applied-ai-018 commited on
Commit
14a98b8
·
verified ·
1 Parent(s): 524330e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_12_mp_rank_00_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_218_mp_rank_03_optim_states.pt +3 -0
  3. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_38_mp_rank_02_optim_states.pt +3 -0
  4. ckpts/universal/global_step80/zero/12.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step80/zero/29.vocab_parallel_projection.weight/exp_avg_sq.pt +3 -0
  6. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__init__.py +0 -0
  7. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/__init__.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_astype.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_constructors.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_dtypes.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_replace.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_repr.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_subclass.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_warnings.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_algos.py +89 -0
  16. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_analytics.py +349 -0
  17. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_api.py +501 -0
  18. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_astype.py +155 -0
  19. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_constructors.py +783 -0
  20. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_dtypes.py +139 -0
  21. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_indexing.py +388 -0
  22. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_map.py +154 -0
  23. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_missing.py +216 -0
  24. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_operators.py +414 -0
  25. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_replace.py +111 -0
  26. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_repr.py +550 -0
  27. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_sorting.py +128 -0
  28. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_subclass.py +26 -0
  29. venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_take.py +89 -0
  30. venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/__init__.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/test_constructors.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/test_cumulative.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/test_reductions.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_construction.py +204 -0
  35. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__init__.py +0 -0
  36. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/__init__.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/conftest.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_comparison.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_concat.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_construction.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_dtypes.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_function.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_reduction.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_repr.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_indexing.py +19 -0
  47. venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__init__.py +0 -0
  48. venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/__init__.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_astype.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_formats.cpython-310.pyc +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_12_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849e8e7212d65890ce21feb9e7b6c5b12145c46d0c9665b1e9189479b01a464c
3
+ size 41830138
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_218_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a113d81ba309fea78b7e6977263f8d0ae6fbaee2c0750e4dd5c52dbaf7b56ff5
3
+ size 41830404
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_38_mp_rank_02_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7c23480d5db9e207172e95b7d615f7d36a3254fb1892741bbc6acda377a877e
3
+ size 41830330
ckpts/universal/global_step80/zero/12.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df139606a9a17d26ed7b8b6e86e887aaad905ffa7e61202beb656025099f2264
3
+ size 33555627
ckpts/universal/global_step80/zero/29.vocab_parallel_projection.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e7c3c9d66ead814ad35c98a202ae788615f0ae3e104ca0d579cc09687025e84
3
+ size 415237291
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (5.47 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (28 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_dtypes.cpython-310.pyc ADDED
Binary file (4.95 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_replace.cpython-310.pyc ADDED
Binary file (3.33 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_repr.cpython-310.pyc ADDED
Binary file (24.4 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_subclass.cpython-310.pyc ADDED
Binary file (1.6 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/__pycache__/test_warnings.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_algos.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize("ordered", [True, False])
9
+ @pytest.mark.parametrize("categories", [["b", "a", "c"], ["a", "b", "c", "d"]])
10
+ def test_factorize(categories, ordered):
11
+ cat = pd.Categorical(
12
+ ["b", "b", "a", "c", None], categories=categories, ordered=ordered
13
+ )
14
+ codes, uniques = pd.factorize(cat)
15
+ expected_codes = np.array([0, 0, 1, 2, -1], dtype=np.intp)
16
+ expected_uniques = pd.Categorical(
17
+ ["b", "a", "c"], categories=categories, ordered=ordered
18
+ )
19
+
20
+ tm.assert_numpy_array_equal(codes, expected_codes)
21
+ tm.assert_categorical_equal(uniques, expected_uniques)
22
+
23
+
24
+ def test_factorized_sort():
25
+ cat = pd.Categorical(["b", "b", None, "a"])
26
+ codes, uniques = pd.factorize(cat, sort=True)
27
+ expected_codes = np.array([1, 1, -1, 0], dtype=np.intp)
28
+ expected_uniques = pd.Categorical(["a", "b"])
29
+
30
+ tm.assert_numpy_array_equal(codes, expected_codes)
31
+ tm.assert_categorical_equal(uniques, expected_uniques)
32
+
33
+
34
+ def test_factorized_sort_ordered():
35
+ cat = pd.Categorical(
36
+ ["b", "b", None, "a"], categories=["c", "b", "a"], ordered=True
37
+ )
38
+
39
+ codes, uniques = pd.factorize(cat, sort=True)
40
+ expected_codes = np.array([0, 0, -1, 1], dtype=np.intp)
41
+ expected_uniques = pd.Categorical(
42
+ ["b", "a"], categories=["c", "b", "a"], ordered=True
43
+ )
44
+
45
+ tm.assert_numpy_array_equal(codes, expected_codes)
46
+ tm.assert_categorical_equal(uniques, expected_uniques)
47
+
48
+
49
+ def test_isin_cats():
50
+ # GH2003
51
+ cat = pd.Categorical(["a", "b", np.nan])
52
+
53
+ result = cat.isin(["a", np.nan])
54
+ expected = np.array([True, False, True], dtype=bool)
55
+ tm.assert_numpy_array_equal(expected, result)
56
+
57
+ result = cat.isin(["a", "c"])
58
+ expected = np.array([True, False, False], dtype=bool)
59
+ tm.assert_numpy_array_equal(expected, result)
60
+
61
+
62
+ @pytest.mark.parametrize("value", [[""], [None, ""], [pd.NaT, ""]])
63
+ def test_isin_cats_corner_cases(value):
64
+ # GH36550
65
+ cat = pd.Categorical([""])
66
+ result = cat.isin(value)
67
+ expected = np.array([True], dtype=bool)
68
+ tm.assert_numpy_array_equal(expected, result)
69
+
70
+
71
+ @pytest.mark.parametrize("empty", [[], pd.Series(dtype=object), np.array([])])
72
+ def test_isin_empty(empty):
73
+ s = pd.Categorical(["a", "b"])
74
+ expected = np.array([False, False], dtype=bool)
75
+
76
+ result = s.isin(empty)
77
+ tm.assert_numpy_array_equal(expected, result)
78
+
79
+
80
+ def test_diff():
81
+ ser = pd.Series([1, 2, 3], dtype="category")
82
+
83
+ msg = "Convert to a suitable dtype"
84
+ with pytest.raises(TypeError, match=msg):
85
+ ser.diff()
86
+
87
+ df = ser.to_frame(name="A")
88
+ with pytest.raises(TypeError, match=msg):
89
+ df.diff()
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_analytics.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import sys
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas.compat import PYPY
8
+
9
+ from pandas import (
10
+ Categorical,
11
+ CategoricalDtype,
12
+ DataFrame,
13
+ Index,
14
+ NaT,
15
+ Series,
16
+ date_range,
17
+ )
18
+ import pandas._testing as tm
19
+ from pandas.api.types import is_scalar
20
+
21
+
22
+ class TestCategoricalAnalytics:
23
+ @pytest.mark.parametrize("aggregation", ["min", "max"])
24
+ def test_min_max_not_ordered_raises(self, aggregation):
25
+ # unordered cats have no min/max
26
+ cat = Categorical(["a", "b", "c", "d"], ordered=False)
27
+ msg = f"Categorical is not ordered for operation {aggregation}"
28
+ agg_func = getattr(cat, aggregation)
29
+
30
+ with pytest.raises(TypeError, match=msg):
31
+ agg_func()
32
+
33
+ ufunc = np.minimum if aggregation == "min" else np.maximum
34
+ with pytest.raises(TypeError, match=msg):
35
+ ufunc.reduce(cat)
36
+
37
+ def test_min_max_ordered(self, index_or_series_or_array):
38
+ cat = Categorical(["a", "b", "c", "d"], ordered=True)
39
+ obj = index_or_series_or_array(cat)
40
+ _min = obj.min()
41
+ _max = obj.max()
42
+ assert _min == "a"
43
+ assert _max == "d"
44
+
45
+ assert np.minimum.reduce(obj) == "a"
46
+ assert np.maximum.reduce(obj) == "d"
47
+ # TODO: raises if we pass axis=0 (on Index and Categorical, not Series)
48
+
49
+ cat = Categorical(
50
+ ["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True
51
+ )
52
+ obj = index_or_series_or_array(cat)
53
+ _min = obj.min()
54
+ _max = obj.max()
55
+ assert _min == "d"
56
+ assert _max == "a"
57
+ assert np.minimum.reduce(obj) == "d"
58
+ assert np.maximum.reduce(obj) == "a"
59
+
60
+ def test_min_max_reduce(self):
61
+ # GH52788
62
+ cat = Categorical(["a", "b", "c", "d"], ordered=True)
63
+ df = DataFrame(cat)
64
+
65
+ result_max = df.agg("max")
66
+ expected_max = Series(Categorical(["d"], dtype=cat.dtype))
67
+ tm.assert_series_equal(result_max, expected_max)
68
+
69
+ result_min = df.agg("min")
70
+ expected_min = Series(Categorical(["a"], dtype=cat.dtype))
71
+ tm.assert_series_equal(result_min, expected_min)
72
+
73
+ @pytest.mark.parametrize(
74
+ "categories,expected",
75
+ [
76
+ (list("ABC"), np.nan),
77
+ ([1, 2, 3], np.nan),
78
+ pytest.param(
79
+ Series(date_range("2020-01-01", periods=3), dtype="category"),
80
+ NaT,
81
+ marks=pytest.mark.xfail(
82
+ reason="https://github.com/pandas-dev/pandas/issues/29962"
83
+ ),
84
+ ),
85
+ ],
86
+ )
87
+ @pytest.mark.parametrize("aggregation", ["min", "max"])
88
+ def test_min_max_ordered_empty(self, categories, expected, aggregation):
89
+ # GH 30227
90
+ cat = Categorical([], categories=categories, ordered=True)
91
+
92
+ agg_func = getattr(cat, aggregation)
93
+ result = agg_func()
94
+ assert result is expected
95
+
96
+ @pytest.mark.parametrize(
97
+ "values, categories",
98
+ [(["a", "b", "c", np.nan], list("cba")), ([1, 2, 3, np.nan], [3, 2, 1])],
99
+ )
100
+ @pytest.mark.parametrize("skipna", [True, False])
101
+ @pytest.mark.parametrize("function", ["min", "max"])
102
+ def test_min_max_with_nan(self, values, categories, function, skipna):
103
+ # GH 25303
104
+ cat = Categorical(values, categories=categories, ordered=True)
105
+ result = getattr(cat, function)(skipna=skipna)
106
+
107
+ if skipna is False:
108
+ assert result is np.nan
109
+ else:
110
+ expected = categories[0] if function == "min" else categories[2]
111
+ assert result == expected
112
+
113
+ @pytest.mark.parametrize("function", ["min", "max"])
114
+ @pytest.mark.parametrize("skipna", [True, False])
115
+ def test_min_max_only_nan(self, function, skipna):
116
+ # https://github.com/pandas-dev/pandas/issues/33450
117
+ cat = Categorical([np.nan], categories=[1, 2], ordered=True)
118
+ result = getattr(cat, function)(skipna=skipna)
119
+ assert result is np.nan
120
+
121
+ @pytest.mark.parametrize("method", ["min", "max"])
122
+ def test_numeric_only_min_max_raises(self, method):
123
+ # GH 25303
124
+ cat = Categorical(
125
+ [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True
126
+ )
127
+ with pytest.raises(TypeError, match=".* got an unexpected keyword"):
128
+ getattr(cat, method)(numeric_only=True)
129
+
130
+ @pytest.mark.parametrize("method", ["min", "max"])
131
+ def test_numpy_min_max_raises(self, method):
132
+ cat = Categorical(["a", "b", "c", "b"], ordered=False)
133
+ msg = (
134
+ f"Categorical is not ordered for operation {method}\n"
135
+ "you can use .as_ordered() to change the Categorical to an ordered one"
136
+ )
137
+ method = getattr(np, method)
138
+ with pytest.raises(TypeError, match=re.escape(msg)):
139
+ method(cat)
140
+
141
+ @pytest.mark.parametrize("kwarg", ["axis", "out", "keepdims"])
142
+ @pytest.mark.parametrize("method", ["min", "max"])
143
+ def test_numpy_min_max_unsupported_kwargs_raises(self, method, kwarg):
144
+ cat = Categorical(["a", "b", "c", "b"], ordered=True)
145
+ msg = (
146
+ f"the '{kwarg}' parameter is not supported in the pandas implementation "
147
+ f"of {method}"
148
+ )
149
+ if kwarg == "axis":
150
+ msg = r"`axis` must be fewer than the number of dimensions \(1\)"
151
+ kwargs = {kwarg: 42}
152
+ method = getattr(np, method)
153
+ with pytest.raises(ValueError, match=msg):
154
+ method(cat, **kwargs)
155
+
156
+ @pytest.mark.parametrize("method, expected", [("min", "a"), ("max", "c")])
157
+ def test_numpy_min_max_axis_equals_none(self, method, expected):
158
+ cat = Categorical(["a", "b", "c", "b"], ordered=True)
159
+ method = getattr(np, method)
160
+ result = method(cat, axis=None)
161
+ assert result == expected
162
+
163
+ @pytest.mark.parametrize(
164
+ "values,categories,exp_mode",
165
+ [
166
+ ([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]),
167
+ ([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]),
168
+ ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]),
169
+ ([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]),
170
+ ([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
171
+ ([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]),
172
+ ],
173
+ )
174
+ def test_mode(self, values, categories, exp_mode):
175
+ cat = Categorical(values, categories=categories, ordered=True)
176
+ res = Series(cat).mode()._values
177
+ exp = Categorical(exp_mode, categories=categories, ordered=True)
178
+ tm.assert_categorical_equal(res, exp)
179
+
180
+ def test_searchsorted(self, ordered):
181
+ # https://github.com/pandas-dev/pandas/issues/8420
182
+ # https://github.com/pandas-dev/pandas/issues/14522
183
+
184
+ cat = Categorical(
185
+ ["cheese", "milk", "apple", "bread", "bread"],
186
+ categories=["cheese", "milk", "apple", "bread"],
187
+ ordered=ordered,
188
+ )
189
+ ser = Series(cat)
190
+
191
+ # Searching for single item argument, side='left' (default)
192
+ res_cat = cat.searchsorted("apple")
193
+ assert res_cat == 2
194
+ assert is_scalar(res_cat)
195
+
196
+ res_ser = ser.searchsorted("apple")
197
+ assert res_ser == 2
198
+ assert is_scalar(res_ser)
199
+
200
+ # Searching for single item array, side='left' (default)
201
+ res_cat = cat.searchsorted(["bread"])
202
+ res_ser = ser.searchsorted(["bread"])
203
+ exp = np.array([3], dtype=np.intp)
204
+ tm.assert_numpy_array_equal(res_cat, exp)
205
+ tm.assert_numpy_array_equal(res_ser, exp)
206
+
207
+ # Searching for several items array, side='right'
208
+ res_cat = cat.searchsorted(["apple", "bread"], side="right")
209
+ res_ser = ser.searchsorted(["apple", "bread"], side="right")
210
+ exp = np.array([3, 5], dtype=np.intp)
211
+ tm.assert_numpy_array_equal(res_cat, exp)
212
+ tm.assert_numpy_array_equal(res_ser, exp)
213
+
214
+ # Searching for a single value that is not from the Categorical
215
+ with pytest.raises(TypeError, match="cucumber"):
216
+ cat.searchsorted("cucumber")
217
+ with pytest.raises(TypeError, match="cucumber"):
218
+ ser.searchsorted("cucumber")
219
+
220
+ # Searching for multiple values one of each is not from the Categorical
221
+ msg = (
222
+ "Cannot setitem on a Categorical with a new category, "
223
+ "set the categories first"
224
+ )
225
+ with pytest.raises(TypeError, match=msg):
226
+ cat.searchsorted(["bread", "cucumber"])
227
+ with pytest.raises(TypeError, match=msg):
228
+ ser.searchsorted(["bread", "cucumber"])
229
+
230
+ def test_unique(self, ordered):
231
+ # GH38140
232
+ dtype = CategoricalDtype(["a", "b", "c"], ordered=ordered)
233
+
234
+ # categories are reordered based on value when ordered=False
235
+ cat = Categorical(["a", "b", "c"], dtype=dtype)
236
+ res = cat.unique()
237
+ tm.assert_categorical_equal(res, cat)
238
+
239
+ cat = Categorical(["a", "b", "a", "a"], dtype=dtype)
240
+ res = cat.unique()
241
+ tm.assert_categorical_equal(res, Categorical(["a", "b"], dtype=dtype))
242
+
243
+ cat = Categorical(["c", "a", "b", "a", "a"], dtype=dtype)
244
+ res = cat.unique()
245
+ exp_cat = Categorical(["c", "a", "b"], dtype=dtype)
246
+ tm.assert_categorical_equal(res, exp_cat)
247
+
248
+ # nan must be removed
249
+ cat = Categorical(["b", np.nan, "b", np.nan, "a"], dtype=dtype)
250
+ res = cat.unique()
251
+ exp_cat = Categorical(["b", np.nan, "a"], dtype=dtype)
252
+ tm.assert_categorical_equal(res, exp_cat)
253
+
254
+ def test_unique_index_series(self, ordered):
255
+ # GH38140
256
+ dtype = CategoricalDtype([3, 2, 1], ordered=ordered)
257
+
258
+ c = Categorical([3, 1, 2, 2, 1], dtype=dtype)
259
+ # Categorical.unique sorts categories by appearance order
260
+ # if ordered=False
261
+ exp = Categorical([3, 1, 2], dtype=dtype)
262
+ tm.assert_categorical_equal(c.unique(), exp)
263
+
264
+ tm.assert_index_equal(Index(c).unique(), Index(exp))
265
+ tm.assert_categorical_equal(Series(c).unique(), exp)
266
+
267
+ c = Categorical([1, 1, 2, 2], dtype=dtype)
268
+ exp = Categorical([1, 2], dtype=dtype)
269
+ tm.assert_categorical_equal(c.unique(), exp)
270
+ tm.assert_index_equal(Index(c).unique(), Index(exp))
271
+ tm.assert_categorical_equal(Series(c).unique(), exp)
272
+
273
+ def test_shift(self):
274
+ # GH 9416
275
+ cat = Categorical(["a", "b", "c", "d", "a"])
276
+
277
+ # shift forward
278
+ sp1 = cat.shift(1)
279
+ xp1 = Categorical([np.nan, "a", "b", "c", "d"])
280
+ tm.assert_categorical_equal(sp1, xp1)
281
+ tm.assert_categorical_equal(cat[:-1], sp1[1:])
282
+
283
+ # shift back
284
+ sn2 = cat.shift(-2)
285
+ xp2 = Categorical(
286
+ ["c", "d", "a", np.nan, np.nan], categories=["a", "b", "c", "d"]
287
+ )
288
+ tm.assert_categorical_equal(sn2, xp2)
289
+ tm.assert_categorical_equal(cat[2:], sn2[:-2])
290
+
291
+ # shift by zero
292
+ tm.assert_categorical_equal(cat, cat.shift(0))
293
+
294
+ def test_nbytes(self):
295
+ cat = Categorical([1, 2, 3])
296
+ exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories
297
+ assert cat.nbytes == exp
298
+
299
+ def test_memory_usage(self):
300
+ cat = Categorical([1, 2, 3])
301
+
302
+ # .categories is an index, so we include the hashtable
303
+ assert 0 < cat.nbytes <= cat.memory_usage()
304
+ assert 0 < cat.nbytes <= cat.memory_usage(deep=True)
305
+
306
+ cat = Categorical(["foo", "foo", "bar"])
307
+ assert cat.memory_usage(deep=True) > cat.nbytes
308
+
309
+ if not PYPY:
310
+ # sys.getsizeof will call the .memory_usage with
311
+ # deep=True, and add on some GC overhead
312
+ diff = cat.memory_usage(deep=True) - sys.getsizeof(cat)
313
+ assert abs(diff) < 100
314
+
315
+ def test_map(self):
316
+ c = Categorical(list("ABABC"), categories=list("CBA"), ordered=True)
317
+ result = c.map(lambda x: x.lower(), na_action=None)
318
+ exp = Categorical(list("ababc"), categories=list("cba"), ordered=True)
319
+ tm.assert_categorical_equal(result, exp)
320
+
321
+ c = Categorical(list("ABABC"), categories=list("ABC"), ordered=False)
322
+ result = c.map(lambda x: x.lower(), na_action=None)
323
+ exp = Categorical(list("ababc"), categories=list("abc"), ordered=False)
324
+ tm.assert_categorical_equal(result, exp)
325
+
326
+ result = c.map(lambda x: 1, na_action=None)
327
+ # GH 12766: Return an index not an array
328
+ tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64)))
329
+
330
+ @pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
331
+ def test_validate_inplace_raises(self, value):
332
+ cat = Categorical(["A", "B", "B", "C", "A"])
333
+ msg = (
334
+ 'For argument "inplace" expected type bool, '
335
+ f"received type {type(value).__name__}"
336
+ )
337
+
338
+ with pytest.raises(ValueError, match=msg):
339
+ cat.sort_values(inplace=value)
340
+
341
+ def test_quantile_empty(self):
342
+ # make sure we have correct itemsize on resulting codes
343
+ cat = Categorical(["A", "B"])
344
+ idx = Index([0.0, 0.5])
345
+ result = cat[:0]._quantile(idx, interpolation="linear")
346
+ assert result._codes.dtype == np.int8
347
+
348
+ expected = cat.take([-1, -1], allow_fill=True)
349
+ tm.assert_extension_array_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_api.py ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.compat import PY311
7
+
8
+ from pandas import (
9
+ Categorical,
10
+ CategoricalIndex,
11
+ DataFrame,
12
+ Index,
13
+ Series,
14
+ StringDtype,
15
+ )
16
+ import pandas._testing as tm
17
+ from pandas.core.arrays.categorical import recode_for_categories
18
+
19
+
20
+ class TestCategoricalAPI:
21
+ def test_to_list_deprecated(self):
22
+ # GH#51254
23
+ cat1 = Categorical(list("acb"), ordered=False)
24
+ msg = "Categorical.to_list is deprecated and will be removed"
25
+ with tm.assert_produces_warning(FutureWarning, match=msg):
26
+ cat1.to_list()
27
+
28
+ def test_ordered_api(self):
29
+ # GH 9347
30
+ cat1 = Categorical(list("acb"), ordered=False)
31
+ tm.assert_index_equal(cat1.categories, Index(["a", "b", "c"]))
32
+ assert not cat1.ordered
33
+
34
+ cat2 = Categorical(list("acb"), categories=list("bca"), ordered=False)
35
+ tm.assert_index_equal(cat2.categories, Index(["b", "c", "a"]))
36
+ assert not cat2.ordered
37
+
38
+ cat3 = Categorical(list("acb"), ordered=True)
39
+ tm.assert_index_equal(cat3.categories, Index(["a", "b", "c"]))
40
+ assert cat3.ordered
41
+
42
+ cat4 = Categorical(list("acb"), categories=list("bca"), ordered=True)
43
+ tm.assert_index_equal(cat4.categories, Index(["b", "c", "a"]))
44
+ assert cat4.ordered
45
+
46
+ def test_set_ordered(self):
47
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
48
+ cat2 = cat.as_unordered()
49
+ assert not cat2.ordered
50
+ cat2 = cat.as_ordered()
51
+ assert cat2.ordered
52
+
53
+ assert cat2.set_ordered(True).ordered
54
+ assert not cat2.set_ordered(False).ordered
55
+
56
+ # removed in 0.19.0
57
+ msg = (
58
+ "property 'ordered' of 'Categorical' object has no setter"
59
+ if PY311
60
+ else "can't set attribute"
61
+ )
62
+ with pytest.raises(AttributeError, match=msg):
63
+ cat.ordered = True
64
+ with pytest.raises(AttributeError, match=msg):
65
+ cat.ordered = False
66
+
67
+ def test_rename_categories(self):
68
+ cat = Categorical(["a", "b", "c", "a"])
69
+
70
+ # inplace=False: the old one must not be changed
71
+ res = cat.rename_categories([1, 2, 3])
72
+ tm.assert_numpy_array_equal(
73
+ res.__array__(), np.array([1, 2, 3, 1], dtype=np.int64)
74
+ )
75
+ tm.assert_index_equal(res.categories, Index([1, 2, 3]))
76
+
77
+ exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_)
78
+ tm.assert_numpy_array_equal(cat.__array__(), exp_cat)
79
+
80
+ exp_cat = Index(["a", "b", "c"])
81
+ tm.assert_index_equal(cat.categories, exp_cat)
82
+
83
+ # GH18862 (let rename_categories take callables)
84
+ result = cat.rename_categories(lambda x: x.upper())
85
+ expected = Categorical(["A", "B", "C", "A"])
86
+ tm.assert_categorical_equal(result, expected)
87
+
88
+ @pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]])
89
+ def test_rename_categories_wrong_length_raises(self, new_categories):
90
+ cat = Categorical(["a", "b", "c", "a"])
91
+ msg = (
92
+ "new categories need to have the same number of items as the "
93
+ "old categories!"
94
+ )
95
+ with pytest.raises(ValueError, match=msg):
96
+ cat.rename_categories(new_categories)
97
+
98
+ def test_rename_categories_series(self):
99
+ # https://github.com/pandas-dev/pandas/issues/17981
100
+ c = Categorical(["a", "b"])
101
+ result = c.rename_categories(Series([0, 1], index=["a", "b"]))
102
+ expected = Categorical([0, 1])
103
+ tm.assert_categorical_equal(result, expected)
104
+
105
+ def test_rename_categories_dict(self):
106
+ # GH 17336
107
+ cat = Categorical(["a", "b", "c", "d"])
108
+ res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1})
109
+ expected = Index([4, 3, 2, 1])
110
+ tm.assert_index_equal(res.categories, expected)
111
+
112
+ # Test for dicts of smaller length
113
+ cat = Categorical(["a", "b", "c", "d"])
114
+ res = cat.rename_categories({"a": 1, "c": 3})
115
+
116
+ expected = Index([1, "b", 3, "d"])
117
+ tm.assert_index_equal(res.categories, expected)
118
+
119
+ # Test for dicts with bigger length
120
+ cat = Categorical(["a", "b", "c", "d"])
121
+ res = cat.rename_categories({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6})
122
+ expected = Index([1, 2, 3, 4])
123
+ tm.assert_index_equal(res.categories, expected)
124
+
125
+ # Test for dicts with no items from old categories
126
+ cat = Categorical(["a", "b", "c", "d"])
127
+ res = cat.rename_categories({"f": 1, "g": 3})
128
+
129
+ expected = Index(["a", "b", "c", "d"])
130
+ tm.assert_index_equal(res.categories, expected)
131
+
132
+ def test_reorder_categories(self):
133
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
134
+ old = cat.copy()
135
+ new = Categorical(
136
+ ["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True
137
+ )
138
+
139
+ res = cat.reorder_categories(["c", "b", "a"])
140
+ # cat must be the same as before
141
+ tm.assert_categorical_equal(cat, old)
142
+ # only res is changed
143
+ tm.assert_categorical_equal(res, new)
144
+
145
+ @pytest.mark.parametrize(
146
+ "new_categories",
147
+ [
148
+ ["a"], # not all "old" included in "new"
149
+ ["a", "b", "d"], # still not all "old" in "new"
150
+ ["a", "b", "c", "d"], # all "old" included in "new", but too long
151
+ ],
152
+ )
153
+ def test_reorder_categories_raises(self, new_categories):
154
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
155
+ msg = "items in new_categories are not the same as in old categories"
156
+ with pytest.raises(ValueError, match=msg):
157
+ cat.reorder_categories(new_categories)
158
+
159
+ def test_add_categories(self):
160
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
161
+ old = cat.copy()
162
+ new = Categorical(
163
+ ["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True
164
+ )
165
+
166
+ res = cat.add_categories("d")
167
+ tm.assert_categorical_equal(cat, old)
168
+ tm.assert_categorical_equal(res, new)
169
+
170
+ res = cat.add_categories(["d"])
171
+ tm.assert_categorical_equal(cat, old)
172
+ tm.assert_categorical_equal(res, new)
173
+
174
+ # GH 9927
175
+ cat = Categorical(list("abc"), ordered=True)
176
+ expected = Categorical(list("abc"), categories=list("abcde"), ordered=True)
177
+ # test with Series, np.array, index, list
178
+ res = cat.add_categories(Series(["d", "e"]))
179
+ tm.assert_categorical_equal(res, expected)
180
+ res = cat.add_categories(np.array(["d", "e"]))
181
+ tm.assert_categorical_equal(res, expected)
182
+ res = cat.add_categories(Index(["d", "e"]))
183
+ tm.assert_categorical_equal(res, expected)
184
+ res = cat.add_categories(["d", "e"])
185
+ tm.assert_categorical_equal(res, expected)
186
+
187
+ def test_add_categories_existing_raises(self):
188
+ # new is in old categories
189
+ cat = Categorical(["a", "b", "c", "d"], ordered=True)
190
+ msg = re.escape("new categories must not include old categories: {'d'}")
191
+ with pytest.raises(ValueError, match=msg):
192
+ cat.add_categories(["d"])
193
+
194
+ def test_add_categories_losing_dtype_information(self):
195
+ # GH#48812
196
+ cat = Categorical(Series([1, 2], dtype="Int64"))
197
+ ser = Series([4], dtype="Int64")
198
+ result = cat.add_categories(ser)
199
+ expected = Categorical(
200
+ Series([1, 2], dtype="Int64"), categories=Series([1, 2, 4], dtype="Int64")
201
+ )
202
+ tm.assert_categorical_equal(result, expected)
203
+
204
+ cat = Categorical(Series(["a", "b", "a"], dtype=StringDtype()))
205
+ ser = Series(["d"], dtype=StringDtype())
206
+ result = cat.add_categories(ser)
207
+ expected = Categorical(
208
+ Series(["a", "b", "a"], dtype=StringDtype()),
209
+ categories=Series(["a", "b", "d"], dtype=StringDtype()),
210
+ )
211
+ tm.assert_categorical_equal(result, expected)
212
+
213
+ def test_set_categories(self):
214
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
215
+ exp_categories = Index(["c", "b", "a"])
216
+ exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_)
217
+
218
+ cat = cat.set_categories(["c", "b", "a"])
219
+ res = cat.set_categories(["a", "b", "c"])
220
+ # cat must be the same as before
221
+ tm.assert_index_equal(cat.categories, exp_categories)
222
+ tm.assert_numpy_array_equal(cat.__array__(), exp_values)
223
+ # only res is changed
224
+ exp_categories_back = Index(["a", "b", "c"])
225
+ tm.assert_index_equal(res.categories, exp_categories_back)
226
+ tm.assert_numpy_array_equal(res.__array__(), exp_values)
227
+
228
+ # not all "old" included in "new" -> all not included ones are now
229
+ # np.nan
230
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
231
+ res = cat.set_categories(["a"])
232
+ tm.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0], dtype=np.int8))
233
+
234
+ # still not all "old" in "new"
235
+ res = cat.set_categories(["a", "b", "d"])
236
+ tm.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0], dtype=np.int8))
237
+ tm.assert_index_equal(res.categories, Index(["a", "b", "d"]))
238
+
239
+ # all "old" included in "new"
240
+ cat = cat.set_categories(["a", "b", "c", "d"])
241
+ exp_categories = Index(["a", "b", "c", "d"])
242
+ tm.assert_index_equal(cat.categories, exp_categories)
243
+
244
+ # internals...
245
+ c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True)
246
+ tm.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0], dtype=np.int8))
247
+ tm.assert_index_equal(c.categories, Index([1, 2, 3, 4]))
248
+
249
+ exp = np.array([1, 2, 3, 4, 1], dtype=np.int64)
250
+ tm.assert_numpy_array_equal(np.asarray(c), exp)
251
+
252
+ # all "pointers" to '4' must be changed from 3 to 0,...
253
+ c = c.set_categories([4, 3, 2, 1])
254
+
255
+ # positions are changed
256
+ tm.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3], dtype=np.int8))
257
+
258
+ # categories are now in new order
259
+ tm.assert_index_equal(c.categories, Index([4, 3, 2, 1]))
260
+
261
+ # output is the same
262
+ exp = np.array([1, 2, 3, 4, 1], dtype=np.int64)
263
+ tm.assert_numpy_array_equal(np.asarray(c), exp)
264
+ assert c.min() == 4
265
+ assert c.max() == 1
266
+
267
+ # set_categories should set the ordering if specified
268
+ c2 = c.set_categories([4, 3, 2, 1], ordered=False)
269
+ assert not c2.ordered
270
+
271
+ tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2))
272
+
273
+ # set_categories should pass thru the ordering
274
+ c2 = c.set_ordered(False).set_categories([4, 3, 2, 1])
275
+ assert not c2.ordered
276
+
277
+ tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2))
278
+
279
+ @pytest.mark.parametrize(
280
+ "values, categories, new_categories",
281
+ [
282
+ # No NaNs, same cats, same order
283
+ (["a", "b", "a"], ["a", "b"], ["a", "b"]),
284
+ # No NaNs, same cats, different order
285
+ (["a", "b", "a"], ["a", "b"], ["b", "a"]),
286
+ # Same, unsorted
287
+ (["b", "a", "a"], ["a", "b"], ["a", "b"]),
288
+ # No NaNs, same cats, different order
289
+ (["b", "a", "a"], ["a", "b"], ["b", "a"]),
290
+ # NaNs
291
+ (["a", "b", "c"], ["a", "b"], ["a", "b"]),
292
+ (["a", "b", "c"], ["a", "b"], ["b", "a"]),
293
+ (["b", "a", "c"], ["a", "b"], ["a", "b"]),
294
+ (["b", "a", "c"], ["a", "b"], ["a", "b"]),
295
+ # Introduce NaNs
296
+ (["a", "b", "c"], ["a", "b"], ["a"]),
297
+ (["a", "b", "c"], ["a", "b"], ["b"]),
298
+ (["b", "a", "c"], ["a", "b"], ["a"]),
299
+ (["b", "a", "c"], ["a", "b"], ["a"]),
300
+ # No overlap
301
+ (["a", "b", "c"], ["a", "b"], ["d", "e"]),
302
+ ],
303
+ )
304
+ @pytest.mark.parametrize("ordered", [True, False])
305
+ def test_set_categories_many(self, values, categories, new_categories, ordered):
306
+ c = Categorical(values, categories)
307
+ expected = Categorical(values, new_categories, ordered)
308
+ result = c.set_categories(new_categories, ordered=ordered)
309
+ tm.assert_categorical_equal(result, expected)
310
+
311
+ def test_set_categories_rename_less(self):
312
+ # GH 24675
313
+ cat = Categorical(["A", "B"])
314
+ result = cat.set_categories(["A"], rename=True)
315
+ expected = Categorical(["A", np.nan])
316
+ tm.assert_categorical_equal(result, expected)
317
+
318
+ def test_set_categories_private(self):
319
+ cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"])
320
+ cat._set_categories(["a", "c", "d", "e"])
321
+ expected = Categorical(["a", "c", "d"], categories=list("acde"))
322
+ tm.assert_categorical_equal(cat, expected)
323
+
324
+ # fastpath
325
+ cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"])
326
+ cat._set_categories(["a", "c", "d", "e"], fastpath=True)
327
+ expected = Categorical(["a", "c", "d"], categories=list("acde"))
328
+ tm.assert_categorical_equal(cat, expected)
329
+
330
+ def test_remove_categories(self):
331
+ cat = Categorical(["a", "b", "c", "a"], ordered=True)
332
+ old = cat.copy()
333
+ new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True)
334
+
335
+ res = cat.remove_categories("c")
336
+ tm.assert_categorical_equal(cat, old)
337
+ tm.assert_categorical_equal(res, new)
338
+
339
+ res = cat.remove_categories(["c"])
340
+ tm.assert_categorical_equal(cat, old)
341
+ tm.assert_categorical_equal(res, new)
342
+
343
+ @pytest.mark.parametrize("removals", [["c"], ["c", np.nan], "c", ["c", "c"]])
344
+ def test_remove_categories_raises(self, removals):
345
+ cat = Categorical(["a", "b", "a"])
346
+ message = re.escape("removals must all be in old categories: {'c'}")
347
+
348
+ with pytest.raises(ValueError, match=message):
349
+ cat.remove_categories(removals)
350
+
351
+ def test_remove_unused_categories(self):
352
+ c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"])
353
+ exp_categories_all = Index(["a", "b", "c", "d", "e"])
354
+ exp_categories_dropped = Index(["a", "b", "c", "d"])
355
+
356
+ tm.assert_index_equal(c.categories, exp_categories_all)
357
+
358
+ res = c.remove_unused_categories()
359
+ tm.assert_index_equal(res.categories, exp_categories_dropped)
360
+ tm.assert_index_equal(c.categories, exp_categories_all)
361
+
362
+ # with NaN values (GH11599)
363
+ c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"])
364
+ res = c.remove_unused_categories()
365
+ tm.assert_index_equal(res.categories, Index(np.array(["a", "b", "c"])))
366
+ exp_codes = np.array([0, 1, 2, -1], dtype=np.int8)
367
+ tm.assert_numpy_array_equal(res.codes, exp_codes)
368
+ tm.assert_index_equal(c.categories, exp_categories_all)
369
+
370
+ val = ["F", np.nan, "D", "B", "D", "F", np.nan]
371
+ cat = Categorical(values=val, categories=list("ABCDEFG"))
372
+ out = cat.remove_unused_categories()
373
+ tm.assert_index_equal(out.categories, Index(["B", "D", "F"]))
374
+ exp_codes = np.array([2, -1, 1, 0, 1, 2, -1], dtype=np.int8)
375
+ tm.assert_numpy_array_equal(out.codes, exp_codes)
376
+ assert out.tolist() == val
377
+
378
+ alpha = list("abcdefghijklmnopqrstuvwxyz")
379
+ val = np.random.default_rng(2).choice(alpha[::2], 10000).astype("object")
380
+ val[np.random.default_rng(2).choice(len(val), 100)] = np.nan
381
+
382
+ cat = Categorical(values=val, categories=alpha)
383
+ out = cat.remove_unused_categories()
384
+ assert out.tolist() == val.tolist()
385
+
386
+
387
+ class TestCategoricalAPIWithFactor:
388
+ def test_describe(self):
389
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
390
+ # string type
391
+ desc = factor.describe()
392
+ assert factor.ordered
393
+ exp_index = CategoricalIndex(
394
+ ["a", "b", "c"], name="categories", ordered=factor.ordered
395
+ )
396
+ expected = DataFrame(
397
+ {"counts": [3, 2, 3], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0]}, index=exp_index
398
+ )
399
+ tm.assert_frame_equal(desc, expected)
400
+
401
+ # check unused categories
402
+ cat = factor.copy()
403
+ cat = cat.set_categories(["a", "b", "c", "d"])
404
+ desc = cat.describe()
405
+
406
+ exp_index = CategoricalIndex(
407
+ list("abcd"), ordered=factor.ordered, name="categories"
408
+ )
409
+ expected = DataFrame(
410
+ {"counts": [3, 2, 3, 0], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0, 0]},
411
+ index=exp_index,
412
+ )
413
+ tm.assert_frame_equal(desc, expected)
414
+
415
+ # check an integer one
416
+ cat = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1])
417
+ desc = cat.describe()
418
+ exp_index = CategoricalIndex([1, 2, 3], ordered=cat.ordered, name="categories")
419
+ expected = DataFrame(
420
+ {"counts": [5, 3, 3], "freqs": [5 / 11.0, 3 / 11.0, 3 / 11.0]},
421
+ index=exp_index,
422
+ )
423
+ tm.assert_frame_equal(desc, expected)
424
+
425
+ # https://github.com/pandas-dev/pandas/issues/3678
426
+ # describe should work with NaN
427
+ cat = Categorical([np.nan, 1, 2, 2])
428
+ desc = cat.describe()
429
+ expected = DataFrame(
430
+ {"counts": [1, 2, 1], "freqs": [1 / 4.0, 2 / 4.0, 1 / 4.0]},
431
+ index=CategoricalIndex(
432
+ [1, 2, np.nan], categories=[1, 2], name="categories"
433
+ ),
434
+ )
435
+ tm.assert_frame_equal(desc, expected)
436
+
437
+
438
+ class TestPrivateCategoricalAPI:
439
+ def test_codes_immutable(self):
440
+ # Codes should be read only
441
+ c = Categorical(["a", "b", "c", "a", np.nan])
442
+ exp = np.array([0, 1, 2, 0, -1], dtype="int8")
443
+ tm.assert_numpy_array_equal(c.codes, exp)
444
+
445
+ # Assignments to codes should raise
446
+ msg = (
447
+ "property 'codes' of 'Categorical' object has no setter"
448
+ if PY311
449
+ else "can't set attribute"
450
+ )
451
+ with pytest.raises(AttributeError, match=msg):
452
+ c.codes = np.array([0, 1, 2, 0, 1], dtype="int8")
453
+
454
+ # changes in the codes array should raise
455
+ codes = c.codes
456
+
457
+ with pytest.raises(ValueError, match="assignment destination is read-only"):
458
+ codes[4] = 1
459
+
460
+ # But even after getting the codes, the original array should still be
461
+ # writeable!
462
+ c[4] = "a"
463
+ exp = np.array([0, 1, 2, 0, 0], dtype="int8")
464
+ tm.assert_numpy_array_equal(c.codes, exp)
465
+ c._codes[4] = 2
466
+ exp = np.array([0, 1, 2, 0, 2], dtype="int8")
467
+ tm.assert_numpy_array_equal(c.codes, exp)
468
+
469
+ @pytest.mark.parametrize(
470
+ "codes, old, new, expected",
471
+ [
472
+ ([0, 1], ["a", "b"], ["a", "b"], [0, 1]),
473
+ ([0, 1], ["b", "a"], ["b", "a"], [0, 1]),
474
+ ([0, 1], ["a", "b"], ["b", "a"], [1, 0]),
475
+ ([0, 1], ["b", "a"], ["a", "b"], [1, 0]),
476
+ ([0, 1, 0, 1], ["a", "b"], ["a", "b", "c"], [0, 1, 0, 1]),
477
+ ([0, 1, 2, 2], ["a", "b", "c"], ["a", "b"], [0, 1, -1, -1]),
478
+ ([0, 1, -1], ["a", "b", "c"], ["a", "b", "c"], [0, 1, -1]),
479
+ ([0, 1, -1], ["a", "b", "c"], ["b"], [-1, 0, -1]),
480
+ ([0, 1, -1], ["a", "b", "c"], ["d"], [-1, -1, -1]),
481
+ ([0, 1, -1], ["a", "b", "c"], [], [-1, -1, -1]),
482
+ ([-1, -1], [], ["a", "b"], [-1, -1]),
483
+ ([1, 0], ["b", "a"], ["a", "b"], [0, 1]),
484
+ ],
485
+ )
486
+ def test_recode_to_categories(self, codes, old, new, expected):
487
+ codes = np.asanyarray(codes, dtype=np.int8)
488
+ expected = np.asanyarray(expected, dtype=np.int8)
489
+ old = Index(old)
490
+ new = Index(new)
491
+ result = recode_for_categories(codes, old, new)
492
+ tm.assert_numpy_array_equal(result, expected)
493
+
494
+ def test_recode_to_categories_large(self):
495
+ N = 1000
496
+ codes = np.arange(N)
497
+ old = Index(codes)
498
+ expected = np.arange(N - 1, -1, -1, dtype=np.int16)
499
+ new = Index(expected)
500
+ result = recode_for_categories(codes, old, new)
501
+ tm.assert_numpy_array_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_astype.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Categorical,
6
+ CategoricalDtype,
7
+ CategoricalIndex,
8
+ DatetimeIndex,
9
+ Interval,
10
+ NaT,
11
+ Period,
12
+ Timestamp,
13
+ array,
14
+ to_datetime,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ class TestAstype:
20
+ @pytest.mark.parametrize("cls", [Categorical, CategoricalIndex])
21
+ @pytest.mark.parametrize("values", [[1, np.nan], [Timestamp("2000"), NaT]])
22
+ def test_astype_nan_to_int(self, cls, values):
23
+ # GH#28406
24
+ obj = cls(values)
25
+
26
+ msg = "Cannot (cast|convert)"
27
+ with pytest.raises((ValueError, TypeError), match=msg):
28
+ obj.astype(int)
29
+
30
+ @pytest.mark.parametrize(
31
+ "expected",
32
+ [
33
+ array(["2019", "2020"], dtype="datetime64[ns, UTC]"),
34
+ array([0, 0], dtype="timedelta64[ns]"),
35
+ array([Period("2019"), Period("2020")], dtype="period[Y-DEC]"),
36
+ array([Interval(0, 1), Interval(1, 2)], dtype="interval"),
37
+ array([1, np.nan], dtype="Int64"),
38
+ ],
39
+ )
40
+ def test_astype_category_to_extension_dtype(self, expected):
41
+ # GH#28668
42
+ result = expected.astype("category").astype(expected.dtype)
43
+
44
+ tm.assert_extension_array_equal(result, expected)
45
+
46
+ @pytest.mark.parametrize(
47
+ "dtype, expected",
48
+ [
49
+ (
50
+ "datetime64[ns]",
51
+ np.array(["2015-01-01T00:00:00.000000000"], dtype="datetime64[ns]"),
52
+ ),
53
+ (
54
+ "datetime64[ns, MET]",
55
+ DatetimeIndex([Timestamp("2015-01-01 00:00:00+0100", tz="MET")]).array,
56
+ ),
57
+ ],
58
+ )
59
+ def test_astype_to_datetime64(self, dtype, expected):
60
+ # GH#28448
61
+ result = Categorical(["2015-01-01"]).astype(dtype)
62
+ assert result == expected
63
+
64
+ def test_astype_str_int_categories_to_nullable_int(self):
65
+ # GH#39616
66
+ dtype = CategoricalDtype([str(i) for i in range(5)])
67
+ codes = np.random.default_rng(2).integers(5, size=20)
68
+ arr = Categorical.from_codes(codes, dtype=dtype)
69
+
70
+ res = arr.astype("Int64")
71
+ expected = array(codes, dtype="Int64")
72
+ tm.assert_extension_array_equal(res, expected)
73
+
74
+ def test_astype_str_int_categories_to_nullable_float(self):
75
+ # GH#39616
76
+ dtype = CategoricalDtype([str(i / 2) for i in range(5)])
77
+ codes = np.random.default_rng(2).integers(5, size=20)
78
+ arr = Categorical.from_codes(codes, dtype=dtype)
79
+
80
+ res = arr.astype("Float64")
81
+ expected = array(codes, dtype="Float64") / 2
82
+ tm.assert_extension_array_equal(res, expected)
83
+
84
+ @pytest.mark.parametrize("ordered", [True, False])
85
+ def test_astype(self, ordered):
86
+ # string
87
+ cat = Categorical(list("abbaaccc"), ordered=ordered)
88
+ result = cat.astype(object)
89
+ expected = np.array(cat)
90
+ tm.assert_numpy_array_equal(result, expected)
91
+
92
+ msg = r"Cannot cast object|string dtype to float64"
93
+ with pytest.raises(ValueError, match=msg):
94
+ cat.astype(float)
95
+
96
+ # numeric
97
+ cat = Categorical([0, 1, 2, 2, 1, 0, 1, 0, 2], ordered=ordered)
98
+ result = cat.astype(object)
99
+ expected = np.array(cat, dtype=object)
100
+ tm.assert_numpy_array_equal(result, expected)
101
+
102
+ result = cat.astype(int)
103
+ expected = np.array(cat, dtype="int")
104
+ tm.assert_numpy_array_equal(result, expected)
105
+
106
+ result = cat.astype(float)
107
+ expected = np.array(cat, dtype=float)
108
+ tm.assert_numpy_array_equal(result, expected)
109
+
110
+ @pytest.mark.parametrize("dtype_ordered", [True, False])
111
+ @pytest.mark.parametrize("cat_ordered", [True, False])
112
+ def test_astype_category(self, dtype_ordered, cat_ordered):
113
+ # GH#10696/GH#18593
114
+ data = list("abcaacbab")
115
+ cat = Categorical(data, categories=list("bac"), ordered=cat_ordered)
116
+
117
+ # standard categories
118
+ dtype = CategoricalDtype(ordered=dtype_ordered)
119
+ result = cat.astype(dtype)
120
+ expected = Categorical(data, categories=cat.categories, ordered=dtype_ordered)
121
+ tm.assert_categorical_equal(result, expected)
122
+
123
+ # non-standard categories
124
+ dtype = CategoricalDtype(list("adc"), dtype_ordered)
125
+ result = cat.astype(dtype)
126
+ expected = Categorical(data, dtype=dtype)
127
+ tm.assert_categorical_equal(result, expected)
128
+
129
+ if dtype_ordered is False:
130
+ # dtype='category' can't specify ordered, so only test once
131
+ result = cat.astype("category")
132
+ expected = cat
133
+ tm.assert_categorical_equal(result, expected)
134
+
135
+ def test_astype_object_datetime_categories(self):
136
+ # GH#40754
137
+ cat = Categorical(to_datetime(["2021-03-27", NaT]))
138
+ result = cat.astype(object)
139
+ expected = np.array([Timestamp("2021-03-27 00:00:00"), NaT], dtype="object")
140
+ tm.assert_numpy_array_equal(result, expected)
141
+
142
+ def test_astype_object_timestamp_categories(self):
143
+ # GH#18024
144
+ cat = Categorical([Timestamp("2014-01-01")])
145
+ result = cat.astype(object)
146
+ expected = np.array([Timestamp("2014-01-01 00:00:00")], dtype="object")
147
+ tm.assert_numpy_array_equal(result, expected)
148
+
149
+ def test_astype_category_readonly_mask_values(self):
150
+ # GH#53658
151
+ arr = array([0, 1, 2], dtype="Int64")
152
+ arr._mask.flags["WRITEABLE"] = False
153
+ result = arr.astype("category")
154
+ expected = array([0, 1, 2], dtype="Int64").astype("category")
155
+ tm.assert_extension_array_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_constructors.py ADDED
@@ -0,0 +1,783 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ date,
3
+ datetime,
4
+ )
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas._config import using_pyarrow_string_dtype
10
+
11
+ from pandas.core.dtypes.common import (
12
+ is_float_dtype,
13
+ is_integer_dtype,
14
+ )
15
+ from pandas.core.dtypes.dtypes import CategoricalDtype
16
+
17
+ import pandas as pd
18
+ from pandas import (
19
+ Categorical,
20
+ CategoricalIndex,
21
+ DatetimeIndex,
22
+ Index,
23
+ Interval,
24
+ IntervalIndex,
25
+ MultiIndex,
26
+ NaT,
27
+ Series,
28
+ Timestamp,
29
+ date_range,
30
+ period_range,
31
+ timedelta_range,
32
+ )
33
+ import pandas._testing as tm
34
+
35
+
36
+ class TestCategoricalConstructors:
37
+ def test_fastpath_deprecated(self):
38
+ codes = np.array([1, 2, 3])
39
+ dtype = CategoricalDtype(categories=["a", "b", "c", "d"], ordered=False)
40
+ msg = "The 'fastpath' keyword in Categorical is deprecated"
41
+ with tm.assert_produces_warning(DeprecationWarning, match=msg):
42
+ Categorical(codes, dtype=dtype, fastpath=True)
43
+
44
+ def test_categorical_from_cat_and_dtype_str_preserve_ordered(self):
45
+ # GH#49309 we should preserve orderedness in `res`
46
+ cat = Categorical([3, 1], categories=[3, 2, 1], ordered=True)
47
+
48
+ res = Categorical(cat, dtype="category")
49
+ assert res.dtype.ordered
50
+
51
+ def test_categorical_disallows_scalar(self):
52
+ # GH#38433
53
+ with pytest.raises(TypeError, match="Categorical input must be list-like"):
54
+ Categorical("A", categories=["A", "B"])
55
+
56
+ def test_categorical_1d_only(self):
57
+ # ndim > 1
58
+ msg = "> 1 ndim Categorical are not supported at this time"
59
+ with pytest.raises(NotImplementedError, match=msg):
60
+ Categorical(np.array([list("abcd")]))
61
+
62
+ def test_validate_ordered(self):
63
+ # see gh-14058
64
+ exp_msg = "'ordered' must either be 'True' or 'False'"
65
+ exp_err = TypeError
66
+
67
+ # This should be a boolean.
68
+ ordered = np.array([0, 1, 2])
69
+
70
+ with pytest.raises(exp_err, match=exp_msg):
71
+ Categorical([1, 2, 3], ordered=ordered)
72
+
73
+ with pytest.raises(exp_err, match=exp_msg):
74
+ Categorical.from_codes(
75
+ [0, 0, 1], categories=["a", "b", "c"], ordered=ordered
76
+ )
77
+
78
+ def test_constructor_empty(self):
79
+ # GH 17248
80
+ c = Categorical([])
81
+ expected = Index([])
82
+ tm.assert_index_equal(c.categories, expected)
83
+
84
+ c = Categorical([], categories=[1, 2, 3])
85
+ expected = Index([1, 2, 3], dtype=np.int64)
86
+ tm.assert_index_equal(c.categories, expected)
87
+
88
+ def test_constructor_empty_boolean(self):
89
+ # see gh-22702
90
+ cat = Categorical([], categories=[True, False])
91
+ categories = sorted(cat.categories.tolist())
92
+ assert categories == [False, True]
93
+
94
+ def test_constructor_tuples(self):
95
+ values = np.array([(1,), (1, 2), (1,), (1, 2)], dtype=object)
96
+ result = Categorical(values)
97
+ expected = Index([(1,), (1, 2)], tupleize_cols=False)
98
+ tm.assert_index_equal(result.categories, expected)
99
+ assert result.ordered is False
100
+
101
+ def test_constructor_tuples_datetimes(self):
102
+ # numpy will auto reshape when all of the tuples are the
103
+ # same len, so add an extra one with 2 items and slice it off
104
+ values = np.array(
105
+ [
106
+ (Timestamp("2010-01-01"),),
107
+ (Timestamp("2010-01-02"),),
108
+ (Timestamp("2010-01-01"),),
109
+ (Timestamp("2010-01-02"),),
110
+ ("a", "b"),
111
+ ],
112
+ dtype=object,
113
+ )[:-1]
114
+ result = Categorical(values)
115
+ expected = Index(
116
+ [(Timestamp("2010-01-01"),), (Timestamp("2010-01-02"),)],
117
+ tupleize_cols=False,
118
+ )
119
+ tm.assert_index_equal(result.categories, expected)
120
+
121
+ def test_constructor_unsortable(self):
122
+ # it works!
123
+ arr = np.array([1, 2, 3, datetime.now()], dtype="O")
124
+ factor = Categorical(arr, ordered=False)
125
+ assert not factor.ordered
126
+
127
+ # this however will raise as cannot be sorted
128
+ msg = (
129
+ "'values' is not ordered, please explicitly specify the "
130
+ "categories order by passing in a categories argument."
131
+ )
132
+ with pytest.raises(TypeError, match=msg):
133
+ Categorical(arr, ordered=True)
134
+
135
+ def test_constructor_interval(self):
136
+ result = Categorical(
137
+ [Interval(1, 2), Interval(2, 3), Interval(3, 6)], ordered=True
138
+ )
139
+ ii = IntervalIndex([Interval(1, 2), Interval(2, 3), Interval(3, 6)])
140
+ exp = Categorical(ii, ordered=True)
141
+ tm.assert_categorical_equal(result, exp)
142
+ tm.assert_index_equal(result.categories, ii)
143
+
144
+ def test_constructor(self):
145
+ exp_arr = np.array(["a", "b", "c", "a", "b", "c"], dtype=np.object_)
146
+ c1 = Categorical(exp_arr)
147
+ tm.assert_numpy_array_equal(c1.__array__(), exp_arr)
148
+ c2 = Categorical(exp_arr, categories=["a", "b", "c"])
149
+ tm.assert_numpy_array_equal(c2.__array__(), exp_arr)
150
+ c2 = Categorical(exp_arr, categories=["c", "b", "a"])
151
+ tm.assert_numpy_array_equal(c2.__array__(), exp_arr)
152
+
153
+ # categories must be unique
154
+ msg = "Categorical categories must be unique"
155
+ with pytest.raises(ValueError, match=msg):
156
+ Categorical([1, 2], [1, 2, 2])
157
+
158
+ with pytest.raises(ValueError, match=msg):
159
+ Categorical(["a", "b"], ["a", "b", "b"])
160
+
161
+ # The default should be unordered
162
+ c1 = Categorical(["a", "b", "c", "a"])
163
+ assert not c1.ordered
164
+
165
+ # Categorical as input
166
+ c1 = Categorical(["a", "b", "c", "a"])
167
+ c2 = Categorical(c1)
168
+ tm.assert_categorical_equal(c1, c2)
169
+
170
+ c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
171
+ c2 = Categorical(c1)
172
+ tm.assert_categorical_equal(c1, c2)
173
+
174
+ c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
175
+ c2 = Categorical(c1)
176
+ tm.assert_categorical_equal(c1, c2)
177
+
178
+ c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
179
+ c2 = Categorical(c1, categories=["a", "b", "c"])
180
+ tm.assert_numpy_array_equal(c1.__array__(), c2.__array__())
181
+ tm.assert_index_equal(c2.categories, Index(["a", "b", "c"]))
182
+
183
+ # Series of dtype category
184
+ c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
185
+ c2 = Categorical(Series(c1))
186
+ tm.assert_categorical_equal(c1, c2)
187
+
188
+ c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"])
189
+ c2 = Categorical(Series(c1))
190
+ tm.assert_categorical_equal(c1, c2)
191
+
192
+ # Series
193
+ c1 = Categorical(["a", "b", "c", "a"])
194
+ c2 = Categorical(Series(["a", "b", "c", "a"]))
195
+ tm.assert_categorical_equal(c1, c2)
196
+
197
+ c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"])
198
+ c2 = Categorical(Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"])
199
+ tm.assert_categorical_equal(c1, c2)
200
+
201
+ # This should result in integer categories, not float!
202
+ cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3])
203
+ assert is_integer_dtype(cat.categories)
204
+
205
+ # https://github.com/pandas-dev/pandas/issues/3678
206
+ cat = Categorical([np.nan, 1, 2, 3])
207
+ assert is_integer_dtype(cat.categories)
208
+
209
+ # this should result in floats
210
+ cat = Categorical([np.nan, 1, 2.0, 3])
211
+ assert is_float_dtype(cat.categories)
212
+
213
+ cat = Categorical([np.nan, 1.0, 2.0, 3.0])
214
+ assert is_float_dtype(cat.categories)
215
+
216
+ # This doesn't work -> this would probably need some kind of "remember
217
+ # the original type" feature to try to cast the array interface result
218
+ # to...
219
+
220
+ # vals = np.asarray(cat[cat.notna()])
221
+ # assert is_integer_dtype(vals)
222
+
223
+ # corner cases
224
+ cat = Categorical([1])
225
+ assert len(cat.categories) == 1
226
+ assert cat.categories[0] == 1
227
+ assert len(cat.codes) == 1
228
+ assert cat.codes[0] == 0
229
+
230
+ cat = Categorical(["a"])
231
+ assert len(cat.categories) == 1
232
+ assert cat.categories[0] == "a"
233
+ assert len(cat.codes) == 1
234
+ assert cat.codes[0] == 0
235
+
236
+ # two arrays
237
+ # - when the first is an integer dtype and the second is not
238
+ # - when the resulting codes are all -1/NaN
239
+ with tm.assert_produces_warning(None):
240
+ Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"])
241
+
242
+ with tm.assert_produces_warning(None):
243
+ Categorical([0, 1, 2, 0, 1, 2], categories=[3, 4, 5])
244
+
245
+ # the next one are from the old docs
246
+ with tm.assert_produces_warning(None):
247
+ Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3])
248
+ cat = Categorical([1, 2], categories=[1, 2, 3])
249
+
250
+ # this is a legitimate constructor
251
+ with tm.assert_produces_warning(None):
252
+ Categorical(np.array([], dtype="int64"), categories=[3, 2, 1], ordered=True)
253
+
254
+ def test_constructor_with_existing_categories(self):
255
+ # GH25318: constructing with pd.Series used to bogusly skip recoding
256
+ # categories
257
+ c0 = Categorical(["a", "b", "c", "a"])
258
+ c1 = Categorical(["a", "b", "c", "a"], categories=["b", "c"])
259
+
260
+ c2 = Categorical(c0, categories=c1.categories)
261
+ tm.assert_categorical_equal(c1, c2)
262
+
263
+ c3 = Categorical(Series(c0), categories=c1.categories)
264
+ tm.assert_categorical_equal(c1, c3)
265
+
266
+ def test_constructor_not_sequence(self):
267
+ # https://github.com/pandas-dev/pandas/issues/16022
268
+ msg = r"^Parameter 'categories' must be list-like, was"
269
+ with pytest.raises(TypeError, match=msg):
270
+ Categorical(["a", "b"], categories="a")
271
+
272
+ def test_constructor_with_null(self):
273
+ # Cannot have NaN in categories
274
+ msg = "Categorical categories cannot be null"
275
+ with pytest.raises(ValueError, match=msg):
276
+ Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"])
277
+
278
+ with pytest.raises(ValueError, match=msg):
279
+ Categorical([None, "a", "b", "c"], categories=[None, "a", "b", "c"])
280
+
281
+ with pytest.raises(ValueError, match=msg):
282
+ Categorical(
283
+ DatetimeIndex(["nat", "20160101"]),
284
+ categories=[NaT, Timestamp("20160101")],
285
+ )
286
+
287
+ def test_constructor_with_index(self):
288
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
289
+ tm.assert_categorical_equal(ci.values, Categorical(ci))
290
+
291
+ ci = CategoricalIndex(list("aabbca"), categories=list("cab"))
292
+ tm.assert_categorical_equal(
293
+ ci.values, Categorical(ci.astype(object), categories=ci.categories)
294
+ )
295
+
296
+ def test_constructor_with_generator(self):
297
+ # This was raising an Error in isna(single_val).any() because isna
298
+ # returned a scalar for a generator
299
+
300
+ exp = Categorical([0, 1, 2])
301
+ cat = Categorical(x for x in [0, 1, 2])
302
+ tm.assert_categorical_equal(cat, exp)
303
+ cat = Categorical(range(3))
304
+ tm.assert_categorical_equal(cat, exp)
305
+
306
+ MultiIndex.from_product([range(5), ["a", "b", "c"]])
307
+
308
+ # check that categories accept generators and sequences
309
+ cat = Categorical([0, 1, 2], categories=(x for x in [0, 1, 2]))
310
+ tm.assert_categorical_equal(cat, exp)
311
+ cat = Categorical([0, 1, 2], categories=range(3))
312
+ tm.assert_categorical_equal(cat, exp)
313
+
314
+ def test_constructor_with_rangeindex(self):
315
+ # RangeIndex is preserved in Categories
316
+ rng = Index(range(3))
317
+
318
+ cat = Categorical(rng)
319
+ tm.assert_index_equal(cat.categories, rng, exact=True)
320
+
321
+ cat = Categorical([1, 2, 0], categories=rng)
322
+ tm.assert_index_equal(cat.categories, rng, exact=True)
323
+
324
+ @pytest.mark.parametrize(
325
+ "dtl",
326
+ [
327
+ date_range("1995-01-01 00:00:00", periods=5, freq="s"),
328
+ date_range("1995-01-01 00:00:00", periods=5, freq="s", tz="US/Eastern"),
329
+ timedelta_range("1 day", periods=5, freq="s"),
330
+ ],
331
+ )
332
+ def test_constructor_with_datetimelike(self, dtl):
333
+ # see gh-12077
334
+ # constructor with a datetimelike and NaT
335
+
336
+ s = Series(dtl)
337
+ c = Categorical(s)
338
+
339
+ expected = type(dtl)(s)
340
+ expected._data.freq = None
341
+
342
+ tm.assert_index_equal(c.categories, expected)
343
+ tm.assert_numpy_array_equal(c.codes, np.arange(5, dtype="int8"))
344
+
345
+ # with NaT
346
+ s2 = s.copy()
347
+ s2.iloc[-1] = NaT
348
+ c = Categorical(s2)
349
+
350
+ expected = type(dtl)(s2.dropna())
351
+ expected._data.freq = None
352
+
353
+ tm.assert_index_equal(c.categories, expected)
354
+
355
+ exp = np.array([0, 1, 2, 3, -1], dtype=np.int8)
356
+ tm.assert_numpy_array_equal(c.codes, exp)
357
+
358
+ result = repr(c)
359
+ assert "NaT" in result
360
+
361
+ def test_constructor_from_index_series_datetimetz(self):
362
+ idx = date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern")
363
+ idx = idx._with_freq(None) # freq not preserved in result.categories
364
+ result = Categorical(idx)
365
+ tm.assert_index_equal(result.categories, idx)
366
+
367
+ result = Categorical(Series(idx))
368
+ tm.assert_index_equal(result.categories, idx)
369
+
370
+ def test_constructor_date_objects(self):
371
+ # we dont cast date objects to timestamps, matching Index constructor
372
+ v = date.today()
373
+
374
+ cat = Categorical([v, v])
375
+ assert cat.categories.dtype == object
376
+ assert type(cat.categories[0]) is date
377
+
378
+ def test_constructor_from_index_series_timedelta(self):
379
+ idx = timedelta_range("1 days", freq="D", periods=3)
380
+ idx = idx._with_freq(None) # freq not preserved in result.categories
381
+ result = Categorical(idx)
382
+ tm.assert_index_equal(result.categories, idx)
383
+
384
+ result = Categorical(Series(idx))
385
+ tm.assert_index_equal(result.categories, idx)
386
+
387
+ def test_constructor_from_index_series_period(self):
388
+ idx = period_range("2015-01-01", freq="D", periods=3)
389
+ result = Categorical(idx)
390
+ tm.assert_index_equal(result.categories, idx)
391
+
392
+ result = Categorical(Series(idx))
393
+ tm.assert_index_equal(result.categories, idx)
394
+
395
+ @pytest.mark.parametrize(
396
+ "values",
397
+ [
398
+ np.array([1.0, 1.2, 1.8, np.nan]),
399
+ np.array([1, 2, 3], dtype="int64"),
400
+ ["a", "b", "c", np.nan],
401
+ [pd.Period("2014-01"), pd.Period("2014-02"), NaT],
402
+ [Timestamp("2014-01-01"), Timestamp("2014-01-02"), NaT],
403
+ [
404
+ Timestamp("2014-01-01", tz="US/Eastern"),
405
+ Timestamp("2014-01-02", tz="US/Eastern"),
406
+ NaT,
407
+ ],
408
+ ],
409
+ )
410
+ def test_constructor_invariant(self, values):
411
+ # GH 14190
412
+ c = Categorical(values)
413
+ c2 = Categorical(c)
414
+ tm.assert_categorical_equal(c, c2)
415
+
416
+ @pytest.mark.parametrize("ordered", [True, False])
417
+ def test_constructor_with_dtype(self, ordered):
418
+ categories = ["b", "a", "c"]
419
+ dtype = CategoricalDtype(categories, ordered=ordered)
420
+ result = Categorical(["a", "b", "a", "c"], dtype=dtype)
421
+ expected = Categorical(
422
+ ["a", "b", "a", "c"], categories=categories, ordered=ordered
423
+ )
424
+ tm.assert_categorical_equal(result, expected)
425
+ assert result.ordered is ordered
426
+
427
+ def test_constructor_dtype_and_others_raises(self):
428
+ dtype = CategoricalDtype(["a", "b"], ordered=True)
429
+ msg = "Cannot specify `categories` or `ordered` together with `dtype`."
430
+ with pytest.raises(ValueError, match=msg):
431
+ Categorical(["a", "b"], categories=["a", "b"], dtype=dtype)
432
+
433
+ with pytest.raises(ValueError, match=msg):
434
+ Categorical(["a", "b"], ordered=True, dtype=dtype)
435
+
436
+ with pytest.raises(ValueError, match=msg):
437
+ Categorical(["a", "b"], ordered=False, dtype=dtype)
438
+
439
+ @pytest.mark.parametrize("categories", [None, ["a", "b"], ["a", "c"]])
440
+ @pytest.mark.parametrize("ordered", [True, False])
441
+ def test_constructor_str_category(self, categories, ordered):
442
+ result = Categorical(
443
+ ["a", "b"], categories=categories, ordered=ordered, dtype="category"
444
+ )
445
+ expected = Categorical(["a", "b"], categories=categories, ordered=ordered)
446
+ tm.assert_categorical_equal(result, expected)
447
+
448
+ def test_constructor_str_unknown(self):
449
+ with pytest.raises(ValueError, match="Unknown dtype"):
450
+ Categorical([1, 2], dtype="foo")
451
+
452
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="Can't be NumPy strings")
453
+ def test_constructor_np_strs(self):
454
+ # GH#31499 Hashtable.map_locations needs to work on np.str_ objects
455
+ cat = Categorical(["1", "0", "1"], [np.str_("0"), np.str_("1")])
456
+ assert all(isinstance(x, np.str_) for x in cat.categories)
457
+
458
+ def test_constructor_from_categorical_with_dtype(self):
459
+ dtype = CategoricalDtype(["a", "b", "c"], ordered=True)
460
+ values = Categorical(["a", "b", "d"])
461
+ result = Categorical(values, dtype=dtype)
462
+ # We use dtype.categories, not values.categories
463
+ expected = Categorical(
464
+ ["a", "b", "d"], categories=["a", "b", "c"], ordered=True
465
+ )
466
+ tm.assert_categorical_equal(result, expected)
467
+
468
+ def test_constructor_from_categorical_with_unknown_dtype(self):
469
+ dtype = CategoricalDtype(None, ordered=True)
470
+ values = Categorical(["a", "b", "d"])
471
+ result = Categorical(values, dtype=dtype)
472
+ # We use values.categories, not dtype.categories
473
+ expected = Categorical(
474
+ ["a", "b", "d"], categories=["a", "b", "d"], ordered=True
475
+ )
476
+ tm.assert_categorical_equal(result, expected)
477
+
478
+ def test_constructor_from_categorical_string(self):
479
+ values = Categorical(["a", "b", "d"])
480
+ # use categories, ordered
481
+ result = Categorical(
482
+ values, categories=["a", "b", "c"], ordered=True, dtype="category"
483
+ )
484
+ expected = Categorical(
485
+ ["a", "b", "d"], categories=["a", "b", "c"], ordered=True
486
+ )
487
+ tm.assert_categorical_equal(result, expected)
488
+
489
+ # No string
490
+ result = Categorical(values, categories=["a", "b", "c"], ordered=True)
491
+ tm.assert_categorical_equal(result, expected)
492
+
493
+ def test_constructor_with_categorical_categories(self):
494
+ # GH17884
495
+ expected = Categorical(["a", "b"], categories=["a", "b", "c"])
496
+
497
+ result = Categorical(["a", "b"], categories=Categorical(["a", "b", "c"]))
498
+ tm.assert_categorical_equal(result, expected)
499
+
500
+ result = Categorical(["a", "b"], categories=CategoricalIndex(["a", "b", "c"]))
501
+ tm.assert_categorical_equal(result, expected)
502
+
503
+ @pytest.mark.parametrize("klass", [lambda x: np.array(x, dtype=object), list])
504
+ def test_construction_with_null(self, klass, nulls_fixture):
505
+ # https://github.com/pandas-dev/pandas/issues/31927
506
+ values = klass(["a", nulls_fixture, "b"])
507
+ result = Categorical(values)
508
+
509
+ dtype = CategoricalDtype(["a", "b"])
510
+ codes = [0, -1, 1]
511
+ expected = Categorical.from_codes(codes=codes, dtype=dtype)
512
+
513
+ tm.assert_categorical_equal(result, expected)
514
+
515
+ @pytest.mark.parametrize("validate", [True, False])
516
+ def test_from_codes_nullable_int_categories(self, any_numeric_ea_dtype, validate):
517
+ # GH#39649
518
+ cats = pd.array(range(5), dtype=any_numeric_ea_dtype)
519
+ codes = np.random.default_rng(2).integers(5, size=3)
520
+ dtype = CategoricalDtype(cats)
521
+ arr = Categorical.from_codes(codes, dtype=dtype, validate=validate)
522
+ assert arr.categories.dtype == cats.dtype
523
+ tm.assert_index_equal(arr.categories, Index(cats))
524
+
525
+ def test_from_codes_empty(self):
526
+ cat = ["a", "b", "c"]
527
+ result = Categorical.from_codes([], categories=cat)
528
+ expected = Categorical([], categories=cat)
529
+
530
+ tm.assert_categorical_equal(result, expected)
531
+
532
+ @pytest.mark.parametrize("validate", [True, False])
533
+ def test_from_codes_validate(self, validate):
534
+ # GH53122
535
+ dtype = CategoricalDtype(["a", "b"])
536
+ if validate:
537
+ with pytest.raises(ValueError, match="codes need to be between "):
538
+ Categorical.from_codes([4, 5], dtype=dtype, validate=validate)
539
+ else:
540
+ # passes, though has incorrect codes, but that's the user responsibility
541
+ Categorical.from_codes([4, 5], dtype=dtype, validate=validate)
542
+
543
+ def test_from_codes_too_few_categories(self):
544
+ dtype = CategoricalDtype(categories=[1, 2])
545
+ msg = "codes need to be between "
546
+ with pytest.raises(ValueError, match=msg):
547
+ Categorical.from_codes([1, 2], categories=dtype.categories)
548
+ with pytest.raises(ValueError, match=msg):
549
+ Categorical.from_codes([1, 2], dtype=dtype)
550
+
551
+ def test_from_codes_non_int_codes(self):
552
+ dtype = CategoricalDtype(categories=[1, 2])
553
+ msg = "codes need to be array-like integers"
554
+ with pytest.raises(ValueError, match=msg):
555
+ Categorical.from_codes(["a"], categories=dtype.categories)
556
+ with pytest.raises(ValueError, match=msg):
557
+ Categorical.from_codes(["a"], dtype=dtype)
558
+
559
+ def test_from_codes_non_unique_categories(self):
560
+ with pytest.raises(ValueError, match="Categorical categories must be unique"):
561
+ Categorical.from_codes([0, 1, 2], categories=["a", "a", "b"])
562
+
563
+ def test_from_codes_nan_cat_included(self):
564
+ with pytest.raises(ValueError, match="Categorical categories cannot be null"):
565
+ Categorical.from_codes([0, 1, 2], categories=["a", "b", np.nan])
566
+
567
+ def test_from_codes_too_negative(self):
568
+ dtype = CategoricalDtype(categories=["a", "b", "c"])
569
+ msg = r"codes need to be between -1 and len\(categories\)-1"
570
+ with pytest.raises(ValueError, match=msg):
571
+ Categorical.from_codes([-2, 1, 2], categories=dtype.categories)
572
+ with pytest.raises(ValueError, match=msg):
573
+ Categorical.from_codes([-2, 1, 2], dtype=dtype)
574
+
575
+ def test_from_codes(self):
576
+ dtype = CategoricalDtype(categories=["a", "b", "c"])
577
+ exp = Categorical(["a", "b", "c"], ordered=False)
578
+ res = Categorical.from_codes([0, 1, 2], categories=dtype.categories)
579
+ tm.assert_categorical_equal(exp, res)
580
+
581
+ res = Categorical.from_codes([0, 1, 2], dtype=dtype)
582
+ tm.assert_categorical_equal(exp, res)
583
+
584
+ @pytest.mark.parametrize("klass", [Categorical, CategoricalIndex])
585
+ def test_from_codes_with_categorical_categories(self, klass):
586
+ # GH17884
587
+ expected = Categorical(["a", "b"], categories=["a", "b", "c"])
588
+
589
+ result = Categorical.from_codes([0, 1], categories=klass(["a", "b", "c"]))
590
+ tm.assert_categorical_equal(result, expected)
591
+
592
+ @pytest.mark.parametrize("klass", [Categorical, CategoricalIndex])
593
+ def test_from_codes_with_non_unique_categorical_categories(self, klass):
594
+ with pytest.raises(ValueError, match="Categorical categories must be unique"):
595
+ Categorical.from_codes([0, 1], klass(["a", "b", "a"]))
596
+
597
+ def test_from_codes_with_nan_code(self):
598
+ # GH21767
599
+ codes = [1, 2, np.nan]
600
+ dtype = CategoricalDtype(categories=["a", "b", "c"])
601
+ with pytest.raises(ValueError, match="codes need to be array-like integers"):
602
+ Categorical.from_codes(codes, categories=dtype.categories)
603
+ with pytest.raises(ValueError, match="codes need to be array-like integers"):
604
+ Categorical.from_codes(codes, dtype=dtype)
605
+
606
+ @pytest.mark.parametrize("codes", [[1.0, 2.0, 0], [1.1, 2.0, 0]])
607
+ def test_from_codes_with_float(self, codes):
608
+ # GH21767
609
+ # float codes should raise even if values are equal to integers
610
+ dtype = CategoricalDtype(categories=["a", "b", "c"])
611
+
612
+ msg = "codes need to be array-like integers"
613
+ with pytest.raises(ValueError, match=msg):
614
+ Categorical.from_codes(codes, dtype.categories)
615
+ with pytest.raises(ValueError, match=msg):
616
+ Categorical.from_codes(codes, dtype=dtype)
617
+
618
+ def test_from_codes_with_dtype_raises(self):
619
+ msg = "Cannot specify"
620
+ with pytest.raises(ValueError, match=msg):
621
+ Categorical.from_codes(
622
+ [0, 1], categories=["a", "b"], dtype=CategoricalDtype(["a", "b"])
623
+ )
624
+
625
+ with pytest.raises(ValueError, match=msg):
626
+ Categorical.from_codes(
627
+ [0, 1], ordered=True, dtype=CategoricalDtype(["a", "b"])
628
+ )
629
+
630
+ def test_from_codes_neither(self):
631
+ msg = "Both were None"
632
+ with pytest.raises(ValueError, match=msg):
633
+ Categorical.from_codes([0, 1])
634
+
635
+ def test_from_codes_with_nullable_int(self):
636
+ codes = pd.array([0, 1], dtype="Int64")
637
+ categories = ["a", "b"]
638
+
639
+ result = Categorical.from_codes(codes, categories=categories)
640
+ expected = Categorical.from_codes(codes.to_numpy(int), categories=categories)
641
+
642
+ tm.assert_categorical_equal(result, expected)
643
+
644
+ def test_from_codes_with_nullable_int_na_raises(self):
645
+ codes = pd.array([0, None], dtype="Int64")
646
+ categories = ["a", "b"]
647
+
648
+ msg = "codes cannot contain NA values"
649
+ with pytest.raises(ValueError, match=msg):
650
+ Categorical.from_codes(codes, categories=categories)
651
+
652
+ @pytest.mark.parametrize("dtype", [None, "category"])
653
+ def test_from_inferred_categories(self, dtype):
654
+ cats = ["a", "b"]
655
+ codes = np.array([0, 0, 1, 1], dtype="i8")
656
+ result = Categorical._from_inferred_categories(cats, codes, dtype)
657
+ expected = Categorical.from_codes(codes, cats)
658
+ tm.assert_categorical_equal(result, expected)
659
+
660
+ @pytest.mark.parametrize("dtype", [None, "category"])
661
+ def test_from_inferred_categories_sorts(self, dtype):
662
+ cats = ["b", "a"]
663
+ codes = np.array([0, 1, 1, 1], dtype="i8")
664
+ result = Categorical._from_inferred_categories(cats, codes, dtype)
665
+ expected = Categorical.from_codes([1, 0, 0, 0], ["a", "b"])
666
+ tm.assert_categorical_equal(result, expected)
667
+
668
+ def test_from_inferred_categories_dtype(self):
669
+ cats = ["a", "b", "d"]
670
+ codes = np.array([0, 1, 0, 2], dtype="i8")
671
+ dtype = CategoricalDtype(["c", "b", "a"], ordered=True)
672
+ result = Categorical._from_inferred_categories(cats, codes, dtype)
673
+ expected = Categorical(
674
+ ["a", "b", "a", "d"], categories=["c", "b", "a"], ordered=True
675
+ )
676
+ tm.assert_categorical_equal(result, expected)
677
+
678
+ def test_from_inferred_categories_coerces(self):
679
+ cats = ["1", "2", "bad"]
680
+ codes = np.array([0, 0, 1, 2], dtype="i8")
681
+ dtype = CategoricalDtype([1, 2])
682
+ result = Categorical._from_inferred_categories(cats, codes, dtype)
683
+ expected = Categorical([1, 1, 2, np.nan])
684
+ tm.assert_categorical_equal(result, expected)
685
+
686
+ @pytest.mark.parametrize("ordered", [None, True, False])
687
+ def test_construction_with_ordered(self, ordered):
688
+ # GH 9347, 9190
689
+ cat = Categorical([0, 1, 2], ordered=ordered)
690
+ assert cat.ordered == bool(ordered)
691
+
692
+ def test_constructor_imaginary(self):
693
+ values = [1, 2, 3 + 1j]
694
+ c1 = Categorical(values)
695
+ tm.assert_index_equal(c1.categories, Index(values))
696
+ tm.assert_numpy_array_equal(np.array(c1), np.array(values))
697
+
698
+ def test_constructor_string_and_tuples(self):
699
+ # GH 21416
700
+ c = Categorical(np.array(["c", ("a", "b"), ("b", "a"), "c"], dtype=object))
701
+ expected_index = Index([("a", "b"), ("b", "a"), "c"])
702
+ assert c.categories.equals(expected_index)
703
+
704
+ def test_interval(self):
705
+ idx = pd.interval_range(0, 10, periods=10)
706
+ cat = Categorical(idx, categories=idx)
707
+ expected_codes = np.arange(10, dtype="int8")
708
+ tm.assert_numpy_array_equal(cat.codes, expected_codes)
709
+ tm.assert_index_equal(cat.categories, idx)
710
+
711
+ # infer categories
712
+ cat = Categorical(idx)
713
+ tm.assert_numpy_array_equal(cat.codes, expected_codes)
714
+ tm.assert_index_equal(cat.categories, idx)
715
+
716
+ # list values
717
+ cat = Categorical(list(idx))
718
+ tm.assert_numpy_array_equal(cat.codes, expected_codes)
719
+ tm.assert_index_equal(cat.categories, idx)
720
+
721
+ # list values, categories
722
+ cat = Categorical(list(idx), categories=list(idx))
723
+ tm.assert_numpy_array_equal(cat.codes, expected_codes)
724
+ tm.assert_index_equal(cat.categories, idx)
725
+
726
+ # shuffled
727
+ values = idx.take([1, 2, 0])
728
+ cat = Categorical(values, categories=idx)
729
+ tm.assert_numpy_array_equal(cat.codes, np.array([1, 2, 0], dtype="int8"))
730
+ tm.assert_index_equal(cat.categories, idx)
731
+
732
+ # extra
733
+ values = pd.interval_range(8, 11, periods=3)
734
+ cat = Categorical(values, categories=idx)
735
+ expected_codes = np.array([8, 9, -1], dtype="int8")
736
+ tm.assert_numpy_array_equal(cat.codes, expected_codes)
737
+ tm.assert_index_equal(cat.categories, idx)
738
+
739
+ # overlapping
740
+ idx = IntervalIndex([Interval(0, 2), Interval(0, 1)])
741
+ cat = Categorical(idx, categories=idx)
742
+ expected_codes = np.array([0, 1], dtype="int8")
743
+ tm.assert_numpy_array_equal(cat.codes, expected_codes)
744
+ tm.assert_index_equal(cat.categories, idx)
745
+
746
+ def test_categorical_extension_array_nullable(self, nulls_fixture):
747
+ # GH:
748
+ arr = pd.arrays.StringArray._from_sequence(
749
+ [nulls_fixture] * 2, dtype=pd.StringDtype()
750
+ )
751
+ result = Categorical(arr)
752
+ assert arr.dtype == result.categories.dtype
753
+ expected = Categorical(Series([pd.NA, pd.NA], dtype=arr.dtype))
754
+ tm.assert_categorical_equal(result, expected)
755
+
756
+ def test_from_sequence_copy(self):
757
+ cat = Categorical(np.arange(5).repeat(2))
758
+ result = Categorical._from_sequence(cat, dtype=cat.dtype, copy=False)
759
+
760
+ # more generally, we'd be OK with a view
761
+ assert result._codes is cat._codes
762
+
763
+ result = Categorical._from_sequence(cat, dtype=cat.dtype, copy=True)
764
+
765
+ assert not tm.shares_memory(result, cat)
766
+
767
+ def test_constructor_datetime64_non_nano(self):
768
+ categories = np.arange(10).view("M8[D]")
769
+ values = categories[::2].copy()
770
+
771
+ cat = Categorical(values, categories=categories)
772
+ assert (cat == values).all()
773
+
774
+ def test_constructor_preserves_freq(self):
775
+ # GH33830 freq retention in categorical
776
+ dti = date_range("2016-01-01", periods=5)
777
+
778
+ expected = dti.freq
779
+
780
+ cat = Categorical(dti)
781
+ result = cat.categories.freq
782
+
783
+ assert expected == result
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_dtypes.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.dtypes import CategoricalDtype
5
+
6
+ from pandas import (
7
+ Categorical,
8
+ CategoricalIndex,
9
+ Index,
10
+ IntervalIndex,
11
+ Series,
12
+ Timestamp,
13
+ )
14
+ import pandas._testing as tm
15
+
16
+
17
+ class TestCategoricalDtypes:
18
+ def test_categories_match_up_to_permutation(self):
19
+ # test dtype comparisons between cats
20
+
21
+ c1 = Categorical(list("aabca"), categories=list("abc"), ordered=False)
22
+ c2 = Categorical(list("aabca"), categories=list("cab"), ordered=False)
23
+ c3 = Categorical(list("aabca"), categories=list("cab"), ordered=True)
24
+ assert c1._categories_match_up_to_permutation(c1)
25
+ assert c2._categories_match_up_to_permutation(c2)
26
+ assert c3._categories_match_up_to_permutation(c3)
27
+ assert c1._categories_match_up_to_permutation(c2)
28
+ assert not c1._categories_match_up_to_permutation(c3)
29
+ assert not c1._categories_match_up_to_permutation(Index(list("aabca")))
30
+ assert not c1._categories_match_up_to_permutation(c1.astype(object))
31
+ assert c1._categories_match_up_to_permutation(CategoricalIndex(c1))
32
+ assert c1._categories_match_up_to_permutation(
33
+ CategoricalIndex(c1, categories=list("cab"))
34
+ )
35
+ assert not c1._categories_match_up_to_permutation(
36
+ CategoricalIndex(c1, ordered=True)
37
+ )
38
+
39
+ # GH 16659
40
+ s1 = Series(c1)
41
+ s2 = Series(c2)
42
+ s3 = Series(c3)
43
+ assert c1._categories_match_up_to_permutation(s1)
44
+ assert c2._categories_match_up_to_permutation(s2)
45
+ assert c3._categories_match_up_to_permutation(s3)
46
+ assert c1._categories_match_up_to_permutation(s2)
47
+ assert not c1._categories_match_up_to_permutation(s3)
48
+ assert not c1._categories_match_up_to_permutation(s1.astype(object))
49
+
50
+ def test_set_dtype_same(self):
51
+ c = Categorical(["a", "b", "c"])
52
+ result = c._set_dtype(CategoricalDtype(["a", "b", "c"]))
53
+ tm.assert_categorical_equal(result, c)
54
+
55
+ def test_set_dtype_new_categories(self):
56
+ c = Categorical(["a", "b", "c"])
57
+ result = c._set_dtype(CategoricalDtype(list("abcd")))
58
+ tm.assert_numpy_array_equal(result.codes, c.codes)
59
+ tm.assert_index_equal(result.dtype.categories, Index(list("abcd")))
60
+
61
+ @pytest.mark.parametrize(
62
+ "values, categories, new_categories",
63
+ [
64
+ # No NaNs, same cats, same order
65
+ (["a", "b", "a"], ["a", "b"], ["a", "b"]),
66
+ # No NaNs, same cats, different order
67
+ (["a", "b", "a"], ["a", "b"], ["b", "a"]),
68
+ # Same, unsorted
69
+ (["b", "a", "a"], ["a", "b"], ["a", "b"]),
70
+ # No NaNs, same cats, different order
71
+ (["b", "a", "a"], ["a", "b"], ["b", "a"]),
72
+ # NaNs
73
+ (["a", "b", "c"], ["a", "b"], ["a", "b"]),
74
+ (["a", "b", "c"], ["a", "b"], ["b", "a"]),
75
+ (["b", "a", "c"], ["a", "b"], ["a", "b"]),
76
+ (["b", "a", "c"], ["a", "b"], ["a", "b"]),
77
+ # Introduce NaNs
78
+ (["a", "b", "c"], ["a", "b"], ["a"]),
79
+ (["a", "b", "c"], ["a", "b"], ["b"]),
80
+ (["b", "a", "c"], ["a", "b"], ["a"]),
81
+ (["b", "a", "c"], ["a", "b"], ["a"]),
82
+ # No overlap
83
+ (["a", "b", "c"], ["a", "b"], ["d", "e"]),
84
+ ],
85
+ )
86
+ @pytest.mark.parametrize("ordered", [True, False])
87
+ def test_set_dtype_many(self, values, categories, new_categories, ordered):
88
+ c = Categorical(values, categories)
89
+ expected = Categorical(values, new_categories, ordered)
90
+ result = c._set_dtype(expected.dtype)
91
+ tm.assert_categorical_equal(result, expected)
92
+
93
+ def test_set_dtype_no_overlap(self):
94
+ c = Categorical(["a", "b", "c"], ["d", "e"])
95
+ result = c._set_dtype(CategoricalDtype(["a", "b"]))
96
+ expected = Categorical([None, None, None], categories=["a", "b"])
97
+ tm.assert_categorical_equal(result, expected)
98
+
99
+ def test_codes_dtypes(self):
100
+ # GH 8453
101
+ result = Categorical(["foo", "bar", "baz"])
102
+ assert result.codes.dtype == "int8"
103
+
104
+ result = Categorical([f"foo{i:05d}" for i in range(400)])
105
+ assert result.codes.dtype == "int16"
106
+
107
+ result = Categorical([f"foo{i:05d}" for i in range(40000)])
108
+ assert result.codes.dtype == "int32"
109
+
110
+ # adding cats
111
+ result = Categorical(["foo", "bar", "baz"])
112
+ assert result.codes.dtype == "int8"
113
+ result = result.add_categories([f"foo{i:05d}" for i in range(400)])
114
+ assert result.codes.dtype == "int16"
115
+
116
+ # removing cats
117
+ result = result.remove_categories([f"foo{i:05d}" for i in range(300)])
118
+ assert result.codes.dtype == "int8"
119
+
120
+ def test_iter_python_types(self):
121
+ # GH-19909
122
+ cat = Categorical([1, 2])
123
+ assert isinstance(next(iter(cat)), int)
124
+ assert isinstance(cat.tolist()[0], int)
125
+
126
+ def test_iter_python_types_datetime(self):
127
+ cat = Categorical([Timestamp("2017-01-01"), Timestamp("2017-01-02")])
128
+ assert isinstance(next(iter(cat)), Timestamp)
129
+ assert isinstance(cat.tolist()[0], Timestamp)
130
+
131
+ def test_interval_index_category(self):
132
+ # GH 38316
133
+ index = IntervalIndex.from_breaks(np.arange(3, dtype="uint64"))
134
+
135
+ result = CategoricalIndex(index).dtype.categories
136
+ expected = IntervalIndex.from_arrays(
137
+ [0, 1], [1, 2], dtype="interval[uint64, right]"
138
+ )
139
+ tm.assert_index_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_indexing.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ NA,
8
+ Categorical,
9
+ CategoricalIndex,
10
+ Index,
11
+ Interval,
12
+ IntervalIndex,
13
+ NaT,
14
+ PeriodIndex,
15
+ Series,
16
+ Timedelta,
17
+ Timestamp,
18
+ )
19
+ import pandas._testing as tm
20
+ import pandas.core.common as com
21
+
22
+
23
+ class TestCategoricalIndexingWithFactor:
24
+ def test_getitem(self):
25
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
26
+ assert factor[0] == "a"
27
+ assert factor[-1] == "c"
28
+
29
+ subf = factor[[0, 1, 2]]
30
+ tm.assert_numpy_array_equal(subf._codes, np.array([0, 1, 1], dtype=np.int8))
31
+
32
+ subf = factor[np.asarray(factor) == "c"]
33
+ tm.assert_numpy_array_equal(subf._codes, np.array([2, 2, 2], dtype=np.int8))
34
+
35
+ def test_setitem(self):
36
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
37
+ # int/positional
38
+ c = factor.copy()
39
+ c[0] = "b"
40
+ assert c[0] == "b"
41
+ c[-1] = "a"
42
+ assert c[-1] == "a"
43
+
44
+ # boolean
45
+ c = factor.copy()
46
+ indexer = np.zeros(len(c), dtype="bool")
47
+ indexer[0] = True
48
+ indexer[-1] = True
49
+ c[indexer] = "c"
50
+ expected = Categorical(["c", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
51
+
52
+ tm.assert_categorical_equal(c, expected)
53
+
54
+ @pytest.mark.parametrize(
55
+ "other",
56
+ [Categorical(["b", "a"]), Categorical(["b", "a"], categories=["b", "a"])],
57
+ )
58
+ def test_setitem_same_but_unordered(self, other):
59
+ # GH-24142
60
+ target = Categorical(["a", "b"], categories=["a", "b"])
61
+ mask = np.array([True, False])
62
+ target[mask] = other[mask]
63
+ expected = Categorical(["b", "b"], categories=["a", "b"])
64
+ tm.assert_categorical_equal(target, expected)
65
+
66
+ @pytest.mark.parametrize(
67
+ "other",
68
+ [
69
+ Categorical(["b", "a"], categories=["b", "a", "c"]),
70
+ Categorical(["b", "a"], categories=["a", "b", "c"]),
71
+ Categorical(["a", "a"], categories=["a"]),
72
+ Categorical(["b", "b"], categories=["b"]),
73
+ ],
74
+ )
75
+ def test_setitem_different_unordered_raises(self, other):
76
+ # GH-24142
77
+ target = Categorical(["a", "b"], categories=["a", "b"])
78
+ mask = np.array([True, False])
79
+ msg = "Cannot set a Categorical with another, without identical categories"
80
+ with pytest.raises(TypeError, match=msg):
81
+ target[mask] = other[mask]
82
+
83
+ @pytest.mark.parametrize(
84
+ "other",
85
+ [
86
+ Categorical(["b", "a"]),
87
+ Categorical(["b", "a"], categories=["b", "a"], ordered=True),
88
+ Categorical(["b", "a"], categories=["a", "b", "c"], ordered=True),
89
+ ],
90
+ )
91
+ def test_setitem_same_ordered_raises(self, other):
92
+ # Gh-24142
93
+ target = Categorical(["a", "b"], categories=["a", "b"], ordered=True)
94
+ mask = np.array([True, False])
95
+ msg = "Cannot set a Categorical with another, without identical categories"
96
+ with pytest.raises(TypeError, match=msg):
97
+ target[mask] = other[mask]
98
+
99
+ def test_setitem_tuple(self):
100
+ # GH#20439
101
+ cat = Categorical([(0, 1), (0, 2), (0, 1)])
102
+
103
+ # This should not raise
104
+ cat[1] = cat[0]
105
+ assert cat[1] == (0, 1)
106
+
107
+ def test_setitem_listlike(self):
108
+ # GH#9469
109
+ # properly coerce the input indexers
110
+
111
+ cat = Categorical(
112
+ np.random.default_rng(2).integers(0, 5, size=150000).astype(np.int8)
113
+ ).add_categories([-1000])
114
+ indexer = np.array([100000]).astype(np.int64)
115
+ cat[indexer] = -1000
116
+
117
+ # we are asserting the code result here
118
+ # which maps to the -1000 category
119
+ result = cat.codes[np.array([100000]).astype(np.int64)]
120
+ tm.assert_numpy_array_equal(result, np.array([5], dtype="int8"))
121
+
122
+
123
+ class TestCategoricalIndexing:
124
+ def test_getitem_slice(self):
125
+ cat = Categorical(["a", "b", "c", "d", "a", "b", "c"])
126
+ sliced = cat[3]
127
+ assert sliced == "d"
128
+
129
+ sliced = cat[3:5]
130
+ expected = Categorical(["d", "a"], categories=["a", "b", "c", "d"])
131
+ tm.assert_categorical_equal(sliced, expected)
132
+
133
+ def test_getitem_listlike(self):
134
+ # GH 9469
135
+ # properly coerce the input indexers
136
+
137
+ c = Categorical(
138
+ np.random.default_rng(2).integers(0, 5, size=150000).astype(np.int8)
139
+ )
140
+ result = c.codes[np.array([100000]).astype(np.int64)]
141
+ expected = c[np.array([100000]).astype(np.int64)].codes
142
+ tm.assert_numpy_array_equal(result, expected)
143
+
144
+ def test_periodindex(self):
145
+ idx1 = PeriodIndex(
146
+ ["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"],
147
+ freq="M",
148
+ )
149
+
150
+ cat1 = Categorical(idx1)
151
+ str(cat1)
152
+ exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.int8)
153
+ exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
154
+ tm.assert_numpy_array_equal(cat1._codes, exp_arr)
155
+ tm.assert_index_equal(cat1.categories, exp_idx)
156
+
157
+ idx2 = PeriodIndex(
158
+ ["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"],
159
+ freq="M",
160
+ )
161
+ cat2 = Categorical(idx2, ordered=True)
162
+ str(cat2)
163
+ exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.int8)
164
+ exp_idx2 = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")
165
+ tm.assert_numpy_array_equal(cat2._codes, exp_arr)
166
+ tm.assert_index_equal(cat2.categories, exp_idx2)
167
+
168
+ idx3 = PeriodIndex(
169
+ [
170
+ "2013-12",
171
+ "2013-11",
172
+ "2013-10",
173
+ "2013-09",
174
+ "2013-08",
175
+ "2013-07",
176
+ "2013-05",
177
+ ],
178
+ freq="M",
179
+ )
180
+ cat3 = Categorical(idx3, ordered=True)
181
+ exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype=np.int8)
182
+ exp_idx = PeriodIndex(
183
+ [
184
+ "2013-05",
185
+ "2013-07",
186
+ "2013-08",
187
+ "2013-09",
188
+ "2013-10",
189
+ "2013-11",
190
+ "2013-12",
191
+ ],
192
+ freq="M",
193
+ )
194
+ tm.assert_numpy_array_equal(cat3._codes, exp_arr)
195
+ tm.assert_index_equal(cat3.categories, exp_idx)
196
+
197
+ @pytest.mark.parametrize(
198
+ "null_val",
199
+ [None, np.nan, NaT, NA, math.nan, "NaT", "nat", "NAT", "nan", "NaN", "NAN"],
200
+ )
201
+ def test_periodindex_on_null_types(self, null_val):
202
+ # GH 46673
203
+ result = PeriodIndex(["2022-04-06", "2022-04-07", null_val], freq="D")
204
+ expected = PeriodIndex(["2022-04-06", "2022-04-07", "NaT"], dtype="period[D]")
205
+ assert result[2] is NaT
206
+ tm.assert_index_equal(result, expected)
207
+
208
+ @pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]])
209
+ def test_categories_assignments_wrong_length_raises(self, new_categories):
210
+ cat = Categorical(["a", "b", "c", "a"])
211
+ msg = (
212
+ "new categories need to have the same number of items "
213
+ "as the old categories!"
214
+ )
215
+ with pytest.raises(ValueError, match=msg):
216
+ cat.rename_categories(new_categories)
217
+
218
+ # Combinations of sorted/unique:
219
+ @pytest.mark.parametrize(
220
+ "idx_values", [[1, 2, 3, 4], [1, 3, 2, 4], [1, 3, 3, 4], [1, 2, 2, 4]]
221
+ )
222
+ # Combinations of missing/unique
223
+ @pytest.mark.parametrize("key_values", [[1, 2], [1, 5], [1, 1], [5, 5]])
224
+ @pytest.mark.parametrize("key_class", [Categorical, CategoricalIndex])
225
+ @pytest.mark.parametrize("dtype", [None, "category", "key"])
226
+ def test_get_indexer_non_unique(self, idx_values, key_values, key_class, dtype):
227
+ # GH 21448
228
+ key = key_class(key_values, categories=range(1, 5))
229
+
230
+ if dtype == "key":
231
+ dtype = key.dtype
232
+
233
+ # Test for flat index and CategoricalIndex with same/different cats:
234
+ idx = Index(idx_values, dtype=dtype)
235
+ expected, exp_miss = idx.get_indexer_non_unique(key_values)
236
+ result, res_miss = idx.get_indexer_non_unique(key)
237
+
238
+ tm.assert_numpy_array_equal(expected, result)
239
+ tm.assert_numpy_array_equal(exp_miss, res_miss)
240
+
241
+ exp_unique = idx.unique().get_indexer(key_values)
242
+ res_unique = idx.unique().get_indexer(key)
243
+ tm.assert_numpy_array_equal(res_unique, exp_unique)
244
+
245
+ def test_where_unobserved_nan(self):
246
+ ser = Series(Categorical(["a", "b"]))
247
+ result = ser.where([True, False])
248
+ expected = Series(Categorical(["a", None], categories=["a", "b"]))
249
+ tm.assert_series_equal(result, expected)
250
+
251
+ # all NA
252
+ ser = Series(Categorical(["a", "b"]))
253
+ result = ser.where([False, False])
254
+ expected = Series(Categorical([None, None], categories=["a", "b"]))
255
+ tm.assert_series_equal(result, expected)
256
+
257
+ def test_where_unobserved_categories(self):
258
+ ser = Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
259
+ result = ser.where([True, True, False], other="b")
260
+ expected = Series(Categorical(["a", "b", "b"], categories=ser.cat.categories))
261
+ tm.assert_series_equal(result, expected)
262
+
263
+ def test_where_other_categorical(self):
264
+ ser = Series(Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"]))
265
+ other = Categorical(["b", "c", "a"], categories=["a", "c", "b", "d"])
266
+ result = ser.where([True, False, True], other)
267
+ expected = Series(Categorical(["a", "c", "c"], dtype=ser.dtype))
268
+ tm.assert_series_equal(result, expected)
269
+
270
+ def test_where_new_category_raises(self):
271
+ ser = Series(Categorical(["a", "b", "c"]))
272
+ msg = "Cannot setitem on a Categorical with a new category"
273
+ with pytest.raises(TypeError, match=msg):
274
+ ser.where([True, False, True], "d")
275
+
276
+ def test_where_ordered_differs_rasies(self):
277
+ ser = Series(
278
+ Categorical(["a", "b", "c"], categories=["d", "c", "b", "a"], ordered=True)
279
+ )
280
+ other = Categorical(
281
+ ["b", "c", "a"], categories=["a", "c", "b", "d"], ordered=True
282
+ )
283
+ with pytest.raises(TypeError, match="without identical categories"):
284
+ ser.where([True, False, True], other)
285
+
286
+
287
+ class TestContains:
288
+ def test_contains(self):
289
+ # GH#21508
290
+ cat = Categorical(list("aabbca"), categories=list("cab"))
291
+
292
+ assert "b" in cat
293
+ assert "z" not in cat
294
+ assert np.nan not in cat
295
+ with pytest.raises(TypeError, match="unhashable type: 'list'"):
296
+ assert [1] in cat
297
+
298
+ # assert codes NOT in index
299
+ assert 0 not in cat
300
+ assert 1 not in cat
301
+
302
+ cat = Categorical(list("aabbca") + [np.nan], categories=list("cab"))
303
+ assert np.nan in cat
304
+
305
+ @pytest.mark.parametrize(
306
+ "item, expected",
307
+ [
308
+ (Interval(0, 1), True),
309
+ (1.5, True),
310
+ (Interval(0.5, 1.5), False),
311
+ ("a", False),
312
+ (Timestamp(1), False),
313
+ (Timedelta(1), False),
314
+ ],
315
+ ids=str,
316
+ )
317
+ def test_contains_interval(self, item, expected):
318
+ # GH#23705
319
+ cat = Categorical(IntervalIndex.from_breaks(range(3)))
320
+ result = item in cat
321
+ assert result is expected
322
+
323
+ def test_contains_list(self):
324
+ # GH#21729
325
+ cat = Categorical([1, 2, 3])
326
+
327
+ assert "a" not in cat
328
+
329
+ with pytest.raises(TypeError, match="unhashable type"):
330
+ ["a"] in cat
331
+
332
+ with pytest.raises(TypeError, match="unhashable type"):
333
+ ["a", "b"] in cat
334
+
335
+
336
+ @pytest.mark.parametrize("index", [True, False])
337
+ def test_mask_with_boolean(index):
338
+ ser = Series(range(3))
339
+ idx = Categorical([True, False, True])
340
+ if index:
341
+ idx = CategoricalIndex(idx)
342
+
343
+ assert com.is_bool_indexer(idx)
344
+ result = ser[idx]
345
+ expected = ser[idx.astype("object")]
346
+ tm.assert_series_equal(result, expected)
347
+
348
+
349
+ @pytest.mark.parametrize("index", [True, False])
350
+ def test_mask_with_boolean_na_treated_as_false(index):
351
+ # https://github.com/pandas-dev/pandas/issues/31503
352
+ ser = Series(range(3))
353
+ idx = Categorical([True, False, None])
354
+ if index:
355
+ idx = CategoricalIndex(idx)
356
+
357
+ result = ser[idx]
358
+ expected = ser[idx.fillna(False)]
359
+
360
+ tm.assert_series_equal(result, expected)
361
+
362
+
363
+ @pytest.fixture
364
+ def non_coercible_categorical(monkeypatch):
365
+ """
366
+ Monkeypatch Categorical.__array__ to ensure no implicit conversion.
367
+
368
+ Raises
369
+ ------
370
+ ValueError
371
+ When Categorical.__array__ is called.
372
+ """
373
+
374
+ # TODO(Categorical): identify other places where this may be
375
+ # useful and move to a conftest.py
376
+ def array(self, dtype=None):
377
+ raise ValueError("I cannot be converted.")
378
+
379
+ with monkeypatch.context() as m:
380
+ m.setattr(Categorical, "__array__", array)
381
+ yield
382
+
383
+
384
+ def test_series_at():
385
+ arr = Categorical(["a", "b", "c"])
386
+ ser = Series(arr)
387
+ result = ser.at[0]
388
+ assert result == "a"
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_map.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Categorical,
7
+ Index,
8
+ Series,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ @pytest.fixture(params=[None, "ignore"])
14
+ def na_action(request):
15
+ return request.param
16
+
17
+
18
+ @pytest.mark.parametrize(
19
+ "data, categories",
20
+ [
21
+ (list("abcbca"), list("cab")),
22
+ (pd.interval_range(0, 3).repeat(3), pd.interval_range(0, 3)),
23
+ ],
24
+ ids=["string", "interval"],
25
+ )
26
+ def test_map_str(data, categories, ordered, na_action):
27
+ # GH 31202 - override base class since we want to maintain categorical/ordered
28
+ cat = Categorical(data, categories=categories, ordered=ordered)
29
+ result = cat.map(str, na_action=na_action)
30
+ expected = Categorical(
31
+ map(str, data), categories=map(str, categories), ordered=ordered
32
+ )
33
+ tm.assert_categorical_equal(result, expected)
34
+
35
+
36
+ def test_map(na_action):
37
+ cat = Categorical(list("ABABC"), categories=list("CBA"), ordered=True)
38
+ result = cat.map(lambda x: x.lower(), na_action=na_action)
39
+ exp = Categorical(list("ababc"), categories=list("cba"), ordered=True)
40
+ tm.assert_categorical_equal(result, exp)
41
+
42
+ cat = Categorical(list("ABABC"), categories=list("BAC"), ordered=False)
43
+ result = cat.map(lambda x: x.lower(), na_action=na_action)
44
+ exp = Categorical(list("ababc"), categories=list("bac"), ordered=False)
45
+ tm.assert_categorical_equal(result, exp)
46
+
47
+ # GH 12766: Return an index not an array
48
+ result = cat.map(lambda x: 1, na_action=na_action)
49
+ exp = Index(np.array([1] * 5, dtype=np.int64))
50
+ tm.assert_index_equal(result, exp)
51
+
52
+ # change categories dtype
53
+ cat = Categorical(list("ABABC"), categories=list("BAC"), ordered=False)
54
+
55
+ def f(x):
56
+ return {"A": 10, "B": 20, "C": 30}.get(x)
57
+
58
+ result = cat.map(f, na_action=na_action)
59
+ exp = Categorical([10, 20, 10, 20, 30], categories=[20, 10, 30], ordered=False)
60
+ tm.assert_categorical_equal(result, exp)
61
+
62
+ mapper = Series([10, 20, 30], index=["A", "B", "C"])
63
+ result = cat.map(mapper, na_action=na_action)
64
+ tm.assert_categorical_equal(result, exp)
65
+
66
+ result = cat.map({"A": 10, "B": 20, "C": 30}, na_action=na_action)
67
+ tm.assert_categorical_equal(result, exp)
68
+
69
+
70
+ @pytest.mark.parametrize(
71
+ ("data", "f", "expected"),
72
+ (
73
+ ([1, 1, np.nan], pd.isna, Index([False, False, True])),
74
+ ([1, 2, np.nan], pd.isna, Index([False, False, True])),
75
+ ([1, 1, np.nan], {1: False}, Categorical([False, False, np.nan])),
76
+ ([1, 2, np.nan], {1: False, 2: False}, Index([False, False, np.nan])),
77
+ (
78
+ [1, 1, np.nan],
79
+ Series([False, False]),
80
+ Categorical([False, False, np.nan]),
81
+ ),
82
+ (
83
+ [1, 2, np.nan],
84
+ Series([False] * 3),
85
+ Index([False, False, np.nan]),
86
+ ),
87
+ ),
88
+ )
89
+ def test_map_with_nan_none(data, f, expected): # GH 24241
90
+ values = Categorical(data)
91
+ result = values.map(f, na_action=None)
92
+ if isinstance(expected, Categorical):
93
+ tm.assert_categorical_equal(result, expected)
94
+ else:
95
+ tm.assert_index_equal(result, expected)
96
+
97
+
98
+ @pytest.mark.parametrize(
99
+ ("data", "f", "expected"),
100
+ (
101
+ ([1, 1, np.nan], pd.isna, Categorical([False, False, np.nan])),
102
+ ([1, 2, np.nan], pd.isna, Index([False, False, np.nan])),
103
+ ([1, 1, np.nan], {1: False}, Categorical([False, False, np.nan])),
104
+ ([1, 2, np.nan], {1: False, 2: False}, Index([False, False, np.nan])),
105
+ (
106
+ [1, 1, np.nan],
107
+ Series([False, False]),
108
+ Categorical([False, False, np.nan]),
109
+ ),
110
+ (
111
+ [1, 2, np.nan],
112
+ Series([False, False, False]),
113
+ Index([False, False, np.nan]),
114
+ ),
115
+ ),
116
+ )
117
+ def test_map_with_nan_ignore(data, f, expected): # GH 24241
118
+ values = Categorical(data)
119
+ result = values.map(f, na_action="ignore")
120
+ if data[1] == 1:
121
+ tm.assert_categorical_equal(result, expected)
122
+ else:
123
+ tm.assert_index_equal(result, expected)
124
+
125
+
126
+ def test_map_with_dict_or_series(na_action):
127
+ orig_values = ["a", "B", 1, "a"]
128
+ new_values = ["one", 2, 3.0, "one"]
129
+ cat = Categorical(orig_values)
130
+
131
+ mapper = Series(new_values[:-1], index=orig_values[:-1])
132
+ result = cat.map(mapper, na_action=na_action)
133
+
134
+ # Order of categories in result can be different
135
+ expected = Categorical(new_values, categories=[3.0, 2, "one"])
136
+ tm.assert_categorical_equal(result, expected)
137
+
138
+ mapper = dict(zip(orig_values[:-1], new_values[:-1]))
139
+ result = cat.map(mapper, na_action=na_action)
140
+ # Order of categories in result can be different
141
+ tm.assert_categorical_equal(result, expected)
142
+
143
+
144
+ def test_map_na_action_no_default_deprecated():
145
+ # GH51645
146
+ cat = Categorical(["a", "b", "c"])
147
+ msg = (
148
+ "The default value of 'ignore' for the `na_action` parameter in "
149
+ "pandas.Categorical.map is deprecated and will be "
150
+ "changed to 'None' in a future version. Please set na_action to the "
151
+ "desired value to avoid seeing this warning"
152
+ )
153
+ with tm.assert_produces_warning(FutureWarning, match=msg):
154
+ cat.map(lambda x: x)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_missing.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas.core.dtypes.dtypes import CategoricalDtype
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ Categorical,
11
+ DataFrame,
12
+ Index,
13
+ Series,
14
+ isna,
15
+ )
16
+ import pandas._testing as tm
17
+
18
+
19
+ class TestCategoricalMissing:
20
+ def test_isna(self):
21
+ exp = np.array([False, False, True])
22
+ cat = Categorical(["a", "b", np.nan])
23
+ res = cat.isna()
24
+
25
+ tm.assert_numpy_array_equal(res, exp)
26
+
27
+ def test_na_flags_int_categories(self):
28
+ # #1457
29
+
30
+ categories = list(range(10))
31
+ labels = np.random.default_rng(2).integers(0, 10, 20)
32
+ labels[::5] = -1
33
+
34
+ cat = Categorical(labels, categories)
35
+ repr(cat)
36
+
37
+ tm.assert_numpy_array_equal(isna(cat), labels == -1)
38
+
39
+ def test_nan_handling(self):
40
+ # Nans are represented as -1 in codes
41
+ c = Categorical(["a", "b", np.nan, "a"])
42
+ tm.assert_index_equal(c.categories, Index(["a", "b"]))
43
+ tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
44
+ c[1] = np.nan
45
+ tm.assert_index_equal(c.categories, Index(["a", "b"]))
46
+ tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0], dtype=np.int8))
47
+
48
+ # Adding nan to categories should make assigned nan point to the
49
+ # category!
50
+ c = Categorical(["a", "b", np.nan, "a"])
51
+ tm.assert_index_equal(c.categories, Index(["a", "b"]))
52
+ tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8))
53
+
54
+ def test_set_dtype_nans(self):
55
+ c = Categorical(["a", "b", np.nan])
56
+ result = c._set_dtype(CategoricalDtype(["a", "c"]))
57
+ tm.assert_numpy_array_equal(result.codes, np.array([0, -1, -1], dtype="int8"))
58
+
59
+ def test_set_item_nan(self):
60
+ cat = Categorical([1, 2, 3])
61
+ cat[1] = np.nan
62
+
63
+ exp = Categorical([1, np.nan, 3], categories=[1, 2, 3])
64
+ tm.assert_categorical_equal(cat, exp)
65
+
66
+ @pytest.mark.parametrize(
67
+ "fillna_kwargs, msg",
68
+ [
69
+ (
70
+ {"value": 1, "method": "ffill"},
71
+ "Cannot specify both 'value' and 'method'.",
72
+ ),
73
+ ({}, "Must specify a fill 'value' or 'method'."),
74
+ ({"method": "bad"}, "Invalid fill method. Expecting .* bad"),
75
+ (
76
+ {"value": Series([1, 2, 3, 4, "a"])},
77
+ "Cannot setitem on a Categorical with a new category",
78
+ ),
79
+ ],
80
+ )
81
+ def test_fillna_raises(self, fillna_kwargs, msg):
82
+ # https://github.com/pandas-dev/pandas/issues/19682
83
+ # https://github.com/pandas-dev/pandas/issues/13628
84
+ cat = Categorical([1, 2, 3, None, None])
85
+
86
+ if len(fillna_kwargs) == 1 and "value" in fillna_kwargs:
87
+ err = TypeError
88
+ else:
89
+ err = ValueError
90
+
91
+ with pytest.raises(err, match=msg):
92
+ cat.fillna(**fillna_kwargs)
93
+
94
+ @pytest.mark.parametrize("named", [True, False])
95
+ def test_fillna_iterable_category(self, named):
96
+ # https://github.com/pandas-dev/pandas/issues/21097
97
+ if named:
98
+ Point = collections.namedtuple("Point", "x y")
99
+ else:
100
+ Point = lambda *args: args # tuple
101
+ cat = Categorical(np.array([Point(0, 0), Point(0, 1), None], dtype=object))
102
+ result = cat.fillna(Point(0, 0))
103
+ expected = Categorical([Point(0, 0), Point(0, 1), Point(0, 0)])
104
+
105
+ tm.assert_categorical_equal(result, expected)
106
+
107
+ # Case where the Point is not among our categories; we want ValueError,
108
+ # not NotImplementedError GH#41914
109
+ cat = Categorical(np.array([Point(1, 0), Point(0, 1), None], dtype=object))
110
+ msg = "Cannot setitem on a Categorical with a new category"
111
+ with pytest.raises(TypeError, match=msg):
112
+ cat.fillna(Point(0, 0))
113
+
114
+ def test_fillna_array(self):
115
+ # accept Categorical or ndarray value if it holds appropriate values
116
+ cat = Categorical(["A", "B", "C", None, None])
117
+
118
+ other = cat.fillna("C")
119
+ result = cat.fillna(other)
120
+ tm.assert_categorical_equal(result, other)
121
+ assert isna(cat[-1]) # didn't modify original inplace
122
+
123
+ other = np.array(["A", "B", "C", "B", "A"])
124
+ result = cat.fillna(other)
125
+ expected = Categorical(["A", "B", "C", "B", "A"], dtype=cat.dtype)
126
+ tm.assert_categorical_equal(result, expected)
127
+ assert isna(cat[-1]) # didn't modify original inplace
128
+
129
+ @pytest.mark.parametrize(
130
+ "values, expected",
131
+ [
132
+ ([1, 2, 3], np.array([False, False, False])),
133
+ ([1, 2, np.nan], np.array([False, False, True])),
134
+ ([1, 2, np.inf], np.array([False, False, True])),
135
+ ([1, 2, pd.NA], np.array([False, False, True])),
136
+ ],
137
+ )
138
+ def test_use_inf_as_na(self, values, expected):
139
+ # https://github.com/pandas-dev/pandas/issues/33594
140
+ msg = "use_inf_as_na option is deprecated"
141
+ with tm.assert_produces_warning(FutureWarning, match=msg):
142
+ with pd.option_context("mode.use_inf_as_na", True):
143
+ cat = Categorical(values)
144
+ result = cat.isna()
145
+ tm.assert_numpy_array_equal(result, expected)
146
+
147
+ result = Series(cat).isna()
148
+ expected = Series(expected)
149
+ tm.assert_series_equal(result, expected)
150
+
151
+ result = DataFrame(cat).isna()
152
+ expected = DataFrame(expected)
153
+ tm.assert_frame_equal(result, expected)
154
+
155
+ @pytest.mark.parametrize(
156
+ "values, expected",
157
+ [
158
+ ([1, 2, 3], np.array([False, False, False])),
159
+ ([1, 2, np.nan], np.array([False, False, True])),
160
+ ([1, 2, np.inf], np.array([False, False, True])),
161
+ ([1, 2, pd.NA], np.array([False, False, True])),
162
+ ],
163
+ )
164
+ def test_use_inf_as_na_outside_context(self, values, expected):
165
+ # https://github.com/pandas-dev/pandas/issues/33594
166
+ # Using isna directly for Categorical will fail in general here
167
+ cat = Categorical(values)
168
+
169
+ msg = "use_inf_as_na option is deprecated"
170
+ with tm.assert_produces_warning(FutureWarning, match=msg):
171
+ with pd.option_context("mode.use_inf_as_na", True):
172
+ result = isna(cat)
173
+ tm.assert_numpy_array_equal(result, expected)
174
+
175
+ result = isna(Series(cat))
176
+ expected = Series(expected)
177
+ tm.assert_series_equal(result, expected)
178
+
179
+ result = isna(DataFrame(cat))
180
+ expected = DataFrame(expected)
181
+ tm.assert_frame_equal(result, expected)
182
+
183
+ @pytest.mark.parametrize(
184
+ "a1, a2, categories",
185
+ [
186
+ (["a", "b", "c"], [np.nan, "a", "b"], ["a", "b", "c"]),
187
+ ([1, 2, 3], [np.nan, 1, 2], [1, 2, 3]),
188
+ ],
189
+ )
190
+ def test_compare_categorical_with_missing(self, a1, a2, categories):
191
+ # GH 28384
192
+ cat_type = CategoricalDtype(categories)
193
+
194
+ # !=
195
+ result = Series(a1, dtype=cat_type) != Series(a2, dtype=cat_type)
196
+ expected = Series(a1) != Series(a2)
197
+ tm.assert_series_equal(result, expected)
198
+
199
+ # ==
200
+ result = Series(a1, dtype=cat_type) == Series(a2, dtype=cat_type)
201
+ expected = Series(a1) == Series(a2)
202
+ tm.assert_series_equal(result, expected)
203
+
204
+ @pytest.mark.parametrize(
205
+ "na_value, dtype",
206
+ [
207
+ (pd.NaT, "datetime64[ns]"),
208
+ (None, "float64"),
209
+ (np.nan, "float64"),
210
+ (pd.NA, "float64"),
211
+ ],
212
+ )
213
+ def test_categorical_only_missing_values_no_cast(self, na_value, dtype):
214
+ # GH#44900
215
+ result = Categorical([na_value, na_value])
216
+ tm.assert_index_equal(result.categories, Index([], dtype=dtype))
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_operators.py ADDED
@@ -0,0 +1,414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Categorical,
7
+ DataFrame,
8
+ Series,
9
+ Timestamp,
10
+ date_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ class TestCategoricalOpsWithFactor:
16
+ def test_categories_none_comparisons(self):
17
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
18
+ tm.assert_categorical_equal(factor, factor)
19
+
20
+ def test_comparisons(self):
21
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
22
+ result = factor[factor == "a"]
23
+ expected = factor[np.asarray(factor) == "a"]
24
+ tm.assert_categorical_equal(result, expected)
25
+
26
+ result = factor[factor != "a"]
27
+ expected = factor[np.asarray(factor) != "a"]
28
+ tm.assert_categorical_equal(result, expected)
29
+
30
+ result = factor[factor < "c"]
31
+ expected = factor[np.asarray(factor) < "c"]
32
+ tm.assert_categorical_equal(result, expected)
33
+
34
+ result = factor[factor > "a"]
35
+ expected = factor[np.asarray(factor) > "a"]
36
+ tm.assert_categorical_equal(result, expected)
37
+
38
+ result = factor[factor >= "b"]
39
+ expected = factor[np.asarray(factor) >= "b"]
40
+ tm.assert_categorical_equal(result, expected)
41
+
42
+ result = factor[factor <= "b"]
43
+ expected = factor[np.asarray(factor) <= "b"]
44
+ tm.assert_categorical_equal(result, expected)
45
+
46
+ n = len(factor)
47
+
48
+ other = factor[np.random.default_rng(2).permutation(n)]
49
+ result = factor == other
50
+ expected = np.asarray(factor) == np.asarray(other)
51
+ tm.assert_numpy_array_equal(result, expected)
52
+
53
+ result = factor == "d"
54
+ expected = np.zeros(len(factor), dtype=bool)
55
+ tm.assert_numpy_array_equal(result, expected)
56
+
57
+ # comparisons with categoricals
58
+ cat_rev = Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True)
59
+ cat_rev_base = Categorical(
60
+ ["b", "b", "b"], categories=["c", "b", "a"], ordered=True
61
+ )
62
+ cat = Categorical(["a", "b", "c"], ordered=True)
63
+ cat_base = Categorical(["b", "b", "b"], categories=cat.categories, ordered=True)
64
+
65
+ # comparisons need to take categories ordering into account
66
+ res_rev = cat_rev > cat_rev_base
67
+ exp_rev = np.array([True, False, False])
68
+ tm.assert_numpy_array_equal(res_rev, exp_rev)
69
+
70
+ res_rev = cat_rev < cat_rev_base
71
+ exp_rev = np.array([False, False, True])
72
+ tm.assert_numpy_array_equal(res_rev, exp_rev)
73
+
74
+ res = cat > cat_base
75
+ exp = np.array([False, False, True])
76
+ tm.assert_numpy_array_equal(res, exp)
77
+
78
+ # Only categories with same categories can be compared
79
+ msg = "Categoricals can only be compared if 'categories' are the same"
80
+ with pytest.raises(TypeError, match=msg):
81
+ cat > cat_rev
82
+
83
+ cat_rev_base2 = Categorical(["b", "b", "b"], categories=["c", "b", "a", "d"])
84
+
85
+ with pytest.raises(TypeError, match=msg):
86
+ cat_rev > cat_rev_base2
87
+
88
+ # Only categories with same ordering information can be compared
89
+ cat_unordered = cat.set_ordered(False)
90
+ assert not (cat > cat).any()
91
+
92
+ with pytest.raises(TypeError, match=msg):
93
+ cat > cat_unordered
94
+
95
+ # comparison (in both directions) with Series will raise
96
+ s = Series(["b", "b", "b"], dtype=object)
97
+ msg = (
98
+ "Cannot compare a Categorical for op __gt__ with type "
99
+ r"<class 'numpy\.ndarray'>"
100
+ )
101
+ with pytest.raises(TypeError, match=msg):
102
+ cat > s
103
+ with pytest.raises(TypeError, match=msg):
104
+ cat_rev > s
105
+ with pytest.raises(TypeError, match=msg):
106
+ s < cat
107
+ with pytest.raises(TypeError, match=msg):
108
+ s < cat_rev
109
+
110
+ # comparison with numpy.array will raise in both direction, but only on
111
+ # newer numpy versions
112
+ a = np.array(["b", "b", "b"], dtype=object)
113
+ with pytest.raises(TypeError, match=msg):
114
+ cat > a
115
+ with pytest.raises(TypeError, match=msg):
116
+ cat_rev > a
117
+
118
+ # Make sure that unequal comparison take the categories order in
119
+ # account
120
+ cat_rev = Categorical(list("abc"), categories=list("cba"), ordered=True)
121
+ exp = np.array([True, False, False])
122
+ res = cat_rev > "b"
123
+ tm.assert_numpy_array_equal(res, exp)
124
+
125
+ # check that zero-dim array gets unboxed
126
+ res = cat_rev > np.array("b")
127
+ tm.assert_numpy_array_equal(res, exp)
128
+
129
+
130
+ class TestCategoricalOps:
131
+ @pytest.mark.parametrize(
132
+ "categories",
133
+ [["a", "b"], [0, 1], [Timestamp("2019"), Timestamp("2020")]],
134
+ )
135
+ def test_not_equal_with_na(self, categories):
136
+ # https://github.com/pandas-dev/pandas/issues/32276
137
+ c1 = Categorical.from_codes([-1, 0], categories=categories)
138
+ c2 = Categorical.from_codes([0, 1], categories=categories)
139
+
140
+ result = c1 != c2
141
+
142
+ assert result.all()
143
+
144
+ def test_compare_frame(self):
145
+ # GH#24282 check that Categorical.__cmp__(DataFrame) defers to frame
146
+ data = ["a", "b", 2, "a"]
147
+ cat = Categorical(data)
148
+
149
+ df = DataFrame(cat)
150
+
151
+ result = cat == df.T
152
+ expected = DataFrame([[True, True, True, True]])
153
+ tm.assert_frame_equal(result, expected)
154
+
155
+ result = cat[::-1] != df.T
156
+ expected = DataFrame([[False, True, True, False]])
157
+ tm.assert_frame_equal(result, expected)
158
+
159
+ def test_compare_frame_raises(self, comparison_op):
160
+ # alignment raises unless we transpose
161
+ op = comparison_op
162
+ cat = Categorical(["a", "b", 2, "a"])
163
+ df = DataFrame(cat)
164
+ msg = "Unable to coerce to Series, length must be 1: given 4"
165
+ with pytest.raises(ValueError, match=msg):
166
+ op(cat, df)
167
+
168
+ def test_datetime_categorical_comparison(self):
169
+ dt_cat = Categorical(date_range("2014-01-01", periods=3), ordered=True)
170
+ tm.assert_numpy_array_equal(dt_cat > dt_cat[0], np.array([False, True, True]))
171
+ tm.assert_numpy_array_equal(dt_cat[0] < dt_cat, np.array([False, True, True]))
172
+
173
+ def test_reflected_comparison_with_scalars(self):
174
+ # GH8658
175
+ cat = Categorical([1, 2, 3], ordered=True)
176
+ tm.assert_numpy_array_equal(cat > cat[0], np.array([False, True, True]))
177
+ tm.assert_numpy_array_equal(cat[0] < cat, np.array([False, True, True]))
178
+
179
+ def test_comparison_with_unknown_scalars(self):
180
+ # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057
181
+ # and following comparisons with scalars not in categories should raise
182
+ # for unequal comps, but not for equal/not equal
183
+ cat = Categorical([1, 2, 3], ordered=True)
184
+
185
+ msg = "Invalid comparison between dtype=category and int"
186
+ with pytest.raises(TypeError, match=msg):
187
+ cat < 4
188
+ with pytest.raises(TypeError, match=msg):
189
+ cat > 4
190
+ with pytest.raises(TypeError, match=msg):
191
+ 4 < cat
192
+ with pytest.raises(TypeError, match=msg):
193
+ 4 > cat
194
+
195
+ tm.assert_numpy_array_equal(cat == 4, np.array([False, False, False]))
196
+ tm.assert_numpy_array_equal(cat != 4, np.array([True, True, True]))
197
+
198
+ def test_comparison_with_tuple(self):
199
+ cat = Categorical(np.array(["foo", (0, 1), 3, (0, 1)], dtype=object))
200
+
201
+ result = cat == "foo"
202
+ expected = np.array([True, False, False, False], dtype=bool)
203
+ tm.assert_numpy_array_equal(result, expected)
204
+
205
+ result = cat == (0, 1)
206
+ expected = np.array([False, True, False, True], dtype=bool)
207
+ tm.assert_numpy_array_equal(result, expected)
208
+
209
+ result = cat != (0, 1)
210
+ tm.assert_numpy_array_equal(result, ~expected)
211
+
212
+ @pytest.mark.filterwarnings("ignore::RuntimeWarning")
213
+ def test_comparison_of_ordered_categorical_with_nan_to_scalar(
214
+ self, compare_operators_no_eq_ne
215
+ ):
216
+ # https://github.com/pandas-dev/pandas/issues/26504
217
+ # BUG: fix ordered categorical comparison with missing values (#26504 )
218
+ # and following comparisons with scalars in categories with missing
219
+ # values should be evaluated as False
220
+
221
+ cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True)
222
+ scalar = 2
223
+ expected = getattr(np.array(cat), compare_operators_no_eq_ne)(scalar)
224
+ actual = getattr(cat, compare_operators_no_eq_ne)(scalar)
225
+ tm.assert_numpy_array_equal(actual, expected)
226
+
227
+ @pytest.mark.filterwarnings("ignore::RuntimeWarning")
228
+ def test_comparison_of_ordered_categorical_with_nan_to_listlike(
229
+ self, compare_operators_no_eq_ne
230
+ ):
231
+ # https://github.com/pandas-dev/pandas/issues/26504
232
+ # and following comparisons of missing values in ordered Categorical
233
+ # with listlike should be evaluated as False
234
+
235
+ cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True)
236
+ other = Categorical([2, 2, 2, 2], categories=[1, 2, 3], ordered=True)
237
+ expected = getattr(np.array(cat), compare_operators_no_eq_ne)(2)
238
+ actual = getattr(cat, compare_operators_no_eq_ne)(other)
239
+ tm.assert_numpy_array_equal(actual, expected)
240
+
241
+ @pytest.mark.parametrize(
242
+ "data,reverse,base",
243
+ [(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])],
244
+ )
245
+ def test_comparisons(self, data, reverse, base):
246
+ cat_rev = Series(Categorical(data, categories=reverse, ordered=True))
247
+ cat_rev_base = Series(Categorical(base, categories=reverse, ordered=True))
248
+ cat = Series(Categorical(data, ordered=True))
249
+ cat_base = Series(
250
+ Categorical(base, categories=cat.cat.categories, ordered=True)
251
+ )
252
+ s = Series(base, dtype=object if base == list("bbb") else None)
253
+ a = np.array(base)
254
+
255
+ # comparisons need to take categories ordering into account
256
+ res_rev = cat_rev > cat_rev_base
257
+ exp_rev = Series([True, False, False])
258
+ tm.assert_series_equal(res_rev, exp_rev)
259
+
260
+ res_rev = cat_rev < cat_rev_base
261
+ exp_rev = Series([False, False, True])
262
+ tm.assert_series_equal(res_rev, exp_rev)
263
+
264
+ res = cat > cat_base
265
+ exp = Series([False, False, True])
266
+ tm.assert_series_equal(res, exp)
267
+
268
+ scalar = base[1]
269
+ res = cat > scalar
270
+ exp = Series([False, False, True])
271
+ exp2 = cat.values > scalar
272
+ tm.assert_series_equal(res, exp)
273
+ tm.assert_numpy_array_equal(res.values, exp2)
274
+ res_rev = cat_rev > scalar
275
+ exp_rev = Series([True, False, False])
276
+ exp_rev2 = cat_rev.values > scalar
277
+ tm.assert_series_equal(res_rev, exp_rev)
278
+ tm.assert_numpy_array_equal(res_rev.values, exp_rev2)
279
+
280
+ # Only categories with same categories can be compared
281
+ msg = "Categoricals can only be compared if 'categories' are the same"
282
+ with pytest.raises(TypeError, match=msg):
283
+ cat > cat_rev
284
+
285
+ # categorical cannot be compared to Series or numpy array, and also
286
+ # not the other way around
287
+ msg = (
288
+ "Cannot compare a Categorical for op __gt__ with type "
289
+ r"<class 'numpy\.ndarray'>"
290
+ )
291
+ with pytest.raises(TypeError, match=msg):
292
+ cat > s
293
+ with pytest.raises(TypeError, match=msg):
294
+ cat_rev > s
295
+ with pytest.raises(TypeError, match=msg):
296
+ cat > a
297
+ with pytest.raises(TypeError, match=msg):
298
+ cat_rev > a
299
+
300
+ with pytest.raises(TypeError, match=msg):
301
+ s < cat
302
+ with pytest.raises(TypeError, match=msg):
303
+ s < cat_rev
304
+
305
+ with pytest.raises(TypeError, match=msg):
306
+ a < cat
307
+ with pytest.raises(TypeError, match=msg):
308
+ a < cat_rev
309
+
310
+ @pytest.mark.parametrize(
311
+ "ctor",
312
+ [
313
+ lambda *args, **kwargs: Categorical(*args, **kwargs),
314
+ lambda *args, **kwargs: Series(Categorical(*args, **kwargs)),
315
+ ],
316
+ )
317
+ def test_unordered_different_order_equal(self, ctor):
318
+ # https://github.com/pandas-dev/pandas/issues/16014
319
+ c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False)
320
+ c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False)
321
+ assert (c1 == c2).all()
322
+
323
+ c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False)
324
+ c2 = ctor(["b", "a"], categories=["b", "a"], ordered=False)
325
+ assert (c1 != c2).all()
326
+
327
+ c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False)
328
+ c2 = ctor(["b", "b"], categories=["b", "a"], ordered=False)
329
+ assert (c1 != c2).all()
330
+
331
+ c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False)
332
+ c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False)
333
+ result = c1 == c2
334
+ tm.assert_numpy_array_equal(np.array(result), np.array([True, False]))
335
+
336
+ def test_unordered_different_categories_raises(self):
337
+ c1 = Categorical(["a", "b"], categories=["a", "b"], ordered=False)
338
+ c2 = Categorical(["a", "c"], categories=["c", "a"], ordered=False)
339
+
340
+ with pytest.raises(TypeError, match=("Categoricals can only be compared")):
341
+ c1 == c2
342
+
343
+ def test_compare_different_lengths(self):
344
+ c1 = Categorical([], categories=["a", "b"])
345
+ c2 = Categorical([], categories=["a"])
346
+
347
+ msg = "Categoricals can only be compared if 'categories' are the same."
348
+ with pytest.raises(TypeError, match=msg):
349
+ c1 == c2
350
+
351
+ def test_compare_unordered_different_order(self):
352
+ # https://github.com/pandas-dev/pandas/issues/16603#issuecomment-
353
+ # 349290078
354
+ a = Categorical(["a"], categories=["a", "b"])
355
+ b = Categorical(["b"], categories=["b", "a"])
356
+ assert not a.equals(b)
357
+
358
+ def test_numeric_like_ops(self):
359
+ df = DataFrame({"value": np.random.default_rng(2).integers(0, 10000, 100)})
360
+ labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)]
361
+ cat_labels = Categorical(labels, labels)
362
+
363
+ df = df.sort_values(by=["value"], ascending=True)
364
+ df["value_group"] = pd.cut(
365
+ df.value, range(0, 10500, 500), right=False, labels=cat_labels
366
+ )
367
+
368
+ # numeric ops should not succeed
369
+ for op, str_rep in [
370
+ ("__add__", r"\+"),
371
+ ("__sub__", "-"),
372
+ ("__mul__", r"\*"),
373
+ ("__truediv__", "/"),
374
+ ]:
375
+ msg = f"Series cannot perform the operation {str_rep}|unsupported operand"
376
+ with pytest.raises(TypeError, match=msg):
377
+ getattr(df, op)(df)
378
+
379
+ # reduction ops should not succeed (unless specifically defined, e.g.
380
+ # min/max)
381
+ s = df["value_group"]
382
+ for op in ["kurt", "skew", "var", "std", "mean", "sum", "median"]:
383
+ msg = f"does not support reduction '{op}'"
384
+ with pytest.raises(TypeError, match=msg):
385
+ getattr(s, op)(numeric_only=False)
386
+
387
+ def test_numeric_like_ops_series(self):
388
+ # numpy ops
389
+ s = Series(Categorical([1, 2, 3, 4]))
390
+ with pytest.raises(TypeError, match="does not support reduction 'sum'"):
391
+ np.sum(s)
392
+
393
+ @pytest.mark.parametrize(
394
+ "op, str_rep",
395
+ [
396
+ ("__add__", r"\+"),
397
+ ("__sub__", "-"),
398
+ ("__mul__", r"\*"),
399
+ ("__truediv__", "/"),
400
+ ],
401
+ )
402
+ def test_numeric_like_ops_series_arith(self, op, str_rep):
403
+ # numeric ops on a Series
404
+ s = Series(Categorical([1, 2, 3, 4]))
405
+ msg = f"Series cannot perform the operation {str_rep}|unsupported operand"
406
+ with pytest.raises(TypeError, match=msg):
407
+ getattr(s, op)(2)
408
+
409
+ def test_numeric_like_ops_series_invalid(self):
410
+ # invalid ufunc
411
+ s = Series(Categorical([1, 2, 3, 4]))
412
+ msg = "Object with dtype category cannot perform the numpy op log"
413
+ with pytest.raises(TypeError, match=msg):
414
+ np.log(s)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_replace.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas import Categorical
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "to_replace,value,expected,flip_categories",
10
+ [
11
+ # one-to-one
12
+ (1, 2, [2, 2, 3], False),
13
+ (1, 4, [4, 2, 3], False),
14
+ (4, 1, [1, 2, 3], False),
15
+ (5, 6, [1, 2, 3], False),
16
+ # many-to-one
17
+ ([1], 2, [2, 2, 3], False),
18
+ ([1, 2], 3, [3, 3, 3], False),
19
+ ([1, 2], 4, [4, 4, 3], False),
20
+ ((1, 2, 4), 5, [5, 5, 3], False),
21
+ ((5, 6), 2, [1, 2, 3], False),
22
+ ([1], [2], [2, 2, 3], False),
23
+ ([1, 4], [5, 2], [5, 2, 3], False),
24
+ # GH49404: overlap between to_replace and value
25
+ ([1, 2, 3], [2, 3, 4], [2, 3, 4], False),
26
+ # GH50872, GH46884: replace with null
27
+ (1, None, [None, 2, 3], False),
28
+ (1, pd.NA, [None, 2, 3], False),
29
+ # check_categorical sorts categories, which crashes on mixed dtypes
30
+ (3, "4", [1, 2, "4"], False),
31
+ ([1, 2, "3"], "5", ["5", "5", 3], True),
32
+ ],
33
+ )
34
+ @pytest.mark.filterwarnings(
35
+ "ignore:.*with CategoricalDtype is deprecated:FutureWarning"
36
+ )
37
+ def test_replace_categorical_series(to_replace, value, expected, flip_categories):
38
+ # GH 31720
39
+
40
+ ser = pd.Series([1, 2, 3], dtype="category")
41
+ result = ser.replace(to_replace, value)
42
+ expected = pd.Series(expected, dtype="category")
43
+ ser.replace(to_replace, value, inplace=True)
44
+
45
+ if flip_categories:
46
+ expected = expected.cat.set_categories(expected.cat.categories[::-1])
47
+
48
+ tm.assert_series_equal(expected, result, check_category_order=False)
49
+ tm.assert_series_equal(expected, ser, check_category_order=False)
50
+
51
+
52
+ @pytest.mark.parametrize(
53
+ "to_replace, value, result, expected_error_msg",
54
+ [
55
+ ("b", "c", ["a", "c"], "Categorical.categories are different"),
56
+ ("c", "d", ["a", "b"], None),
57
+ # https://github.com/pandas-dev/pandas/issues/33288
58
+ ("a", "a", ["a", "b"], None),
59
+ ("b", None, ["a", None], "Categorical.categories length are different"),
60
+ ],
61
+ )
62
+ def test_replace_categorical(to_replace, value, result, expected_error_msg):
63
+ # GH#26988
64
+ cat = Categorical(["a", "b"])
65
+ expected = Categorical(result)
66
+ msg = (
67
+ r"The behavior of Series\.replace \(and DataFrame.replace\) "
68
+ "with CategoricalDtype"
69
+ )
70
+ warn = FutureWarning if expected_error_msg is not None else None
71
+ with tm.assert_produces_warning(warn, match=msg):
72
+ result = pd.Series(cat, copy=False).replace(to_replace, value)._values
73
+
74
+ tm.assert_categorical_equal(result, expected)
75
+ if to_replace == "b": # the "c" test is supposed to be unchanged
76
+ with pytest.raises(AssertionError, match=expected_error_msg):
77
+ # ensure non-inplace call does not affect original
78
+ tm.assert_categorical_equal(cat, expected)
79
+
80
+ ser = pd.Series(cat, copy=False)
81
+ with tm.assert_produces_warning(warn, match=msg):
82
+ ser.replace(to_replace, value, inplace=True)
83
+ tm.assert_categorical_equal(cat, expected)
84
+
85
+
86
+ def test_replace_categorical_ea_dtype():
87
+ # GH49404
88
+ cat = Categorical(pd.array(["a", "b"], dtype="string"))
89
+ msg = (
90
+ r"The behavior of Series\.replace \(and DataFrame.replace\) "
91
+ "with CategoricalDtype"
92
+ )
93
+ with tm.assert_produces_warning(FutureWarning, match=msg):
94
+ result = pd.Series(cat).replace(["a", "b"], ["c", pd.NA])._values
95
+ expected = Categorical(pd.array(["c", pd.NA], dtype="string"))
96
+ tm.assert_categorical_equal(result, expected)
97
+
98
+
99
+ def test_replace_maintain_ordering():
100
+ # GH51016
101
+ dtype = pd.CategoricalDtype([0, 1, 2], ordered=True)
102
+ ser = pd.Series([0, 1, 2], dtype=dtype)
103
+ msg = (
104
+ r"The behavior of Series\.replace \(and DataFrame.replace\) "
105
+ "with CategoricalDtype"
106
+ )
107
+ with tm.assert_produces_warning(FutureWarning, match=msg):
108
+ result = ser.replace(0, 2)
109
+ expected_dtype = pd.CategoricalDtype([1, 2], ordered=True)
110
+ expected = pd.Series([2, 1, 2], dtype=expected_dtype)
111
+ tm.assert_series_equal(expected, result, check_category_order=True)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_repr.py ADDED
@@ -0,0 +1,550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._config import using_pyarrow_string_dtype
5
+
6
+ from pandas import (
7
+ Categorical,
8
+ CategoricalDtype,
9
+ CategoricalIndex,
10
+ Index,
11
+ Series,
12
+ date_range,
13
+ option_context,
14
+ period_range,
15
+ timedelta_range,
16
+ )
17
+
18
+
19
+ class TestCategoricalReprWithFactor:
20
+ def test_print(self, using_infer_string):
21
+ factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True)
22
+ if using_infer_string:
23
+ expected = [
24
+ "['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
25
+ "Categories (3, string): [a < b < c]",
26
+ ]
27
+ else:
28
+ expected = [
29
+ "['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']",
30
+ "Categories (3, object): ['a' < 'b' < 'c']",
31
+ ]
32
+ expected = "\n".join(expected)
33
+ actual = repr(factor)
34
+ assert actual == expected
35
+
36
+
37
+ class TestCategoricalRepr:
38
+ def test_big_print(self):
39
+ codes = np.array([0, 1, 2, 0, 1, 2] * 100)
40
+ dtype = CategoricalDtype(categories=Index(["a", "b", "c"], dtype=object))
41
+ factor = Categorical.from_codes(codes, dtype=dtype)
42
+ expected = [
43
+ "['a', 'b', 'c', 'a', 'b', ..., 'b', 'c', 'a', 'b', 'c']",
44
+ "Length: 600",
45
+ "Categories (3, object): ['a', 'b', 'c']",
46
+ ]
47
+ expected = "\n".join(expected)
48
+
49
+ actual = repr(factor)
50
+
51
+ assert actual == expected
52
+
53
+ def test_empty_print(self):
54
+ factor = Categorical([], Index(["a", "b", "c"], dtype=object))
55
+ expected = "[], Categories (3, object): ['a', 'b', 'c']"
56
+ actual = repr(factor)
57
+ assert actual == expected
58
+
59
+ assert expected == actual
60
+ factor = Categorical([], Index(["a", "b", "c"], dtype=object), ordered=True)
61
+ expected = "[], Categories (3, object): ['a' < 'b' < 'c']"
62
+ actual = repr(factor)
63
+ assert expected == actual
64
+
65
+ factor = Categorical([], [])
66
+ expected = "[], Categories (0, object): []"
67
+ assert expected == repr(factor)
68
+
69
+ def test_print_none_width(self):
70
+ # GH10087
71
+ a = Series(Categorical([1, 2, 3, 4]))
72
+ exp = (
73
+ "0 1\n1 2\n2 3\n3 4\n"
74
+ "dtype: category\nCategories (4, int64): [1, 2, 3, 4]"
75
+ )
76
+
77
+ with option_context("display.width", None):
78
+ assert exp == repr(a)
79
+
80
+ @pytest.mark.skipif(
81
+ using_pyarrow_string_dtype(),
82
+ reason="Change once infer_string is set to True by default",
83
+ )
84
+ def test_unicode_print(self):
85
+ c = Categorical(["aaaaa", "bb", "cccc"] * 20)
86
+ expected = """\
87
+ ['aaaaa', 'bb', 'cccc', 'aaaaa', 'bb', ..., 'bb', 'cccc', 'aaaaa', 'bb', 'cccc']
88
+ Length: 60
89
+ Categories (3, object): ['aaaaa', 'bb', 'cccc']"""
90
+
91
+ assert repr(c) == expected
92
+
93
+ c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20)
94
+ expected = """\
95
+ ['ああああ', 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', ..., 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', 'ううううううう']
96
+ Length: 60
97
+ Categories (3, object): ['ああああ', 'いいいいい', 'ううううううう']""" # noqa: E501
98
+
99
+ assert repr(c) == expected
100
+
101
+ # unicode option should not affect to Categorical, as it doesn't care
102
+ # the repr width
103
+ with option_context("display.unicode.east_asian_width", True):
104
+ c = Categorical(["ああああ", "いいいいい", "ううううううう"] * 20)
105
+ expected = """['ああああ', 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', ..., 'いいいいい', 'ううううううう', 'ああああ', 'いいいいい', 'ううううううう']
106
+ Length: 60
107
+ Categories (3, object): ['ああああ', 'いいいいい', 'ううううううう']""" # noqa: E501
108
+
109
+ assert repr(c) == expected
110
+
111
+ def test_categorical_repr(self):
112
+ c = Categorical([1, 2, 3])
113
+ exp = """[1, 2, 3]
114
+ Categories (3, int64): [1, 2, 3]"""
115
+
116
+ assert repr(c) == exp
117
+
118
+ c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3])
119
+ exp = """[1, 2, 3, 1, 2, 3]
120
+ Categories (3, int64): [1, 2, 3]"""
121
+
122
+ assert repr(c) == exp
123
+
124
+ c = Categorical([1, 2, 3, 4, 5] * 10)
125
+ exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5]
126
+ Length: 50
127
+ Categories (5, int64): [1, 2, 3, 4, 5]"""
128
+
129
+ assert repr(c) == exp
130
+
131
+ c = Categorical(np.arange(20, dtype=np.int64))
132
+ exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19]
133
+ Length: 20
134
+ Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]"""
135
+
136
+ assert repr(c) == exp
137
+
138
+ def test_categorical_repr_ordered(self):
139
+ c = Categorical([1, 2, 3], ordered=True)
140
+ exp = """[1, 2, 3]
141
+ Categories (3, int64): [1 < 2 < 3]"""
142
+
143
+ assert repr(c) == exp
144
+
145
+ c = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True)
146
+ exp = """[1, 2, 3, 1, 2, 3]
147
+ Categories (3, int64): [1 < 2 < 3]"""
148
+
149
+ assert repr(c) == exp
150
+
151
+ c = Categorical([1, 2, 3, 4, 5] * 10, ordered=True)
152
+ exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5]
153
+ Length: 50
154
+ Categories (5, int64): [1 < 2 < 3 < 4 < 5]"""
155
+
156
+ assert repr(c) == exp
157
+
158
+ c = Categorical(np.arange(20, dtype=np.int64), ordered=True)
159
+ exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19]
160
+ Length: 20
161
+ Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]"""
162
+
163
+ assert repr(c) == exp
164
+
165
+ def test_categorical_repr_datetime(self):
166
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
167
+ c = Categorical(idx)
168
+
169
+ exp = (
170
+ "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, "
171
+ "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n"
172
+ "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, "
173
+ "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n"
174
+ " 2011-01-01 12:00:00, "
175
+ "2011-01-01 13:00:00]"
176
+ ""
177
+ )
178
+ assert repr(c) == exp
179
+
180
+ c = Categorical(idx.append(idx), categories=idx)
181
+ exp = (
182
+ "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, "
183
+ "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, "
184
+ "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, "
185
+ "2011-01-01 13:00:00]\n"
186
+ "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, "
187
+ "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n"
188
+ " 2011-01-01 12:00:00, "
189
+ "2011-01-01 13:00:00]"
190
+ )
191
+
192
+ assert repr(c) == exp
193
+
194
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
195
+ c = Categorical(idx)
196
+ exp = (
197
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, "
198
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, "
199
+ "2011-01-01 13:00:00-05:00]\n"
200
+ "Categories (5, datetime64[ns, US/Eastern]): "
201
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n"
202
+ " "
203
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n"
204
+ " "
205
+ "2011-01-01 13:00:00-05:00]"
206
+ )
207
+
208
+ assert repr(c) == exp
209
+
210
+ c = Categorical(idx.append(idx), categories=idx)
211
+ exp = (
212
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, "
213
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, "
214
+ "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, "
215
+ "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, "
216
+ "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n"
217
+ "Categories (5, datetime64[ns, US/Eastern]): "
218
+ "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n"
219
+ " "
220
+ "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n"
221
+ " "
222
+ "2011-01-01 13:00:00-05:00]"
223
+ )
224
+
225
+ assert repr(c) == exp
226
+
227
+ def test_categorical_repr_datetime_ordered(self):
228
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
229
+ c = Categorical(idx, ordered=True)
230
+ exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]
231
+ Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
232
+ 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa: E501
233
+
234
+ assert repr(c) == exp
235
+
236
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
237
+ exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]
238
+ Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 <
239
+ 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa: E501
240
+
241
+ assert repr(c) == exp
242
+
243
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
244
+ c = Categorical(idx, ordered=True)
245
+ exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]
246
+ Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
247
+ 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
248
+ 2011-01-01 13:00:00-05:00]""" # noqa: E501
249
+
250
+ assert repr(c) == exp
251
+
252
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
253
+ exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]
254
+ Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 <
255
+ 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 <
256
+ 2011-01-01 13:00:00-05:00]""" # noqa: E501
257
+
258
+ assert repr(c) == exp
259
+
260
+ def test_categorical_repr_int_with_nan(self):
261
+ c = Categorical([1, 2, np.nan])
262
+ c_exp = """[1, 2, NaN]\nCategories (2, int64): [1, 2]"""
263
+ assert repr(c) == c_exp
264
+
265
+ s = Series([1, 2, np.nan], dtype="object").astype("category")
266
+ s_exp = """0 1\n1 2\n2 NaN
267
+ dtype: category
268
+ Categories (2, int64): [1, 2]"""
269
+ assert repr(s) == s_exp
270
+
271
+ def test_categorical_repr_period(self):
272
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
273
+ c = Categorical(idx)
274
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
275
+ Categories (5, period[h]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
276
+ 2011-01-01 13:00]""" # noqa: E501
277
+
278
+ assert repr(c) == exp
279
+
280
+ c = Categorical(idx.append(idx), categories=idx)
281
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
282
+ Categories (5, period[h]): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00,
283
+ 2011-01-01 13:00]""" # noqa: E501
284
+
285
+ assert repr(c) == exp
286
+
287
+ idx = period_range("2011-01", freq="M", periods=5)
288
+ c = Categorical(idx)
289
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
290
+ Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]"""
291
+
292
+ assert repr(c) == exp
293
+
294
+ c = Categorical(idx.append(idx), categories=idx)
295
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
296
+ Categories (5, period[M]): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" # noqa: E501
297
+
298
+ assert repr(c) == exp
299
+
300
+ def test_categorical_repr_period_ordered(self):
301
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
302
+ c = Categorical(idx, ordered=True)
303
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
304
+ Categories (5, period[h]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
305
+ 2011-01-01 13:00]""" # noqa: E501
306
+
307
+ assert repr(c) == exp
308
+
309
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
310
+ exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]
311
+ Categories (5, period[h]): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 <
312
+ 2011-01-01 13:00]""" # noqa: E501
313
+
314
+ assert repr(c) == exp
315
+
316
+ idx = period_range("2011-01", freq="M", periods=5)
317
+ c = Categorical(idx, ordered=True)
318
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
319
+ Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]"""
320
+
321
+ assert repr(c) == exp
322
+
323
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
324
+ exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05]
325
+ Categories (5, period[M]): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" # noqa: E501
326
+
327
+ assert repr(c) == exp
328
+
329
+ def test_categorical_repr_timedelta(self):
330
+ idx = timedelta_range("1 days", periods=5)
331
+ c = Categorical(idx)
332
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days]
333
+ Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]"""
334
+
335
+ assert repr(c) == exp
336
+
337
+ c = Categorical(idx.append(idx), categories=idx)
338
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days]
339
+ Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" # noqa: E501
340
+
341
+ assert repr(c) == exp
342
+
343
+ idx = timedelta_range("1 hours", periods=20)
344
+ c = Categorical(idx)
345
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
346
+ Length: 20
347
+ Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
348
+ 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00,
349
+ 18 days 01:00:00, 19 days 01:00:00]""" # noqa: E501
350
+
351
+ assert repr(c) == exp
352
+
353
+ c = Categorical(idx.append(idx), categories=idx)
354
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
355
+ Length: 40
356
+ Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00,
357
+ 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00,
358
+ 18 days 01:00:00, 19 days 01:00:00]""" # noqa: E501
359
+
360
+ assert repr(c) == exp
361
+
362
+ def test_categorical_repr_timedelta_ordered(self):
363
+ idx = timedelta_range("1 days", periods=5)
364
+ c = Categorical(idx, ordered=True)
365
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days]
366
+ Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]"""
367
+
368
+ assert repr(c) == exp
369
+
370
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
371
+ exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days]
372
+ Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" # noqa: E501
373
+
374
+ assert repr(c) == exp
375
+
376
+ idx = timedelta_range("1 hours", periods=20)
377
+ c = Categorical(idx, ordered=True)
378
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
379
+ Length: 20
380
+ Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
381
+ 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 <
382
+ 18 days 01:00:00 < 19 days 01:00:00]""" # noqa: E501
383
+
384
+ assert repr(c) == exp
385
+
386
+ c = Categorical(idx.append(idx), categories=idx, ordered=True)
387
+ exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]
388
+ Length: 40
389
+ Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 <
390
+ 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 <
391
+ 18 days 01:00:00 < 19 days 01:00:00]""" # noqa: E501
392
+
393
+ assert repr(c) == exp
394
+
395
+ def test_categorical_index_repr(self):
396
+ idx = CategoricalIndex(Categorical([1, 2, 3]))
397
+ exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" # noqa: E501
398
+ assert repr(idx) == exp
399
+
400
+ i = CategoricalIndex(Categorical(np.arange(10, dtype=np.int64)))
401
+ exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, ..., 6, 7, 8, 9], ordered=False, dtype='category')""" # noqa: E501
402
+ assert repr(i) == exp
403
+
404
+ def test_categorical_index_repr_ordered(self):
405
+ i = CategoricalIndex(Categorical([1, 2, 3], ordered=True))
406
+ exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" # noqa: E501
407
+ assert repr(i) == exp
408
+
409
+ i = CategoricalIndex(Categorical(np.arange(10, dtype=np.int64), ordered=True))
410
+ exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, ..., 6, 7, 8, 9], ordered=True, dtype='category')""" # noqa: E501
411
+ assert repr(i) == exp
412
+
413
+ def test_categorical_index_repr_datetime(self):
414
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
415
+ i = CategoricalIndex(Categorical(idx))
416
+ exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00',
417
+ '2011-01-01 11:00:00', '2011-01-01 12:00:00',
418
+ '2011-01-01 13:00:00'],
419
+ categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" # noqa: E501
420
+
421
+ assert repr(i) == exp
422
+
423
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
424
+ i = CategoricalIndex(Categorical(idx))
425
+ exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
426
+ '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
427
+ '2011-01-01 13:00:00-05:00'],
428
+ categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" # noqa: E501
429
+
430
+ assert repr(i) == exp
431
+
432
+ def test_categorical_index_repr_datetime_ordered(self):
433
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5)
434
+ i = CategoricalIndex(Categorical(idx, ordered=True))
435
+ exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00',
436
+ '2011-01-01 11:00:00', '2011-01-01 12:00:00',
437
+ '2011-01-01 13:00:00'],
438
+ categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" # noqa: E501
439
+
440
+ assert repr(i) == exp
441
+
442
+ idx = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
443
+ i = CategoricalIndex(Categorical(idx, ordered=True))
444
+ exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
445
+ '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
446
+ '2011-01-01 13:00:00-05:00'],
447
+ categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa: E501
448
+
449
+ assert repr(i) == exp
450
+
451
+ i = CategoricalIndex(Categorical(idx.append(idx), ordered=True))
452
+ exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00',
453
+ '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00',
454
+ '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00',
455
+ '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00',
456
+ '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'],
457
+ categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" # noqa: E501
458
+
459
+ assert repr(i) == exp
460
+
461
+ def test_categorical_index_repr_period(self):
462
+ # test all length
463
+ idx = period_range("2011-01-01 09:00", freq="h", periods=1)
464
+ i = CategoricalIndex(Categorical(idx))
465
+ exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" # noqa: E501
466
+ assert repr(i) == exp
467
+
468
+ idx = period_range("2011-01-01 09:00", freq="h", periods=2)
469
+ i = CategoricalIndex(Categorical(idx))
470
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" # noqa: E501
471
+ assert repr(i) == exp
472
+
473
+ idx = period_range("2011-01-01 09:00", freq="h", periods=3)
474
+ i = CategoricalIndex(Categorical(idx))
475
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" # noqa: E501
476
+ assert repr(i) == exp
477
+
478
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
479
+ i = CategoricalIndex(Categorical(idx))
480
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
481
+ '2011-01-01 12:00', '2011-01-01 13:00'],
482
+ categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa: E501
483
+
484
+ assert repr(i) == exp
485
+
486
+ i = CategoricalIndex(Categorical(idx.append(idx)))
487
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
488
+ '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00',
489
+ '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00',
490
+ '2011-01-01 13:00'],
491
+ categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" # noqa: E501
492
+
493
+ assert repr(i) == exp
494
+
495
+ idx = period_range("2011-01", freq="M", periods=5)
496
+ i = CategoricalIndex(Categorical(idx))
497
+ exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" # noqa: E501
498
+ assert repr(i) == exp
499
+
500
+ def test_categorical_index_repr_period_ordered(self):
501
+ idx = period_range("2011-01-01 09:00", freq="h", periods=5)
502
+ i = CategoricalIndex(Categorical(idx, ordered=True))
503
+ exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00',
504
+ '2011-01-01 12:00', '2011-01-01 13:00'],
505
+ categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" # noqa: E501
506
+
507
+ assert repr(i) == exp
508
+
509
+ idx = period_range("2011-01", freq="M", periods=5)
510
+ i = CategoricalIndex(Categorical(idx, ordered=True))
511
+ exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" # noqa: E501
512
+ assert repr(i) == exp
513
+
514
+ def test_categorical_index_repr_timedelta(self):
515
+ idx = timedelta_range("1 days", periods=5)
516
+ i = CategoricalIndex(Categorical(idx))
517
+ exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days, 2 days, 3 days, 4 days, 5 days], ordered=False, dtype='category')""" # noqa: E501
518
+ assert repr(i) == exp
519
+
520
+ idx = timedelta_range("1 hours", periods=10)
521
+ i = CategoricalIndex(Categorical(idx))
522
+ exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00',
523
+ '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00',
524
+ '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00',
525
+ '9 days 01:00:00'],
526
+ categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00], ordered=False, dtype='category')""" # noqa: E501
527
+
528
+ assert repr(i) == exp
529
+
530
+ def test_categorical_index_repr_timedelta_ordered(self):
531
+ idx = timedelta_range("1 days", periods=5)
532
+ i = CategoricalIndex(Categorical(idx, ordered=True))
533
+ exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days, 2 days, 3 days, 4 days, 5 days], ordered=True, dtype='category')""" # noqa: E501
534
+ assert repr(i) == exp
535
+
536
+ idx = timedelta_range("1 hours", periods=10)
537
+ i = CategoricalIndex(Categorical(idx, ordered=True))
538
+ exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00',
539
+ '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00',
540
+ '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00',
541
+ '9 days 01:00:00'],
542
+ categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00], ordered=True, dtype='category')""" # noqa: E501
543
+
544
+ assert repr(i) == exp
545
+
546
+ def test_categorical_str_repr(self):
547
+ # GH 33676
548
+ result = repr(Categorical([1, "2", 3, 4]))
549
+ expected = "[1, '2', 3, 4]\nCategories (4, object): [1, 3, 4, '2']"
550
+ assert result == expected
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_sorting.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Categorical,
6
+ Index,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ class TestCategoricalSort:
12
+ def test_argsort(self):
13
+ c = Categorical([5, 3, 1, 4, 2], ordered=True)
14
+
15
+ expected = np.array([2, 4, 1, 3, 0])
16
+ tm.assert_numpy_array_equal(
17
+ c.argsort(ascending=True), expected, check_dtype=False
18
+ )
19
+
20
+ expected = expected[::-1]
21
+ tm.assert_numpy_array_equal(
22
+ c.argsort(ascending=False), expected, check_dtype=False
23
+ )
24
+
25
+ def test_numpy_argsort(self):
26
+ c = Categorical([5, 3, 1, 4, 2], ordered=True)
27
+
28
+ expected = np.array([2, 4, 1, 3, 0])
29
+ tm.assert_numpy_array_equal(np.argsort(c), expected, check_dtype=False)
30
+
31
+ tm.assert_numpy_array_equal(
32
+ np.argsort(c, kind="mergesort"), expected, check_dtype=False
33
+ )
34
+
35
+ msg = "the 'axis' parameter is not supported"
36
+ with pytest.raises(ValueError, match=msg):
37
+ np.argsort(c, axis=0)
38
+
39
+ msg = "the 'order' parameter is not supported"
40
+ with pytest.raises(ValueError, match=msg):
41
+ np.argsort(c, order="C")
42
+
43
+ def test_sort_values(self):
44
+ # unordered cats are sortable
45
+ cat = Categorical(["a", "b", "b", "a"], ordered=False)
46
+ cat.sort_values()
47
+
48
+ cat = Categorical(["a", "c", "b", "d"], ordered=True)
49
+
50
+ # sort_values
51
+ res = cat.sort_values()
52
+ exp = np.array(["a", "b", "c", "d"], dtype=object)
53
+ tm.assert_numpy_array_equal(res.__array__(), exp)
54
+ tm.assert_index_equal(res.categories, cat.categories)
55
+
56
+ cat = Categorical(
57
+ ["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True
58
+ )
59
+ res = cat.sort_values()
60
+ exp = np.array(["a", "b", "c", "d"], dtype=object)
61
+ tm.assert_numpy_array_equal(res.__array__(), exp)
62
+ tm.assert_index_equal(res.categories, cat.categories)
63
+
64
+ res = cat.sort_values(ascending=False)
65
+ exp = np.array(["d", "c", "b", "a"], dtype=object)
66
+ tm.assert_numpy_array_equal(res.__array__(), exp)
67
+ tm.assert_index_equal(res.categories, cat.categories)
68
+
69
+ # sort (inplace order)
70
+ cat1 = cat.copy()
71
+ orig_codes = cat1._codes
72
+ cat1.sort_values(inplace=True)
73
+ assert cat1._codes is orig_codes
74
+ exp = np.array(["a", "b", "c", "d"], dtype=object)
75
+ tm.assert_numpy_array_equal(cat1.__array__(), exp)
76
+ tm.assert_index_equal(res.categories, cat.categories)
77
+
78
+ # reverse
79
+ cat = Categorical(["a", "c", "c", "b", "d"], ordered=True)
80
+ res = cat.sort_values(ascending=False)
81
+ exp_val = np.array(["d", "c", "c", "b", "a"], dtype=object)
82
+ exp_categories = Index(["a", "b", "c", "d"])
83
+ tm.assert_numpy_array_equal(res.__array__(), exp_val)
84
+ tm.assert_index_equal(res.categories, exp_categories)
85
+
86
+ def test_sort_values_na_position(self):
87
+ # see gh-12882
88
+ cat = Categorical([5, 2, np.nan, 2, np.nan], ordered=True)
89
+ exp_categories = Index([2, 5])
90
+
91
+ exp = np.array([2.0, 2.0, 5.0, np.nan, np.nan])
92
+ res = cat.sort_values() # default arguments
93
+ tm.assert_numpy_array_equal(res.__array__(), exp)
94
+ tm.assert_index_equal(res.categories, exp_categories)
95
+
96
+ exp = np.array([np.nan, np.nan, 2.0, 2.0, 5.0])
97
+ res = cat.sort_values(ascending=True, na_position="first")
98
+ tm.assert_numpy_array_equal(res.__array__(), exp)
99
+ tm.assert_index_equal(res.categories, exp_categories)
100
+
101
+ exp = np.array([np.nan, np.nan, 5.0, 2.0, 2.0])
102
+ res = cat.sort_values(ascending=False, na_position="first")
103
+ tm.assert_numpy_array_equal(res.__array__(), exp)
104
+ tm.assert_index_equal(res.categories, exp_categories)
105
+
106
+ exp = np.array([2.0, 2.0, 5.0, np.nan, np.nan])
107
+ res = cat.sort_values(ascending=True, na_position="last")
108
+ tm.assert_numpy_array_equal(res.__array__(), exp)
109
+ tm.assert_index_equal(res.categories, exp_categories)
110
+
111
+ exp = np.array([5.0, 2.0, 2.0, np.nan, np.nan])
112
+ res = cat.sort_values(ascending=False, na_position="last")
113
+ tm.assert_numpy_array_equal(res.__array__(), exp)
114
+ tm.assert_index_equal(res.categories, exp_categories)
115
+
116
+ cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True)
117
+ res = cat.sort_values(ascending=False, na_position="last")
118
+ exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object)
119
+ exp_categories = Index(["a", "b", "c", "d"])
120
+ tm.assert_numpy_array_equal(res.__array__(), exp_val)
121
+ tm.assert_index_equal(res.categories, exp_categories)
122
+
123
+ cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True)
124
+ res = cat.sort_values(ascending=False, na_position="first")
125
+ exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object)
126
+ exp_categories = Index(["a", "b", "c", "d"])
127
+ tm.assert_numpy_array_equal(res.__array__(), exp_val)
128
+ tm.assert_index_equal(res.categories, exp_categories)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_subclass.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Categorical
2
+ import pandas._testing as tm
3
+
4
+
5
+ class SubclassedCategorical(Categorical):
6
+ pass
7
+
8
+
9
+ class TestCategoricalSubclassing:
10
+ def test_constructor(self):
11
+ sc = SubclassedCategorical(["a", "b", "c"])
12
+ assert isinstance(sc, SubclassedCategorical)
13
+ tm.assert_categorical_equal(sc, Categorical(["a", "b", "c"]))
14
+
15
+ def test_from_codes(self):
16
+ sc = SubclassedCategorical.from_codes([1, 0, 2], ["a", "b", "c"])
17
+ assert isinstance(sc, SubclassedCategorical)
18
+ exp = Categorical.from_codes([1, 0, 2], ["a", "b", "c"])
19
+ tm.assert_categorical_equal(sc, exp)
20
+
21
+ def test_map(self):
22
+ sc = SubclassedCategorical(["a", "b", "c"])
23
+ res = sc.map(lambda x: x.upper(), na_action=None)
24
+ assert isinstance(res, SubclassedCategorical)
25
+ exp = Categorical(["A", "B", "C"])
26
+ tm.assert_categorical_equal(res, exp)
venv/lib/python3.10/site-packages/pandas/tests/arrays/categorical/test_take.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import Categorical
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.fixture(params=[True, False])
9
+ def allow_fill(request):
10
+ """Boolean 'allow_fill' parameter for Categorical.take"""
11
+ return request.param
12
+
13
+
14
+ class TestTake:
15
+ # https://github.com/pandas-dev/pandas/issues/20664
16
+
17
+ def test_take_default_allow_fill(self):
18
+ cat = Categorical(["a", "b"])
19
+ with tm.assert_produces_warning(None):
20
+ result = cat.take([0, -1])
21
+
22
+ assert result.equals(cat)
23
+
24
+ def test_take_positive_no_warning(self):
25
+ cat = Categorical(["a", "b"])
26
+ with tm.assert_produces_warning(None):
27
+ cat.take([0, 0])
28
+
29
+ def test_take_bounds(self, allow_fill):
30
+ # https://github.com/pandas-dev/pandas/issues/20664
31
+ cat = Categorical(["a", "b", "a"])
32
+ if allow_fill:
33
+ msg = "indices are out-of-bounds"
34
+ else:
35
+ msg = "index 4 is out of bounds for( axis 0 with)? size 3"
36
+ with pytest.raises(IndexError, match=msg):
37
+ cat.take([4, 5], allow_fill=allow_fill)
38
+
39
+ def test_take_empty(self, allow_fill):
40
+ # https://github.com/pandas-dev/pandas/issues/20664
41
+ cat = Categorical([], categories=["a", "b"])
42
+ if allow_fill:
43
+ msg = "indices are out-of-bounds"
44
+ else:
45
+ msg = "cannot do a non-empty take from an empty axes"
46
+ with pytest.raises(IndexError, match=msg):
47
+ cat.take([0], allow_fill=allow_fill)
48
+
49
+ def test_positional_take(self, ordered):
50
+ cat = Categorical(["a", "a", "b", "b"], categories=["b", "a"], ordered=ordered)
51
+ result = cat.take([0, 1, 2], allow_fill=False)
52
+ expected = Categorical(
53
+ ["a", "a", "b"], categories=cat.categories, ordered=ordered
54
+ )
55
+ tm.assert_categorical_equal(result, expected)
56
+
57
+ def test_positional_take_unobserved(self, ordered):
58
+ cat = Categorical(["a", "b"], categories=["a", "b", "c"], ordered=ordered)
59
+ result = cat.take([1, 0], allow_fill=False)
60
+ expected = Categorical(["b", "a"], categories=cat.categories, ordered=ordered)
61
+ tm.assert_categorical_equal(result, expected)
62
+
63
+ def test_take_allow_fill(self):
64
+ # https://github.com/pandas-dev/pandas/issues/23296
65
+ cat = Categorical(["a", "a", "b"])
66
+ result = cat.take([0, -1, -1], allow_fill=True)
67
+ expected = Categorical(["a", np.nan, np.nan], categories=["a", "b"])
68
+ tm.assert_categorical_equal(result, expected)
69
+
70
+ def test_take_fill_with_negative_one(self):
71
+ # -1 was a category
72
+ cat = Categorical([-1, 0, 1])
73
+ result = cat.take([0, -1, 1], allow_fill=True, fill_value=-1)
74
+ expected = Categorical([-1, -1, 0], categories=[-1, 0, 1])
75
+ tm.assert_categorical_equal(result, expected)
76
+
77
+ def test_take_fill_value(self):
78
+ # https://github.com/pandas-dev/pandas/issues/23296
79
+ cat = Categorical(["a", "b", "c"])
80
+ result = cat.take([0, 1, -1], fill_value="a", allow_fill=True)
81
+ expected = Categorical(["a", "b", "a"], categories=["a", "b", "c"])
82
+ tm.assert_categorical_equal(result, expected)
83
+
84
+ def test_take_fill_value_new_raises(self):
85
+ # https://github.com/pandas-dev/pandas/issues/23296
86
+ cat = Categorical(["a", "b", "c"])
87
+ xpr = r"Cannot setitem on a Categorical with a new category \(d\)"
88
+ with pytest.raises(TypeError, match=xpr):
89
+ cat.take([0, 1, -1], fill_value="d", allow_fill=True)
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (197 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/test_cumulative.cpython-310.pyc ADDED
Binary file (1.4 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__pycache__/test_reductions.cpython-310.pyc ADDED
Binary file (5.08 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/floating/test_construction.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.core.arrays import FloatingArray
7
+ from pandas.core.arrays.floating import (
8
+ Float32Dtype,
9
+ Float64Dtype,
10
+ )
11
+
12
+
13
+ def test_uses_pandas_na():
14
+ a = pd.array([1, None], dtype=Float64Dtype())
15
+ assert a[1] is pd.NA
16
+
17
+
18
+ def test_floating_array_constructor():
19
+ values = np.array([1, 2, 3, 4], dtype="float64")
20
+ mask = np.array([False, False, False, True], dtype="bool")
21
+
22
+ result = FloatingArray(values, mask)
23
+ expected = pd.array([1, 2, 3, np.nan], dtype="Float64")
24
+ tm.assert_extension_array_equal(result, expected)
25
+ tm.assert_numpy_array_equal(result._data, values)
26
+ tm.assert_numpy_array_equal(result._mask, mask)
27
+
28
+ msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
29
+ with pytest.raises(TypeError, match=msg):
30
+ FloatingArray(values.tolist(), mask)
31
+
32
+ with pytest.raises(TypeError, match=msg):
33
+ FloatingArray(values, mask.tolist())
34
+
35
+ with pytest.raises(TypeError, match=msg):
36
+ FloatingArray(values.astype(int), mask)
37
+
38
+ msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
39
+ with pytest.raises(TypeError, match=msg):
40
+ FloatingArray(values)
41
+
42
+
43
+ def test_floating_array_disallows_float16():
44
+ # GH#44715
45
+ arr = np.array([1, 2], dtype=np.float16)
46
+ mask = np.array([False, False])
47
+
48
+ msg = "FloatingArray does not support np.float16 dtype"
49
+ with pytest.raises(TypeError, match=msg):
50
+ FloatingArray(arr, mask)
51
+
52
+
53
+ def test_floating_array_disallows_Float16_dtype(request):
54
+ # GH#44715
55
+ with pytest.raises(TypeError, match="data type 'Float16' not understood"):
56
+ pd.array([1.0, 2.0], dtype="Float16")
57
+
58
+
59
+ def test_floating_array_constructor_copy():
60
+ values = np.array([1, 2, 3, 4], dtype="float64")
61
+ mask = np.array([False, False, False, True], dtype="bool")
62
+
63
+ result = FloatingArray(values, mask)
64
+ assert result._data is values
65
+ assert result._mask is mask
66
+
67
+ result = FloatingArray(values, mask, copy=True)
68
+ assert result._data is not values
69
+ assert result._mask is not mask
70
+
71
+
72
+ def test_to_array():
73
+ result = pd.array([0.1, 0.2, 0.3, 0.4])
74
+ expected = pd.array([0.1, 0.2, 0.3, 0.4], dtype="Float64")
75
+ tm.assert_extension_array_equal(result, expected)
76
+
77
+
78
+ @pytest.mark.parametrize(
79
+ "a, b",
80
+ [
81
+ ([1, None], [1, pd.NA]),
82
+ ([None], [pd.NA]),
83
+ ([None, np.nan], [pd.NA, pd.NA]),
84
+ ([1, np.nan], [1, pd.NA]),
85
+ ([np.nan], [pd.NA]),
86
+ ],
87
+ )
88
+ def test_to_array_none_is_nan(a, b):
89
+ result = pd.array(a, dtype="Float64")
90
+ expected = pd.array(b, dtype="Float64")
91
+ tm.assert_extension_array_equal(result, expected)
92
+
93
+
94
+ def test_to_array_mixed_integer_float():
95
+ result = pd.array([1, 2.0])
96
+ expected = pd.array([1.0, 2.0], dtype="Float64")
97
+ tm.assert_extension_array_equal(result, expected)
98
+
99
+ result = pd.array([1, None, 2.0])
100
+ expected = pd.array([1.0, None, 2.0], dtype="Float64")
101
+ tm.assert_extension_array_equal(result, expected)
102
+
103
+
104
+ @pytest.mark.parametrize(
105
+ "values",
106
+ [
107
+ ["foo", "bar"],
108
+ "foo",
109
+ 1,
110
+ 1.0,
111
+ pd.date_range("20130101", periods=2),
112
+ np.array(["foo"]),
113
+ [[1, 2], [3, 4]],
114
+ [np.nan, {"a": 1}],
115
+ # GH#44514 all-NA case used to get quietly swapped out before checking ndim
116
+ np.array([pd.NA] * 6, dtype=object).reshape(3, 2),
117
+ ],
118
+ )
119
+ def test_to_array_error(values):
120
+ # error in converting existing arrays to FloatingArray
121
+ msg = "|".join(
122
+ [
123
+ "cannot be converted to FloatingDtype",
124
+ "values must be a 1D list-like",
125
+ "Cannot pass scalar",
126
+ r"float\(\) argument must be a string or a (real )?number, not 'dict'",
127
+ "could not convert string to float: 'foo'",
128
+ r"could not convert string to float: np\.str_\('foo'\)",
129
+ ]
130
+ )
131
+ with pytest.raises((TypeError, ValueError), match=msg):
132
+ pd.array(values, dtype="Float64")
133
+
134
+
135
+ @pytest.mark.parametrize("values", [["1", "2", None], ["1.5", "2", None]])
136
+ def test_construct_from_float_strings(values):
137
+ # see also test_to_integer_array_str
138
+ expected = pd.array([float(values[0]), 2, None], dtype="Float64")
139
+
140
+ res = pd.array(values, dtype="Float64")
141
+ tm.assert_extension_array_equal(res, expected)
142
+
143
+ res = FloatingArray._from_sequence(values)
144
+ tm.assert_extension_array_equal(res, expected)
145
+
146
+
147
+ def test_to_array_inferred_dtype():
148
+ # if values has dtype -> respect it
149
+ result = pd.array(np.array([1, 2], dtype="float32"))
150
+ assert result.dtype == Float32Dtype()
151
+
152
+ # if values have no dtype -> always float64
153
+ result = pd.array([1.0, 2.0])
154
+ assert result.dtype == Float64Dtype()
155
+
156
+
157
+ def test_to_array_dtype_keyword():
158
+ result = pd.array([1, 2], dtype="Float32")
159
+ assert result.dtype == Float32Dtype()
160
+
161
+ # if values has dtype -> override it
162
+ result = pd.array(np.array([1, 2], dtype="float32"), dtype="Float64")
163
+ assert result.dtype == Float64Dtype()
164
+
165
+
166
+ def test_to_array_integer():
167
+ result = pd.array([1, 2], dtype="Float64")
168
+ expected = pd.array([1.0, 2.0], dtype="Float64")
169
+ tm.assert_extension_array_equal(result, expected)
170
+
171
+ # for integer dtypes, the itemsize is not preserved
172
+ # TODO can we specify "floating" in general?
173
+ result = pd.array(np.array([1, 2], dtype="int32"), dtype="Float64")
174
+ assert result.dtype == Float64Dtype()
175
+
176
+
177
+ @pytest.mark.parametrize(
178
+ "bool_values, values, target_dtype, expected_dtype",
179
+ [
180
+ ([False, True], [0, 1], Float64Dtype(), Float64Dtype()),
181
+ ([False, True], [0, 1], "Float64", Float64Dtype()),
182
+ ([False, True, np.nan], [0, 1, np.nan], Float64Dtype(), Float64Dtype()),
183
+ ],
184
+ )
185
+ def test_to_array_bool(bool_values, values, target_dtype, expected_dtype):
186
+ result = pd.array(bool_values, dtype=target_dtype)
187
+ assert result.dtype == expected_dtype
188
+ expected = pd.array(values, dtype=target_dtype)
189
+ tm.assert_extension_array_equal(result, expected)
190
+
191
+
192
+ def test_series_from_float(data):
193
+ # construct from our dtype & string dtype
194
+ dtype = data.dtype
195
+
196
+ # from float
197
+ expected = pd.Series(data)
198
+ result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
199
+ tm.assert_series_equal(result, expected)
200
+
201
+ # from list
202
+ expected = pd.Series(data)
203
+ result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
204
+ tm.assert_series_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (195 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (1.79 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (9.38 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_comparison.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_concat.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_construction.cpython-310.pyc ADDED
Binary file (6.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_dtypes.cpython-310.pyc ADDED
Binary file (7.18 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_function.cpython-310.pyc ADDED
Binary file (5.89 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_reduction.cpython-310.pyc ADDED
Binary file (2.95 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_repr.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_indexing.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import pandas._testing as tm
3
+
4
+
5
+ def test_array_setitem_nullable_boolean_mask():
6
+ # GH 31446
7
+ ser = pd.Series([1, 2], dtype="Int64")
8
+ result = ser.where(ser > 1)
9
+ expected = pd.Series([pd.NA, 2], dtype="Int64")
10
+ tm.assert_series_equal(result, expected)
11
+
12
+
13
+ def test_array_setitem():
14
+ # GH 31446
15
+ arr = pd.Series([1, 2], dtype="Int64").array
16
+ arr[arr > 1] = 1
17
+
18
+ expected = pd.array([1, 1], dtype="Int64")
19
+ tm.assert_extension_array_equal(arr, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (196 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (546 Bytes). View file