peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/io
/test_feather.py
""" test feather-format compat """ | |
import numpy as np | |
import pytest | |
import pandas as pd | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
ArrowStringArray, | |
StringArray, | |
) | |
from pandas.io.feather_format import read_feather, to_feather # isort:skip | |
pytestmark = pytest.mark.filterwarnings( | |
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning" | |
) | |
pa = pytest.importorskip("pyarrow") | |
class TestFeather: | |
def check_error_on_write(self, df, exc, err_msg): | |
# check that we are raising the exception | |
# on writing | |
with pytest.raises(exc, match=err_msg): | |
with tm.ensure_clean() as path: | |
to_feather(df, path) | |
def check_external_error_on_write(self, df): | |
# check that we are raising the exception | |
# on writing | |
with tm.external_error_raised(Exception): | |
with tm.ensure_clean() as path: | |
to_feather(df, path) | |
def check_round_trip(self, df, expected=None, write_kwargs={}, **read_kwargs): | |
if expected is None: | |
expected = df.copy() | |
with tm.ensure_clean() as path: | |
to_feather(df, path, **write_kwargs) | |
result = read_feather(path, **read_kwargs) | |
tm.assert_frame_equal(result, expected) | |
def test_error(self): | |
msg = "feather only support IO with DataFrames" | |
for obj in [ | |
pd.Series([1, 2, 3]), | |
1, | |
"foo", | |
pd.Timestamp("20130101"), | |
np.array([1, 2, 3]), | |
]: | |
self.check_error_on_write(obj, ValueError, msg) | |
def test_basic(self): | |
df = pd.DataFrame( | |
{ | |
"string": list("abc"), | |
"int": list(range(1, 4)), | |
"uint": np.arange(3, 6).astype("u1"), | |
"float": np.arange(4.0, 7.0, dtype="float64"), | |
"float_with_null": [1.0, np.nan, 3], | |
"bool": [True, False, True], | |
"bool_with_null": [True, np.nan, False], | |
"cat": pd.Categorical(list("abc")), | |
"dt": pd.DatetimeIndex( | |
list(pd.date_range("20130101", periods=3)), freq=None | |
), | |
"dttz": pd.DatetimeIndex( | |
list(pd.date_range("20130101", periods=3, tz="US/Eastern")), | |
freq=None, | |
), | |
"dt_with_null": [ | |
pd.Timestamp("20130101"), | |
pd.NaT, | |
pd.Timestamp("20130103"), | |
], | |
"dtns": pd.DatetimeIndex( | |
list(pd.date_range("20130101", periods=3, freq="ns")), freq=None | |
), | |
} | |
) | |
df["periods"] = pd.period_range("2013", freq="M", periods=3) | |
df["timedeltas"] = pd.timedelta_range("1 day", periods=3) | |
df["intervals"] = pd.interval_range(0, 3, 3) | |
assert df.dttz.dtype.tz.zone == "US/Eastern" | |
expected = df.copy() | |
expected.loc[1, "bool_with_null"] = None | |
self.check_round_trip(df, expected=expected) | |
def test_duplicate_columns(self): | |
# https://github.com/wesm/feather/issues/53 | |
# not currently able to handle duplicate columns | |
df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() | |
self.check_external_error_on_write(df) | |
def test_read_columns(self): | |
# GH 24025 | |
df = pd.DataFrame( | |
{ | |
"col1": list("abc"), | |
"col2": list(range(1, 4)), | |
"col3": list("xyz"), | |
"col4": list(range(4, 7)), | |
} | |
) | |
columns = ["col1", "col3"] | |
self.check_round_trip(df, expected=df[columns], columns=columns) | |
def test_read_columns_different_order(self): | |
# GH 33878 | |
df = pd.DataFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]}) | |
expected = df[["B", "A"]] | |
self.check_round_trip(df, expected, columns=["B", "A"]) | |
def test_unsupported_other(self): | |
# mixed python objects | |
df = pd.DataFrame({"a": ["a", 1, 2.0]}) | |
self.check_external_error_on_write(df) | |
def test_rw_use_threads(self): | |
df = pd.DataFrame({"A": np.arange(100000)}) | |
self.check_round_trip(df, use_threads=True) | |
self.check_round_trip(df, use_threads=False) | |
def test_path_pathlib(self): | |
df = pd.DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
).reset_index() | |
result = tm.round_trip_pathlib(df.to_feather, read_feather) | |
tm.assert_frame_equal(df, result) | |
def test_path_localpath(self): | |
df = pd.DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
).reset_index() | |
result = tm.round_trip_localpath(df.to_feather, read_feather) | |
tm.assert_frame_equal(df, result) | |
def test_passthrough_keywords(self): | |
df = pd.DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
).reset_index() | |
self.check_round_trip(df, write_kwargs={"version": 1}) | |
def test_http_path(self, feather_file, httpserver): | |
# GH 29055 | |
expected = read_feather(feather_file) | |
with open(feather_file, "rb") as f: | |
httpserver.serve_content(content=f.read()) | |
res = read_feather(httpserver.url) | |
tm.assert_frame_equal(expected, res) | |
def test_read_feather_dtype_backend(self, string_storage, dtype_backend): | |
# GH#50765 | |
df = pd.DataFrame( | |
{ | |
"a": pd.Series([1, np.nan, 3], dtype="Int64"), | |
"b": pd.Series([1, 2, 3], dtype="Int64"), | |
"c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"), | |
"d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"), | |
"e": [True, False, None], | |
"f": [True, False, True], | |
"g": ["a", "b", "c"], | |
"h": ["a", "b", None], | |
} | |
) | |
if string_storage == "python": | |
string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_)) | |
string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_)) | |
elif dtype_backend == "pyarrow": | |
from pandas.arrays import ArrowExtensionArray | |
string_array = ArrowExtensionArray(pa.array(["a", "b", "c"])) | |
string_array_na = ArrowExtensionArray(pa.array(["a", "b", None])) | |
else: | |
string_array = ArrowStringArray(pa.array(["a", "b", "c"])) | |
string_array_na = ArrowStringArray(pa.array(["a", "b", None])) | |
with tm.ensure_clean() as path: | |
to_feather(df, path) | |
with pd.option_context("mode.string_storage", string_storage): | |
result = read_feather(path, dtype_backend=dtype_backend) | |
expected = pd.DataFrame( | |
{ | |
"a": pd.Series([1, np.nan, 3], dtype="Int64"), | |
"b": pd.Series([1, 2, 3], dtype="Int64"), | |
"c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"), | |
"d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"), | |
"e": pd.Series([True, False, pd.NA], dtype="boolean"), | |
"f": pd.Series([True, False, True], dtype="boolean"), | |
"g": string_array, | |
"h": string_array_na, | |
} | |
) | |
if dtype_backend == "pyarrow": | |
from pandas.arrays import ArrowExtensionArray | |
expected = pd.DataFrame( | |
{ | |
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True)) | |
for col in expected.columns | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_int_columns_and_index(self): | |
df = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index([3, 4, 5], name="test")) | |
self.check_round_trip(df) | |
def test_invalid_dtype_backend(self): | |
msg = ( | |
"dtype_backend numpy is invalid, only 'numpy_nullable' and " | |
"'pyarrow' are allowed." | |
) | |
df = pd.DataFrame({"int": list(range(1, 4))}) | |
with tm.ensure_clean("tmp.feather") as path: | |
df.to_feather(path) | |
with pytest.raises(ValueError, match=msg): | |
read_feather(path, dtype_backend="numpy") | |
def test_string_inference(self, tmp_path): | |
# GH#54431 | |
path = tmp_path / "test_string_inference.p" | |
df = pd.DataFrame(data={"a": ["x", "y"]}) | |
df.to_feather(path) | |
with pd.option_context("future.infer_string", True): | |
result = read_feather(path) | |
expected = pd.DataFrame(data={"a": ["x", "y"]}, dtype="string[pyarrow_numpy]") | |
tm.assert_frame_equal(result, expected) | |