pandas-dev/pandas/issues/23168
|
419 |
+
arr = SparseArray([0, 0])
|
420 |
+
result = arr.unique()
|
421 |
+
expected = SparseArray([0])
|
422 |
+
tm.assert_sp_array_equal(result, expected)
|
423 |
+
|
424 |
+
|
425 |
+
def test_map():
|
426 |
+
arr = SparseArray([0, 1, 2])
|
427 |
+
expected = SparseArray([10, 11, 12], fill_value=10)
|
428 |
+
|
429 |
+
# dict
|
430 |
+
result = arr.map({0: 10, 1: 11, 2: 12})
|
431 |
+
tm.assert_sp_array_equal(result, expected)
|
432 |
+
|
433 |
+
# series
|
434 |
+
result = arr.map(pd.Series({0: 10, 1: 11, 2: 12}))
|
435 |
+
tm.assert_sp_array_equal(result, expected)
|
436 |
+
|
437 |
+
# function
|
438 |
+
result = arr.map(pd.Series({0: 10, 1: 11, 2: 12}))
|
439 |
+
expected = SparseArray([10, 11, 12], fill_value=10)
|
440 |
+
tm.assert_sp_array_equal(result, expected)
|
441 |
+
|
442 |
+
|
443 |
+
def test_map_missing():
|
444 |
+
arr = SparseArray([0, 1, 2])
|
445 |
+
expected = SparseArray([10, 11, None], fill_value=10)
|
446 |
+
|
447 |
+
result = arr.map({0: 10, 1: 11})
|
448 |
+
tm.assert_sp_array_equal(result, expected)
|
449 |
+
|
450 |
+
|
451 |
+
@pytest.mark.parametrize("fill_value", [np.nan, 1])
|
452 |
+
def test_dropna(fill_value):
|
453 |
+
# GH-28287
|
454 |
+
arr = SparseArray([np.nan, 1], fill_value=fill_value)
|
455 |
+
exp = SparseArray([1.0], fill_value=fill_value)
|
456 |
+
tm.assert_sp_array_equal(arr.dropna(), exp)
|
457 |
+
|
458 |
+
df = pd.DataFrame({"a": [0, 1], "b": arr})
|
459 |
+
expected_df = pd.DataFrame({"a": [1], "b": exp}, index=pd.Index([1]))
|
460 |
+
tm.assert_equal(df.dropna(), expected_df)
|
461 |
+
|
462 |
+
|
463 |
+
def test_drop_duplicates_fill_value():
|
464 |
+
# GH 11726
|
465 |
+
df = pd.DataFrame(np.zeros((5, 5))).apply(lambda x: SparseArray(x, fill_value=0))
|
466 |
+
result = df.drop_duplicates()
|
467 |
+
expected = pd.DataFrame({i: SparseArray([0.0], fill_value=0) for i in range(5)})
|
468 |
+
tm.assert_frame_equal(result, expected)
|
469 |
+
|
470 |
+
|
471 |
+
def test_zero_sparse_column():
|
472 |
+
# GH 27781
|
473 |
+
df1 = pd.DataFrame({"A": SparseArray([0, 0, 0]), "B": [1, 2, 3]})
|
474 |
+
df2 = pd.DataFrame({"A": SparseArray([0, 1, 0]), "B": [1, 2, 3]})
|
475 |
+
result = df1.loc[df1["B"] != 2]
|
476 |
+
expected = df2.loc[df2["B"] != 2]
|
477 |
+
tm.assert_frame_equal(result, expected)
|
478 |
+
|
479 |
+
expected = pd.DataFrame({"A": SparseArray([0, 0]), "B": [1, 3]}, index=[0, 2])
|
480 |
+
tm.assert_frame_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/sparse/test_astype.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._libs.sparse import IntIndex
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
SparseDtype,
|
8 |
+
Timestamp,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
from pandas.core.arrays.sparse import SparseArray
|
12 |
+
|
13 |
+
|
14 |
+
class TestAstype:
|
15 |
+
def test_astype(self):
|
16 |
+
# float -> float
|
17 |
+
arr = SparseArray([None, None, 0, 2])
|
18 |
+
result = arr.astype("Sparse[float32]")
|
19 |
+
expected = SparseArray([None, None, 0, 2], dtype=np.dtype("float32"))
|
20 |
+
tm.assert_sp_array_equal(result, expected)
|
21 |
+
|
22 |
+
dtype = SparseDtype("float64", fill_value=0)
|
23 |
+
result = arr.astype(dtype)
|
24 |
+
expected = SparseArray._simple_new(
|
25 |
+
np.array([0.0, 2.0], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype
|
26 |
+
)
|
27 |
+
tm.assert_sp_array_equal(result, expected)
|
28 |
+
|
29 |
+
dtype = SparseDtype("int64", 0)
|
30 |
+
result = arr.astype(dtype)
|
31 |
+
expected = SparseArray._simple_new(
|
32 |
+
np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype
|
33 |
+
)
|
34 |
+
tm.assert_sp_array_equal(result, expected)
|
35 |
+
|
36 |
+
arr = SparseArray([0, np.nan, 0, 1], fill_value=0)
|
37 |
+
with pytest.raises(ValueError, match="NA"):
|
38 |
+
arr.astype("Sparse[i8]")
|
39 |
+
|
40 |
+
def test_astype_bool(self):
|
41 |
+
a = SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0))
|
42 |
+
result = a.astype(bool)
|
43 |
+
expected = np.array([1, 0, 0, 1], dtype=bool)
|
44 |
+
tm.assert_numpy_array_equal(result, expected)
|
45 |
+
|
46 |
+
# update fill value
|
47 |
+
result = a.astype(SparseDtype(bool, False))
|
48 |
+
expected = SparseArray(
|
49 |
+
[True, False, False, True], dtype=SparseDtype(bool, False)
|
50 |
+
)
|
51 |
+
tm.assert_sp_array_equal(result, expected)
|
52 |
+
|
53 |
+
def test_astype_all(self, any_real_numpy_dtype):
|
54 |
+
vals = np.array([1, 2, 3])
|
55 |
+
arr = SparseArray(vals, fill_value=1)
|
56 |
+
typ = np.dtype(any_real_numpy_dtype)
|
57 |
+
res = arr.astype(typ)
|
58 |
+
tm.assert_numpy_array_equal(res, vals.astype(any_real_numpy_dtype))
|
59 |
+
|
60 |
+
@pytest.mark.parametrize(
|
61 |
+
"arr, dtype, expected",
|
62 |
+
[
|
63 |
+
(
|
64 |
+
SparseArray([0, 1]),
|
65 |
+
"float",
|
66 |
+
SparseArray([0.0, 1.0], dtype=SparseDtype(float, 0.0)),
|
67 |
+
),
|
68 |
+
(SparseArray([0, 1]), bool, SparseArray([False, True])),
|
69 |
+
(
|
70 |
+
SparseArray([0, 1], fill_value=1),
|
71 |
+
bool,
|
72 |
+
SparseArray([False, True], dtype=SparseDtype(bool, True)),
|
73 |
+
),
|
74 |
+
pytest.param(
|
75 |
+
SparseArray([0, 1]),
|
76 |
+
"datetime64[ns]",
|
77 |
+
SparseArray(
|
78 |
+
np.array([0, 1], dtype="datetime64[ns]"),
|
79 |
+
dtype=SparseDtype("datetime64[ns]", Timestamp("1970")),
|
80 |
+
),
|
81 |
+
),
|
82 |
+
(
|
83 |
+
SparseArray([0, 1, 10]),
|
84 |
+
str,
|
85 |
+
SparseArray(["0", "1", "10"], dtype=SparseDtype(str, "0")),
|
86 |
+
),
|
87 |
+
(SparseArray(["10", "20"]), float, SparseArray([10.0, 20.0])),
|
88 |
+
(
|
89 |
+
SparseArray([0, 1, 0]),
|
90 |
+
object,
|
91 |
+
SparseArray([0, 1, 0], dtype=SparseDtype(object, 0)),
|
92 |
+
),
|
93 |
+
],
|
94 |
+
)
|
95 |
+
def test_astype_more(self, arr, dtype, expected):
|
96 |
+
result = arr.astype(arr.dtype.update_dtype(dtype))
|
97 |
+
tm.assert_sp_array_equal(result, expected)
|
98 |
+
|
99 |
+
def test_astype_nan_raises(self):
|
100 |
+
arr = SparseArray([1.0, np.nan])
|
101 |
+
with pytest.raises(ValueError, match="Cannot convert non-finite"):
|
102 |
+
arr.astype(int)
|
103 |
+
|
104 |
+
def test_astype_copy_false(self):
|
105 |
+
# GH#34456 bug caused by using .view instead of .astype in astype_nansafe
|
106 |
+
arr = SparseArray([1, 2, 3])
|
107 |
+
|
108 |
+
dtype = SparseDtype(float, 0)
|
109 |
+
|
110 |
+
result = arr.astype(dtype, copy=False)
|
111 |
+
expected = SparseArray([1.0, 2.0, 3.0], fill_value=0.0)
|
112 |
+
tm.assert_sp_array_equal(result, expected)
|
113 |
+
|
114 |
+
def test_astype_dt64_to_int64(self):
|
115 |
+
# GH#49631 match non-sparse behavior
|
116 |
+
values = np.array(["NaT", "2016-01-02", "2016-01-03"], dtype="M8[ns]")
|
117 |
+
|
118 |
+
arr = SparseArray(values)
|
119 |
+
result = arr.astype("int64")
|
120 |
+
expected = values.astype("int64")
|
121 |
+
tm.assert_numpy_array_equal(result, expected)
|
122 |
+
|
123 |
+
# we should also be able to cast to equivalent Sparse[int64]
|
124 |
+
dtype_int64 = SparseDtype("int64", np.iinfo(np.int64).min)
|
125 |
+
result2 = arr.astype(dtype_int64)
|
126 |
+
tm.assert_numpy_array_equal(result2.to_numpy(), expected)
|
127 |
+
|
128 |
+
# GH#50087 we should match the non-sparse behavior regardless of
|
129 |
+
# if we have a fill_value other than NaT
|
130 |
+
dtype = SparseDtype("datetime64[ns]", values[1])
|
131 |
+
arr3 = SparseArray(values, dtype=dtype)
|
132 |
+
result3 = arr3.astype("int64")
|
133 |
+
tm.assert_numpy_array_equal(result3, expected)
|