peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/io
/test_sql.py
from __future__ import annotations | |
import contextlib | |
from contextlib import closing | |
import csv | |
from datetime import ( | |
date, | |
datetime, | |
time, | |
timedelta, | |
) | |
from io import StringIO | |
from pathlib import Path | |
import sqlite3 | |
from typing import TYPE_CHECKING | |
import uuid | |
import numpy as np | |
import pytest | |
from pandas._libs import lib | |
from pandas.compat import ( | |
pa_version_under13p0, | |
pa_version_under14p1, | |
) | |
from pandas.compat._optional import import_optional_dependency | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
Timestamp, | |
concat, | |
date_range, | |
isna, | |
to_datetime, | |
to_timedelta, | |
) | |
import pandas._testing as tm | |
from pandas.core.arrays import ( | |
ArrowStringArray, | |
StringArray, | |
) | |
from pandas.util.version import Version | |
from pandas.io import sql | |
from pandas.io.sql import ( | |
SQLAlchemyEngine, | |
SQLDatabase, | |
SQLiteDatabase, | |
get_engine, | |
pandasSQL_builder, | |
read_sql_query, | |
read_sql_table, | |
) | |
if TYPE_CHECKING: | |
import sqlalchemy | |
pytestmark = pytest.mark.filterwarnings( | |
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning" | |
) | |
def sql_strings(): | |
return { | |
"read_parameters": { | |
"sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", | |
"mysql": "SELECT * FROM iris WHERE `Name`=%s AND `SepalLength`=%s", | |
"postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', | |
}, | |
"read_named_parameters": { | |
"sqlite": """ | |
SELECT * FROM iris WHERE Name=:name AND SepalLength=:length | |
""", | |
"mysql": """ | |
SELECT * FROM iris WHERE | |
`Name`=%(name)s AND `SepalLength`=%(length)s | |
""", | |
"postgresql": """ | |
SELECT * FROM iris WHERE | |
"Name"=%(name)s AND "SepalLength"=%(length)s | |
""", | |
}, | |
"read_no_parameters_with_percent": { | |
"sqlite": "SELECT * FROM iris WHERE Name LIKE '%'", | |
"mysql": "SELECT * FROM iris WHERE `Name` LIKE '%'", | |
"postgresql": "SELECT * FROM iris WHERE \"Name\" LIKE '%'", | |
}, | |
} | |
def iris_table_metadata(): | |
import sqlalchemy | |
from sqlalchemy import ( | |
Column, | |
Double, | |
Float, | |
MetaData, | |
String, | |
Table, | |
) | |
dtype = Double if Version(sqlalchemy.__version__) >= Version("2.0.0") else Float | |
metadata = MetaData() | |
iris = Table( | |
"iris", | |
metadata, | |
Column("SepalLength", dtype), | |
Column("SepalWidth", dtype), | |
Column("PetalLength", dtype), | |
Column("PetalWidth", dtype), | |
Column("Name", String(200)), | |
) | |
return iris | |
def create_and_load_iris_sqlite3(conn, iris_file: Path): | |
stmt = """CREATE TABLE iris ( | |
"SepalLength" REAL, | |
"SepalWidth" REAL, | |
"PetalLength" REAL, | |
"PetalWidth" REAL, | |
"Name" TEXT | |
)""" | |
cur = conn.cursor() | |
cur.execute(stmt) | |
with iris_file.open(newline=None, encoding="utf-8") as csvfile: | |
reader = csv.reader(csvfile) | |
next(reader) | |
stmt = "INSERT INTO iris VALUES(?, ?, ?, ?, ?)" | |
# ADBC requires explicit types - no implicit str -> float conversion | |
records = [] | |
records = [ | |
( | |
float(row[0]), | |
float(row[1]), | |
float(row[2]), | |
float(row[3]), | |
row[4], | |
) | |
for row in reader | |
] | |
cur.executemany(stmt, records) | |
cur.close() | |
conn.commit() | |
def create_and_load_iris_postgresql(conn, iris_file: Path): | |
stmt = """CREATE TABLE iris ( | |
"SepalLength" DOUBLE PRECISION, | |
"SepalWidth" DOUBLE PRECISION, | |
"PetalLength" DOUBLE PRECISION, | |
"PetalWidth" DOUBLE PRECISION, | |
"Name" TEXT | |
)""" | |
with conn.cursor() as cur: | |
cur.execute(stmt) | |
with iris_file.open(newline=None, encoding="utf-8") as csvfile: | |
reader = csv.reader(csvfile) | |
next(reader) | |
stmt = "INSERT INTO iris VALUES($1, $2, $3, $4, $5)" | |
# ADBC requires explicit types - no implicit str -> float conversion | |
records = [ | |
( | |
float(row[0]), | |
float(row[1]), | |
float(row[2]), | |
float(row[3]), | |
row[4], | |
) | |
for row in reader | |
] | |
cur.executemany(stmt, records) | |
conn.commit() | |
def create_and_load_iris(conn, iris_file: Path): | |
from sqlalchemy import insert | |
iris = iris_table_metadata() | |
with iris_file.open(newline=None, encoding="utf-8") as csvfile: | |
reader = csv.reader(csvfile) | |
header = next(reader) | |
params = [dict(zip(header, row)) for row in reader] | |
stmt = insert(iris).values(params) | |
with conn.begin() as con: | |
iris.drop(con, checkfirst=True) | |
iris.create(bind=con) | |
con.execute(stmt) | |
def create_and_load_iris_view(conn): | |
stmt = "CREATE VIEW iris_view AS SELECT * FROM iris" | |
if isinstance(conn, sqlite3.Connection): | |
cur = conn.cursor() | |
cur.execute(stmt) | |
else: | |
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") | |
if adbc and isinstance(conn, adbc.Connection): | |
with conn.cursor() as cur: | |
cur.execute(stmt) | |
conn.commit() | |
else: | |
from sqlalchemy import text | |
stmt = text(stmt) | |
with conn.begin() as con: | |
con.execute(stmt) | |
def types_table_metadata(dialect: str): | |
from sqlalchemy import ( | |
TEXT, | |
Boolean, | |
Column, | |
DateTime, | |
Float, | |
Integer, | |
MetaData, | |
Table, | |
) | |
date_type = TEXT if dialect == "sqlite" else DateTime | |
bool_type = Integer if dialect == "sqlite" else Boolean | |
metadata = MetaData() | |
types = Table( | |
"types", | |
metadata, | |
Column("TextCol", TEXT), | |
Column("DateCol", date_type), | |
Column("IntDateCol", Integer), | |
Column("IntDateOnlyCol", Integer), | |
Column("FloatCol", Float), | |
Column("IntCol", Integer), | |
Column("BoolCol", bool_type), | |
Column("IntColWithNull", Integer), | |
Column("BoolColWithNull", bool_type), | |
) | |
return types | |
def create_and_load_types_sqlite3(conn, types_data: list[dict]): | |
stmt = """CREATE TABLE types ( | |
"TextCol" TEXT, | |
"DateCol" TEXT, | |
"IntDateCol" INTEGER, | |
"IntDateOnlyCol" INTEGER, | |
"FloatCol" REAL, | |
"IntCol" INTEGER, | |
"BoolCol" INTEGER, | |
"IntColWithNull" INTEGER, | |
"BoolColWithNull" INTEGER | |
)""" | |
ins_stmt = """ | |
INSERT INTO types | |
VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) | |
""" | |
if isinstance(conn, sqlite3.Connection): | |
cur = conn.cursor() | |
cur.execute(stmt) | |
cur.executemany(ins_stmt, types_data) | |
else: | |
with conn.cursor() as cur: | |
cur.execute(stmt) | |
cur.executemany(ins_stmt, types_data) | |
conn.commit() | |
def create_and_load_types_postgresql(conn, types_data: list[dict]): | |
with conn.cursor() as cur: | |
stmt = """CREATE TABLE types ( | |
"TextCol" TEXT, | |
"DateCol" TIMESTAMP, | |
"IntDateCol" INTEGER, | |
"IntDateOnlyCol" INTEGER, | |
"FloatCol" DOUBLE PRECISION, | |
"IntCol" INTEGER, | |
"BoolCol" BOOLEAN, | |
"IntColWithNull" INTEGER, | |
"BoolColWithNull" BOOLEAN | |
)""" | |
cur.execute(stmt) | |
stmt = """ | |
INSERT INTO types | |
VALUES($1, $2::timestamp, $3, $4, $5, $6, $7, $8, $9) | |
""" | |
cur.executemany(stmt, types_data) | |
conn.commit() | |
def create_and_load_types(conn, types_data: list[dict], dialect: str): | |
from sqlalchemy import insert | |
from sqlalchemy.engine import Engine | |
types = types_table_metadata(dialect) | |
stmt = insert(types).values(types_data) | |
if isinstance(conn, Engine): | |
with conn.connect() as conn: | |
with conn.begin(): | |
types.drop(conn, checkfirst=True) | |
types.create(bind=conn) | |
conn.execute(stmt) | |
else: | |
with conn.begin(): | |
types.drop(conn, checkfirst=True) | |
types.create(bind=conn) | |
conn.execute(stmt) | |
def create_and_load_postgres_datetz(conn): | |
from sqlalchemy import ( | |
Column, | |
DateTime, | |
MetaData, | |
Table, | |
insert, | |
) | |
from sqlalchemy.engine import Engine | |
metadata = MetaData() | |
datetz = Table("datetz", metadata, Column("DateColWithTz", DateTime(timezone=True))) | |
datetz_data = [ | |
{ | |
"DateColWithTz": "2000-01-01 00:00:00-08:00", | |
}, | |
{ | |
"DateColWithTz": "2000-06-01 00:00:00-07:00", | |
}, | |
] | |
stmt = insert(datetz).values(datetz_data) | |
if isinstance(conn, Engine): | |
with conn.connect() as conn: | |
with conn.begin(): | |
datetz.drop(conn, checkfirst=True) | |
datetz.create(bind=conn) | |
conn.execute(stmt) | |
else: | |
with conn.begin(): | |
datetz.drop(conn, checkfirst=True) | |
datetz.create(bind=conn) | |
conn.execute(stmt) | |
# "2000-01-01 00:00:00-08:00" should convert to | |
# "2000-01-01 08:00:00" | |
# "2000-06-01 00:00:00-07:00" should convert to | |
# "2000-06-01 07:00:00" | |
# GH 6415 | |
expected_data = [ | |
Timestamp("2000-01-01 08:00:00", tz="UTC"), | |
Timestamp("2000-06-01 07:00:00", tz="UTC"), | |
] | |
return Series(expected_data, name="DateColWithTz") | |
def check_iris_frame(frame: DataFrame): | |
pytype = frame.dtypes.iloc[0].type | |
row = frame.iloc[0] | |
assert issubclass(pytype, np.floating) | |
tm.assert_series_equal( | |
row, Series([5.1, 3.5, 1.4, 0.2, "Iris-setosa"], index=frame.columns, name=0) | |
) | |
assert frame.shape in ((150, 5), (8, 5)) | |
def count_rows(conn, table_name: str): | |
stmt = f"SELECT count(*) AS count_1 FROM {table_name}" | |
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") | |
if isinstance(conn, sqlite3.Connection): | |
cur = conn.cursor() | |
return cur.execute(stmt).fetchone()[0] | |
elif adbc and isinstance(conn, adbc.Connection): | |
with conn.cursor() as cur: | |
cur.execute(stmt) | |
return cur.fetchone()[0] | |
else: | |
from sqlalchemy import create_engine | |
from sqlalchemy.engine import Engine | |
if isinstance(conn, str): | |
try: | |
engine = create_engine(conn) | |
with engine.connect() as conn: | |
return conn.exec_driver_sql(stmt).scalar_one() | |
finally: | |
engine.dispose() | |
elif isinstance(conn, Engine): | |
with conn.connect() as conn: | |
return conn.exec_driver_sql(stmt).scalar_one() | |
else: | |
return conn.exec_driver_sql(stmt).scalar_one() | |
def iris_path(datapath): | |
iris_path = datapath("io", "data", "csv", "iris.csv") | |
return Path(iris_path) | |
def types_data(): | |
return [ | |
{ | |
"TextCol": "first", | |
"DateCol": "2000-01-03 00:00:00", | |
"IntDateCol": 535852800, | |
"IntDateOnlyCol": 20101010, | |
"FloatCol": 10.10, | |
"IntCol": 1, | |
"BoolCol": False, | |
"IntColWithNull": 1, | |
"BoolColWithNull": False, | |
}, | |
{ | |
"TextCol": "first", | |
"DateCol": "2000-01-04 00:00:00", | |
"IntDateCol": 1356998400, | |
"IntDateOnlyCol": 20101212, | |
"FloatCol": 10.10, | |
"IntCol": 1, | |
"BoolCol": False, | |
"IntColWithNull": None, | |
"BoolColWithNull": None, | |
}, | |
] | |
def types_data_frame(types_data): | |
dtypes = { | |
"TextCol": "str", | |
"DateCol": "str", | |
"IntDateCol": "int64", | |
"IntDateOnlyCol": "int64", | |
"FloatCol": "float", | |
"IntCol": "int64", | |
"BoolCol": "int64", | |
"IntColWithNull": "float", | |
"BoolColWithNull": "float", | |
} | |
df = DataFrame(types_data) | |
return df[dtypes.keys()].astype(dtypes) | |
def test_frame1(): | |
columns = ["index", "A", "B", "C", "D"] | |
data = [ | |
( | |
"2000-01-03 00:00:00", | |
0.980268513777, | |
3.68573087906, | |
-0.364216805298, | |
-1.15973806169, | |
), | |
( | |
"2000-01-04 00:00:00", | |
1.04791624281, | |
-0.0412318367011, | |
-0.16181208307, | |
0.212549316967, | |
), | |
( | |
"2000-01-05 00:00:00", | |
0.498580885705, | |
0.731167677815, | |
-0.537677223318, | |
1.34627041952, | |
), | |
( | |
"2000-01-06 00:00:00", | |
1.12020151869, | |
1.56762092543, | |
0.00364077397681, | |
0.67525259227, | |
), | |
] | |
return DataFrame(data, columns=columns) | |
def test_frame3(): | |
columns = ["index", "A", "B"] | |
data = [ | |
("2000-01-03 00:00:00", 2**31 - 1, -1.987670), | |
("2000-01-04 00:00:00", -29, -0.0412318367011), | |
("2000-01-05 00:00:00", 20000, 0.731167677815), | |
("2000-01-06 00:00:00", -290867, 1.56762092543), | |
] | |
return DataFrame(data, columns=columns) | |
def get_all_views(conn): | |
if isinstance(conn, sqlite3.Connection): | |
c = conn.execute("SELECT name FROM sqlite_master WHERE type='view'") | |
return [view[0] for view in c.fetchall()] | |
else: | |
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") | |
if adbc and isinstance(conn, adbc.Connection): | |
results = [] | |
info = conn.adbc_get_objects().read_all().to_pylist() | |
for catalog in info: | |
catalog["catalog_name"] | |
for schema in catalog["catalog_db_schemas"]: | |
schema["db_schema_name"] | |
for table in schema["db_schema_tables"]: | |
if table["table_type"] == "view": | |
view_name = table["table_name"] | |
results.append(view_name) | |
return results | |
else: | |
from sqlalchemy import inspect | |
return inspect(conn).get_view_names() | |
def get_all_tables(conn): | |
if isinstance(conn, sqlite3.Connection): | |
c = conn.execute("SELECT name FROM sqlite_master WHERE type='table'") | |
return [table[0] for table in c.fetchall()] | |
else: | |
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") | |
if adbc and isinstance(conn, adbc.Connection): | |
results = [] | |
info = conn.adbc_get_objects().read_all().to_pylist() | |
for catalog in info: | |
for schema in catalog["catalog_db_schemas"]: | |
for table in schema["db_schema_tables"]: | |
if table["table_type"] == "table": | |
table_name = table["table_name"] | |
results.append(table_name) | |
return results | |
else: | |
from sqlalchemy import inspect | |
return inspect(conn).get_table_names() | |
def drop_table( | |
table_name: str, | |
conn: sqlite3.Connection | sqlalchemy.engine.Engine | sqlalchemy.engine.Connection, | |
): | |
if isinstance(conn, sqlite3.Connection): | |
conn.execute(f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}") | |
conn.commit() | |
else: | |
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") | |
if adbc and isinstance(conn, adbc.Connection): | |
with conn.cursor() as cur: | |
cur.execute(f'DROP TABLE IF EXISTS "{table_name}"') | |
else: | |
with conn.begin() as con: | |
with sql.SQLDatabase(con) as db: | |
db.drop_table(table_name) | |
def drop_view( | |
view_name: str, | |
conn: sqlite3.Connection | sqlalchemy.engine.Engine | sqlalchemy.engine.Connection, | |
): | |
import sqlalchemy | |
if isinstance(conn, sqlite3.Connection): | |
conn.execute(f"DROP VIEW IF EXISTS {sql._get_valid_sqlite_name(view_name)}") | |
conn.commit() | |
else: | |
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") | |
if adbc and isinstance(conn, adbc.Connection): | |
with conn.cursor() as cur: | |
cur.execute(f'DROP VIEW IF EXISTS "{view_name}"') | |
else: | |
quoted_view = conn.engine.dialect.identifier_preparer.quote_identifier( | |
view_name | |
) | |
stmt = sqlalchemy.text(f"DROP VIEW IF EXISTS {quoted_view}") | |
with conn.begin() as con: | |
con.execute(stmt) # type: ignore[union-attr] | |
def mysql_pymysql_engine(): | |
sqlalchemy = pytest.importorskip("sqlalchemy") | |
pymysql = pytest.importorskip("pymysql") | |
engine = sqlalchemy.create_engine( | |
"mysql+pymysql://root@localhost:3306/pandas", | |
connect_args={"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS}, | |
poolclass=sqlalchemy.pool.NullPool, | |
) | |
yield engine | |
for view in get_all_views(engine): | |
drop_view(view, engine) | |
for tbl in get_all_tables(engine): | |
drop_table(tbl, engine) | |
engine.dispose() | |
def mysql_pymysql_engine_iris(mysql_pymysql_engine, iris_path): | |
create_and_load_iris(mysql_pymysql_engine, iris_path) | |
create_and_load_iris_view(mysql_pymysql_engine) | |
yield mysql_pymysql_engine | |
def mysql_pymysql_engine_types(mysql_pymysql_engine, types_data): | |
create_and_load_types(mysql_pymysql_engine, types_data, "mysql") | |
yield mysql_pymysql_engine | |
def mysql_pymysql_conn(mysql_pymysql_engine): | |
with mysql_pymysql_engine.connect() as conn: | |
yield conn | |
def mysql_pymysql_conn_iris(mysql_pymysql_engine_iris): | |
with mysql_pymysql_engine_iris.connect() as conn: | |
yield conn | |
def mysql_pymysql_conn_types(mysql_pymysql_engine_types): | |
with mysql_pymysql_engine_types.connect() as conn: | |
yield conn | |
def postgresql_psycopg2_engine(): | |
sqlalchemy = pytest.importorskip("sqlalchemy") | |
pytest.importorskip("psycopg2") | |
engine = sqlalchemy.create_engine( | |
"postgresql+psycopg2://postgres:postgres@localhost:5432/pandas", | |
poolclass=sqlalchemy.pool.NullPool, | |
) | |
yield engine | |
for view in get_all_views(engine): | |
drop_view(view, engine) | |
for tbl in get_all_tables(engine): | |
drop_table(tbl, engine) | |
engine.dispose() | |
def postgresql_psycopg2_engine_iris(postgresql_psycopg2_engine, iris_path): | |
create_and_load_iris(postgresql_psycopg2_engine, iris_path) | |
create_and_load_iris_view(postgresql_psycopg2_engine) | |
yield postgresql_psycopg2_engine | |
def postgresql_psycopg2_engine_types(postgresql_psycopg2_engine, types_data): | |
create_and_load_types(postgresql_psycopg2_engine, types_data, "postgres") | |
yield postgresql_psycopg2_engine | |
def postgresql_psycopg2_conn(postgresql_psycopg2_engine): | |
with postgresql_psycopg2_engine.connect() as conn: | |
yield conn | |
def postgresql_adbc_conn(): | |
pytest.importorskip("adbc_driver_postgresql") | |
from adbc_driver_postgresql import dbapi | |
uri = "postgresql://postgres:postgres@localhost:5432/pandas" | |
with dbapi.connect(uri) as conn: | |
yield conn | |
for view in get_all_views(conn): | |
drop_view(view, conn) | |
for tbl in get_all_tables(conn): | |
drop_table(tbl, conn) | |
conn.commit() | |
def postgresql_adbc_iris(postgresql_adbc_conn, iris_path): | |
import adbc_driver_manager as mgr | |
conn = postgresql_adbc_conn | |
try: | |
conn.adbc_get_table_schema("iris") | |
except mgr.ProgrammingError: | |
conn.rollback() | |
create_and_load_iris_postgresql(conn, iris_path) | |
try: | |
conn.adbc_get_table_schema("iris_view") | |
except mgr.ProgrammingError: # note arrow-adbc issue 1022 | |
conn.rollback() | |
create_and_load_iris_view(conn) | |
yield conn | |
def postgresql_adbc_types(postgresql_adbc_conn, types_data): | |
import adbc_driver_manager as mgr | |
conn = postgresql_adbc_conn | |
try: | |
conn.adbc_get_table_schema("types") | |
except mgr.ProgrammingError: | |
conn.rollback() | |
new_data = [tuple(entry.values()) for entry in types_data] | |
create_and_load_types_postgresql(conn, new_data) | |
yield conn | |
def postgresql_psycopg2_conn_iris(postgresql_psycopg2_engine_iris): | |
with postgresql_psycopg2_engine_iris.connect() as conn: | |
yield conn | |
def postgresql_psycopg2_conn_types(postgresql_psycopg2_engine_types): | |
with postgresql_psycopg2_engine_types.connect() as conn: | |
yield conn | |
def sqlite_str(): | |
pytest.importorskip("sqlalchemy") | |
with tm.ensure_clean() as name: | |
yield f"sqlite:///{name}" | |
def sqlite_engine(sqlite_str): | |
sqlalchemy = pytest.importorskip("sqlalchemy") | |
engine = sqlalchemy.create_engine(sqlite_str, poolclass=sqlalchemy.pool.NullPool) | |
yield engine | |
for view in get_all_views(engine): | |
drop_view(view, engine) | |
for tbl in get_all_tables(engine): | |
drop_table(tbl, engine) | |
engine.dispose() | |
def sqlite_conn(sqlite_engine): | |
with sqlite_engine.connect() as conn: | |
yield conn | |
def sqlite_str_iris(sqlite_str, iris_path): | |
sqlalchemy = pytest.importorskip("sqlalchemy") | |
engine = sqlalchemy.create_engine(sqlite_str) | |
create_and_load_iris(engine, iris_path) | |
create_and_load_iris_view(engine) | |
engine.dispose() | |
return sqlite_str | |
def sqlite_engine_iris(sqlite_engine, iris_path): | |
create_and_load_iris(sqlite_engine, iris_path) | |
create_and_load_iris_view(sqlite_engine) | |
yield sqlite_engine | |
def sqlite_conn_iris(sqlite_engine_iris): | |
with sqlite_engine_iris.connect() as conn: | |
yield conn | |
def sqlite_str_types(sqlite_str, types_data): | |
sqlalchemy = pytest.importorskip("sqlalchemy") | |
engine = sqlalchemy.create_engine(sqlite_str) | |
create_and_load_types(engine, types_data, "sqlite") | |
engine.dispose() | |
return sqlite_str | |
def sqlite_engine_types(sqlite_engine, types_data): | |
create_and_load_types(sqlite_engine, types_data, "sqlite") | |
yield sqlite_engine | |
def sqlite_conn_types(sqlite_engine_types): | |
with sqlite_engine_types.connect() as conn: | |
yield conn | |
def sqlite_adbc_conn(): | |
pytest.importorskip("adbc_driver_sqlite") | |
from adbc_driver_sqlite import dbapi | |
with tm.ensure_clean() as name: | |
uri = f"file:{name}" | |
with dbapi.connect(uri) as conn: | |
yield conn | |
for view in get_all_views(conn): | |
drop_view(view, conn) | |
for tbl in get_all_tables(conn): | |
drop_table(tbl, conn) | |
conn.commit() | |
def sqlite_adbc_iris(sqlite_adbc_conn, iris_path): | |
import adbc_driver_manager as mgr | |
conn = sqlite_adbc_conn | |
try: | |
conn.adbc_get_table_schema("iris") | |
except mgr.ProgrammingError: | |
conn.rollback() | |
create_and_load_iris_sqlite3(conn, iris_path) | |
try: | |
conn.adbc_get_table_schema("iris_view") | |
except mgr.ProgrammingError: | |
conn.rollback() | |
create_and_load_iris_view(conn) | |
yield conn | |
def sqlite_adbc_types(sqlite_adbc_conn, types_data): | |
import adbc_driver_manager as mgr | |
conn = sqlite_adbc_conn | |
try: | |
conn.adbc_get_table_schema("types") | |
except mgr.ProgrammingError: | |
conn.rollback() | |
new_data = [] | |
for entry in types_data: | |
entry["BoolCol"] = int(entry["BoolCol"]) | |
if entry["BoolColWithNull"] is not None: | |
entry["BoolColWithNull"] = int(entry["BoolColWithNull"]) | |
new_data.append(tuple(entry.values())) | |
create_and_load_types_sqlite3(conn, new_data) | |
conn.commit() | |
yield conn | |
def sqlite_buildin(): | |
with contextlib.closing(sqlite3.connect(":memory:")) as closing_conn: | |
with closing_conn as conn: | |
yield conn | |
def sqlite_buildin_iris(sqlite_buildin, iris_path): | |
create_and_load_iris_sqlite3(sqlite_buildin, iris_path) | |
create_and_load_iris_view(sqlite_buildin) | |
yield sqlite_buildin | |
def sqlite_buildin_types(sqlite_buildin, types_data): | |
types_data = [tuple(entry.values()) for entry in types_data] | |
create_and_load_types_sqlite3(sqlite_buildin, types_data) | |
yield sqlite_buildin | |
mysql_connectable = [ | |
pytest.param("mysql_pymysql_engine", marks=pytest.mark.db), | |
pytest.param("mysql_pymysql_conn", marks=pytest.mark.db), | |
] | |
mysql_connectable_iris = [ | |
pytest.param("mysql_pymysql_engine_iris", marks=pytest.mark.db), | |
pytest.param("mysql_pymysql_conn_iris", marks=pytest.mark.db), | |
] | |
mysql_connectable_types = [ | |
pytest.param("mysql_pymysql_engine_types", marks=pytest.mark.db), | |
pytest.param("mysql_pymysql_conn_types", marks=pytest.mark.db), | |
] | |
postgresql_connectable = [ | |
pytest.param("postgresql_psycopg2_engine", marks=pytest.mark.db), | |
pytest.param("postgresql_psycopg2_conn", marks=pytest.mark.db), | |
] | |
postgresql_connectable_iris = [ | |
pytest.param("postgresql_psycopg2_engine_iris", marks=pytest.mark.db), | |
pytest.param("postgresql_psycopg2_conn_iris", marks=pytest.mark.db), | |
] | |
postgresql_connectable_types = [ | |
pytest.param("postgresql_psycopg2_engine_types", marks=pytest.mark.db), | |
pytest.param("postgresql_psycopg2_conn_types", marks=pytest.mark.db), | |
] | |
sqlite_connectable = [ | |
"sqlite_engine", | |
"sqlite_conn", | |
"sqlite_str", | |
] | |
sqlite_connectable_iris = [ | |
"sqlite_engine_iris", | |
"sqlite_conn_iris", | |
"sqlite_str_iris", | |
] | |
sqlite_connectable_types = [ | |
"sqlite_engine_types", | |
"sqlite_conn_types", | |
"sqlite_str_types", | |
] | |
sqlalchemy_connectable = mysql_connectable + postgresql_connectable + sqlite_connectable | |
sqlalchemy_connectable_iris = ( | |
mysql_connectable_iris + postgresql_connectable_iris + sqlite_connectable_iris | |
) | |
sqlalchemy_connectable_types = ( | |
mysql_connectable_types + postgresql_connectable_types + sqlite_connectable_types | |
) | |
adbc_connectable = [ | |
"sqlite_adbc_conn", | |
pytest.param("postgresql_adbc_conn", marks=pytest.mark.db), | |
] | |
adbc_connectable_iris = [ | |
pytest.param("postgresql_adbc_iris", marks=pytest.mark.db), | |
pytest.param("sqlite_adbc_iris", marks=pytest.mark.db), | |
] | |
adbc_connectable_types = [ | |
pytest.param("postgresql_adbc_types", marks=pytest.mark.db), | |
pytest.param("sqlite_adbc_types", marks=pytest.mark.db), | |
] | |
all_connectable = sqlalchemy_connectable + ["sqlite_buildin"] + adbc_connectable | |
all_connectable_iris = ( | |
sqlalchemy_connectable_iris + ["sqlite_buildin_iris"] + adbc_connectable_iris | |
) | |
all_connectable_types = ( | |
sqlalchemy_connectable_types + ["sqlite_buildin_types"] + adbc_connectable_types | |
) | |
def test_dataframe_to_sql(conn, test_frame1, request): | |
# GH 51086 if conn is sqlite_engine | |
conn = request.getfixturevalue(conn) | |
test_frame1.to_sql(name="test", con=conn, if_exists="append", index=False) | |
def test_dataframe_to_sql_empty(conn, test_frame1, request): | |
if conn == "postgresql_adbc_conn": | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="postgres ADBC driver cannot insert index with null type", | |
strict=True, | |
) | |
) | |
# GH 51086 if conn is sqlite_engine | |
conn = request.getfixturevalue(conn) | |
empty_df = test_frame1.iloc[:0] | |
empty_df.to_sql(name="test", con=conn, if_exists="append", index=False) | |
def test_dataframe_to_sql_arrow_dtypes(conn, request): | |
# GH 52046 | |
pytest.importorskip("pyarrow") | |
df = DataFrame( | |
{ | |
"int": pd.array([1], dtype="int8[pyarrow]"), | |
"datetime": pd.array( | |
[datetime(2023, 1, 1)], dtype="timestamp[ns][pyarrow]" | |
), | |
"date": pd.array([date(2023, 1, 1)], dtype="date32[day][pyarrow]"), | |
"timedelta": pd.array([timedelta(1)], dtype="duration[ns][pyarrow]"), | |
"string": pd.array(["a"], dtype="string[pyarrow]"), | |
} | |
) | |
if "adbc" in conn: | |
if conn == "sqlite_adbc_conn": | |
df = df.drop(columns=["timedelta"]) | |
if pa_version_under14p1: | |
exp_warning = DeprecationWarning | |
msg = "is_sparse is deprecated" | |
else: | |
exp_warning = None | |
msg = "" | |
else: | |
exp_warning = UserWarning | |
msg = "the 'timedelta'" | |
conn = request.getfixturevalue(conn) | |
with tm.assert_produces_warning(exp_warning, match=msg, check_stacklevel=False): | |
df.to_sql(name="test_arrow", con=conn, if_exists="replace", index=False) | |
def test_dataframe_to_sql_arrow_dtypes_missing(conn, request, nulls_fixture): | |
# GH 52046 | |
pytest.importorskip("pyarrow") | |
df = DataFrame( | |
{ | |
"datetime": pd.array( | |
[datetime(2023, 1, 1), nulls_fixture], dtype="timestamp[ns][pyarrow]" | |
), | |
} | |
) | |
conn = request.getfixturevalue(conn) | |
df.to_sql(name="test_arrow", con=conn, if_exists="replace", index=False) | |
def test_to_sql(conn, method, test_frame1, request): | |
if method == "multi" and "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'method' not implemented for ADBC drivers", strict=True | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.to_sql(test_frame1, "test_frame", method=method) | |
assert pandasSQL.has_table("test_frame") | |
assert count_rows(conn, "test_frame") == len(test_frame1) | |
def test_to_sql_exist(conn, mode, num_row_coef, test_frame1, request): | |
conn = request.getfixturevalue(conn) | |
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") | |
pandasSQL.to_sql(test_frame1, "test_frame", if_exists=mode) | |
assert pandasSQL.has_table("test_frame") | |
assert count_rows(conn, "test_frame") == num_row_coef * len(test_frame1) | |
def test_to_sql_exist_fail(conn, test_frame1, request): | |
conn = request.getfixturevalue(conn) | |
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") | |
assert pandasSQL.has_table("test_frame") | |
msg = "Table 'test_frame' already exists" | |
with pytest.raises(ValueError, match=msg): | |
pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") | |
def test_read_iris_query(conn, request): | |
conn = request.getfixturevalue(conn) | |
iris_frame = read_sql_query("SELECT * FROM iris", conn) | |
check_iris_frame(iris_frame) | |
iris_frame = pd.read_sql("SELECT * FROM iris", conn) | |
check_iris_frame(iris_frame) | |
iris_frame = pd.read_sql("SELECT * FROM iris where 0=1", conn) | |
assert iris_frame.shape == (0, 5) | |
assert "SepalWidth" in iris_frame.columns | |
def test_read_iris_query_chunksize(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'chunksize' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
iris_frame = concat(read_sql_query("SELECT * FROM iris", conn, chunksize=7)) | |
check_iris_frame(iris_frame) | |
iris_frame = concat(pd.read_sql("SELECT * FROM iris", conn, chunksize=7)) | |
check_iris_frame(iris_frame) | |
iris_frame = concat(pd.read_sql("SELECT * FROM iris where 0=1", conn, chunksize=7)) | |
assert iris_frame.shape == (0, 5) | |
assert "SepalWidth" in iris_frame.columns | |
def test_read_iris_query_expression_with_parameter(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'chunksize' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import ( | |
MetaData, | |
Table, | |
create_engine, | |
select, | |
) | |
metadata = MetaData() | |
autoload_con = create_engine(conn) if isinstance(conn, str) else conn | |
iris = Table("iris", metadata, autoload_with=autoload_con) | |
iris_frame = read_sql_query( | |
select(iris), conn, params={"name": "Iris-setosa", "length": 5.1} | |
) | |
check_iris_frame(iris_frame) | |
if isinstance(conn, str): | |
autoload_con.dispose() | |
def test_read_iris_query_string_with_parameter(conn, request, sql_strings): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'chunksize' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
for db, query in sql_strings["read_parameters"].items(): | |
if db in conn: | |
break | |
else: | |
raise KeyError(f"No part of {conn} found in sql_strings['read_parameters']") | |
conn = request.getfixturevalue(conn) | |
iris_frame = read_sql_query(query, conn, params=("Iris-setosa", 5.1)) | |
check_iris_frame(iris_frame) | |
def test_read_iris_table(conn, request): | |
# GH 51015 if conn = sqlite_iris_str | |
conn = request.getfixturevalue(conn) | |
iris_frame = read_sql_table("iris", conn) | |
check_iris_frame(iris_frame) | |
iris_frame = pd.read_sql("iris", conn) | |
check_iris_frame(iris_frame) | |
def test_read_iris_table_chunksize(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") | |
) | |
conn = request.getfixturevalue(conn) | |
iris_frame = concat(read_sql_table("iris", conn, chunksize=7)) | |
check_iris_frame(iris_frame) | |
iris_frame = concat(pd.read_sql("iris", conn, chunksize=7)) | |
check_iris_frame(iris_frame) | |
def test_to_sql_callable(conn, test_frame1, request): | |
conn = request.getfixturevalue(conn) | |
check = [] # used to double check function below is really being used | |
def sample(pd_table, conn, keys, data_iter): | |
check.append(1) | |
data = [dict(zip(keys, row)) for row in data_iter] | |
conn.execute(pd_table.table.insert(), data) | |
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.to_sql(test_frame1, "test_frame", method=sample) | |
assert pandasSQL.has_table("test_frame") | |
assert check == [1] | |
assert count_rows(conn, "test_frame") == len(test_frame1) | |
def test_default_type_conversion(conn, request): | |
conn_name = conn | |
if conn_name == "sqlite_buildin_types": | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="sqlite_buildin connection does not implement read_sql_table" | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
df = sql.read_sql_table("types", conn) | |
assert issubclass(df.FloatCol.dtype.type, np.floating) | |
assert issubclass(df.IntCol.dtype.type, np.integer) | |
# MySQL/sqlite has no real BOOL type | |
if "postgresql" in conn_name: | |
assert issubclass(df.BoolCol.dtype.type, np.bool_) | |
else: | |
assert issubclass(df.BoolCol.dtype.type, np.integer) | |
# Int column with NA values stays as float | |
assert issubclass(df.IntColWithNull.dtype.type, np.floating) | |
# Bool column with NA = int column with NA values => becomes float | |
if "postgresql" in conn_name: | |
assert issubclass(df.BoolColWithNull.dtype.type, object) | |
else: | |
assert issubclass(df.BoolColWithNull.dtype.type, np.floating) | |
def test_read_procedure(conn, request): | |
conn = request.getfixturevalue(conn) | |
# GH 7324 | |
# Although it is more an api test, it is added to the | |
# mysql tests as sqlite does not have stored procedures | |
from sqlalchemy import text | |
from sqlalchemy.engine import Engine | |
df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) | |
df.to_sql(name="test_frame", con=conn, index=False) | |
proc = """DROP PROCEDURE IF EXISTS get_testdb; | |
CREATE PROCEDURE get_testdb () | |
BEGIN | |
SELECT * FROM test_frame; | |
END""" | |
proc = text(proc) | |
if isinstance(conn, Engine): | |
with conn.connect() as engine_conn: | |
with engine_conn.begin(): | |
engine_conn.execute(proc) | |
else: | |
with conn.begin(): | |
conn.execute(proc) | |
res1 = sql.read_sql_query("CALL get_testdb();", conn) | |
tm.assert_frame_equal(df, res1) | |
# test delegation to read_sql_query | |
res2 = sql.read_sql("CALL get_testdb();", conn) | |
tm.assert_frame_equal(df, res2) | |
def test_copy_from_callable_insertion_method(conn, expected_count, request): | |
# GH 8953 | |
# Example in io.rst found under _io.sql.method | |
# not available in sqlite, mysql | |
def psql_insert_copy(table, conn, keys, data_iter): | |
# gets a DBAPI connection that can provide a cursor | |
dbapi_conn = conn.connection | |
with dbapi_conn.cursor() as cur: | |
s_buf = StringIO() | |
writer = csv.writer(s_buf) | |
writer.writerows(data_iter) | |
s_buf.seek(0) | |
columns = ", ".join([f'"{k}"' for k in keys]) | |
if table.schema: | |
table_name = f"{table.schema}.{table.name}" | |
else: | |
table_name = table.name | |
sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" | |
cur.copy_expert(sql=sql_query, file=s_buf) | |
return expected_count | |
conn = request.getfixturevalue(conn) | |
expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) | |
result_count = expected.to_sql( | |
name="test_frame", con=conn, index=False, method=psql_insert_copy | |
) | |
# GH 46891 | |
if expected_count is None: | |
assert result_count is None | |
else: | |
assert result_count == expected_count | |
result = sql.read_sql_table("test_frame", conn) | |
tm.assert_frame_equal(result, expected) | |
def test_insertion_method_on_conflict_do_nothing(conn, request): | |
# GH 15988: Example in to_sql docstring | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy.dialects.postgresql import insert | |
from sqlalchemy.engine import Engine | |
from sqlalchemy.sql import text | |
def insert_on_conflict(table, conn, keys, data_iter): | |
data = [dict(zip(keys, row)) for row in data_iter] | |
stmt = ( | |
insert(table.table) | |
.values(data) | |
.on_conflict_do_nothing(index_elements=["a"]) | |
) | |
result = conn.execute(stmt) | |
return result.rowcount | |
create_sql = text( | |
""" | |
CREATE TABLE test_insert_conflict ( | |
a integer PRIMARY KEY, | |
b numeric, | |
c text | |
); | |
""" | |
) | |
if isinstance(conn, Engine): | |
with conn.connect() as con: | |
with con.begin(): | |
con.execute(create_sql) | |
else: | |
with conn.begin(): | |
conn.execute(create_sql) | |
expected = DataFrame([[1, 2.1, "a"]], columns=list("abc")) | |
expected.to_sql( | |
name="test_insert_conflict", con=conn, if_exists="append", index=False | |
) | |
df_insert = DataFrame([[1, 3.2, "b"]], columns=list("abc")) | |
inserted = df_insert.to_sql( | |
name="test_insert_conflict", | |
con=conn, | |
index=False, | |
if_exists="append", | |
method=insert_on_conflict, | |
) | |
result = sql.read_sql_table("test_insert_conflict", conn) | |
tm.assert_frame_equal(result, expected) | |
assert inserted == 0 | |
# Cleanup | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_insert_conflict") | |
def test_to_sql_on_public_schema(conn, request): | |
if "sqlite" in conn or "mysql" in conn: | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="test for public schema only specific to postgresql" | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
test_data = DataFrame([[1, 2.1, "a"], [2, 3.1, "b"]], columns=list("abc")) | |
test_data.to_sql( | |
name="test_public_schema", | |
con=conn, | |
if_exists="append", | |
index=False, | |
schema="public", | |
) | |
df_out = sql.read_sql_table("test_public_schema", conn, schema="public") | |
tm.assert_frame_equal(test_data, df_out) | |
def test_insertion_method_on_conflict_update(conn, request): | |
# GH 14553: Example in to_sql docstring | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy.dialects.mysql import insert | |
from sqlalchemy.engine import Engine | |
from sqlalchemy.sql import text | |
def insert_on_conflict(table, conn, keys, data_iter): | |
data = [dict(zip(keys, row)) for row in data_iter] | |
stmt = insert(table.table).values(data) | |
stmt = stmt.on_duplicate_key_update(b=stmt.inserted.b, c=stmt.inserted.c) | |
result = conn.execute(stmt) | |
return result.rowcount | |
create_sql = text( | |
""" | |
CREATE TABLE test_insert_conflict ( | |
a INT PRIMARY KEY, | |
b FLOAT, | |
c VARCHAR(10) | |
); | |
""" | |
) | |
if isinstance(conn, Engine): | |
with conn.connect() as con: | |
with con.begin(): | |
con.execute(create_sql) | |
else: | |
with conn.begin(): | |
conn.execute(create_sql) | |
df = DataFrame([[1, 2.1, "a"]], columns=list("abc")) | |
df.to_sql(name="test_insert_conflict", con=conn, if_exists="append", index=False) | |
expected = DataFrame([[1, 3.2, "b"]], columns=list("abc")) | |
inserted = expected.to_sql( | |
name="test_insert_conflict", | |
con=conn, | |
index=False, | |
if_exists="append", | |
method=insert_on_conflict, | |
) | |
result = sql.read_sql_table("test_insert_conflict", conn) | |
tm.assert_frame_equal(result, expected) | |
assert inserted == 2 | |
# Cleanup | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_insert_conflict") | |
def test_read_view_postgres(conn, request): | |
# GH 52969 | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy.engine import Engine | |
from sqlalchemy.sql import text | |
table_name = f"group_{uuid.uuid4().hex}" | |
view_name = f"group_view_{uuid.uuid4().hex}" | |
sql_stmt = text( | |
f""" | |
CREATE TABLE {table_name} ( | |
group_id INTEGER, | |
name TEXT | |
); | |
INSERT INTO {table_name} VALUES | |
(1, 'name'); | |
CREATE VIEW {view_name} | |
AS | |
SELECT * FROM {table_name}; | |
""" | |
) | |
if isinstance(conn, Engine): | |
with conn.connect() as con: | |
with con.begin(): | |
con.execute(sql_stmt) | |
else: | |
with conn.begin(): | |
conn.execute(sql_stmt) | |
result = read_sql_table(view_name, conn) | |
expected = DataFrame({"group_id": [1], "name": "name"}) | |
tm.assert_frame_equal(result, expected) | |
def test_read_view_sqlite(sqlite_buildin): | |
# GH 52969 | |
create_table = """ | |
CREATE TABLE groups ( | |
group_id INTEGER, | |
name TEXT | |
); | |
""" | |
insert_into = """ | |
INSERT INTO groups VALUES | |
(1, 'name'); | |
""" | |
create_view = """ | |
CREATE VIEW group_view | |
AS | |
SELECT * FROM groups; | |
""" | |
sqlite_buildin.execute(create_table) | |
sqlite_buildin.execute(insert_into) | |
sqlite_buildin.execute(create_view) | |
result = pd.read_sql("SELECT * FROM group_view", sqlite_buildin) | |
expected = DataFrame({"group_id": [1], "name": "name"}) | |
tm.assert_frame_equal(result, expected) | |
def test_execute_typeerror(sqlite_engine_iris): | |
with pytest.raises(TypeError, match="pandas.io.sql.execute requires a connection"): | |
with tm.assert_produces_warning( | |
FutureWarning, | |
match="`pandas.io.sql.execute` is deprecated and " | |
"will be removed in the future version.", | |
): | |
sql.execute("select * from iris", sqlite_engine_iris) | |
def test_execute_deprecated(sqlite_conn_iris): | |
# GH50185 | |
with tm.assert_produces_warning( | |
FutureWarning, | |
match="`pandas.io.sql.execute` is deprecated and " | |
"will be removed in the future version.", | |
): | |
sql.execute("select * from iris", sqlite_conn_iris) | |
def flavor(conn_name): | |
if "postgresql" in conn_name: | |
return "postgresql" | |
elif "sqlite" in conn_name: | |
return "sqlite" | |
elif "mysql" in conn_name: | |
return "mysql" | |
raise ValueError(f"unsupported connection: {conn_name}") | |
def test_read_sql_iris_parameter(conn, request, sql_strings): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'params' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
query = sql_strings["read_parameters"][flavor(conn_name)] | |
params = ("Iris-setosa", 5.1) | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
iris_frame = pandasSQL.read_query(query, params=params) | |
check_iris_frame(iris_frame) | |
def test_read_sql_iris_named_parameter(conn, request, sql_strings): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'params' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
query = sql_strings["read_named_parameters"][flavor(conn_name)] | |
params = {"name": "Iris-setosa", "length": 5.1} | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
iris_frame = pandasSQL.read_query(query, params=params) | |
check_iris_frame(iris_frame) | |
def test_read_sql_iris_no_parameter_with_percent(conn, request, sql_strings): | |
if "mysql" in conn or ("postgresql" in conn and "adbc" not in conn): | |
request.applymarker(pytest.mark.xfail(reason="broken test")) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
query = sql_strings["read_no_parameters_with_percent"][flavor(conn_name)] | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
iris_frame = pandasSQL.read_query(query, params=None) | |
check_iris_frame(iris_frame) | |
# ----------------------------------------------------------------------------- | |
# -- Testing the public API | |
def test_api_read_sql_view(conn, request): | |
conn = request.getfixturevalue(conn) | |
iris_frame = sql.read_sql_query("SELECT * FROM iris_view", conn) | |
check_iris_frame(iris_frame) | |
def test_api_read_sql_with_chunksize_no_result(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") | |
) | |
conn = request.getfixturevalue(conn) | |
query = 'SELECT * FROM iris_view WHERE "SepalLength" < 0.0' | |
with_batch = sql.read_sql_query(query, conn, chunksize=5) | |
without_batch = sql.read_sql_query(query, conn) | |
tm.assert_frame_equal(concat(with_batch), without_batch) | |
def test_api_to_sql(conn, request, test_frame1): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame1", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame1") | |
sql.to_sql(test_frame1, "test_frame1", conn) | |
assert sql.has_table("test_frame1", conn) | |
def test_api_to_sql_fail(conn, request, test_frame1): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame2", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame2") | |
sql.to_sql(test_frame1, "test_frame2", conn, if_exists="fail") | |
assert sql.has_table("test_frame2", conn) | |
msg = "Table 'test_frame2' already exists" | |
with pytest.raises(ValueError, match=msg): | |
sql.to_sql(test_frame1, "test_frame2", conn, if_exists="fail") | |
def test_api_to_sql_replace(conn, request, test_frame1): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame3", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame3") | |
sql.to_sql(test_frame1, "test_frame3", conn, if_exists="fail") | |
# Add to table again | |
sql.to_sql(test_frame1, "test_frame3", conn, if_exists="replace") | |
assert sql.has_table("test_frame3", conn) | |
num_entries = len(test_frame1) | |
num_rows = count_rows(conn, "test_frame3") | |
assert num_rows == num_entries | |
def test_api_to_sql_append(conn, request, test_frame1): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame4", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame4") | |
assert sql.to_sql(test_frame1, "test_frame4", conn, if_exists="fail") == 4 | |
# Add to table again | |
assert sql.to_sql(test_frame1, "test_frame4", conn, if_exists="append") == 4 | |
assert sql.has_table("test_frame4", conn) | |
num_entries = 2 * len(test_frame1) | |
num_rows = count_rows(conn, "test_frame4") | |
assert num_rows == num_entries | |
def test_api_to_sql_type_mapping(conn, request, test_frame3): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame5", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame5") | |
sql.to_sql(test_frame3, "test_frame5", conn, index=False) | |
result = sql.read_sql("SELECT * FROM test_frame5", conn) | |
tm.assert_frame_equal(test_frame3, result) | |
def test_api_to_sql_series(conn, request): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_series", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_series") | |
s = Series(np.arange(5, dtype="int64"), name="series") | |
sql.to_sql(s, "test_series", conn, index=False) | |
s2 = sql.read_sql_query("SELECT * FROM test_series", conn) | |
tm.assert_frame_equal(s.to_frame(), s2) | |
def test_api_roundtrip(conn, request, test_frame1): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame_roundtrip", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame_roundtrip") | |
sql.to_sql(test_frame1, "test_frame_roundtrip", con=conn) | |
result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=conn) | |
# HACK! | |
if "adbc" in conn_name: | |
result = result.rename(columns={"__index_level_0__": "level_0"}) | |
result.index = test_frame1.index | |
result.set_index("level_0", inplace=True) | |
result.index.astype(int) | |
result.index.name = None | |
tm.assert_frame_equal(result, test_frame1) | |
def test_api_roundtrip_chunksize(conn, request, test_frame1): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") | |
) | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_frame_roundtrip", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_frame_roundtrip") | |
sql.to_sql( | |
test_frame1, | |
"test_frame_roundtrip", | |
con=conn, | |
index=False, | |
chunksize=2, | |
) | |
result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=conn) | |
tm.assert_frame_equal(result, test_frame1) | |
def test_api_execute_sql(conn, request): | |
# drop_sql = "DROP TABLE IF EXISTS test" # should already be done | |
conn = request.getfixturevalue(conn) | |
with sql.pandasSQL_builder(conn) as pandas_sql: | |
iris_results = pandas_sql.execute("SELECT * FROM iris") | |
row = iris_results.fetchone() | |
iris_results.close() | |
assert list(row) == [5.1, 3.5, 1.4, 0.2, "Iris-setosa"] | |
def test_api_date_parsing(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
# Test date parsing in read_sql | |
# No Parsing | |
df = sql.read_sql_query("SELECT * FROM types", conn) | |
if not ("mysql" in conn_name or "postgres" in conn_name): | |
assert not issubclass(df.DateCol.dtype.type, np.datetime64) | |
df = sql.read_sql_query("SELECT * FROM types", conn, parse_dates=["DateCol"]) | |
assert issubclass(df.DateCol.dtype.type, np.datetime64) | |
assert df.DateCol.tolist() == [ | |
Timestamp(2000, 1, 3, 0, 0, 0), | |
Timestamp(2000, 1, 4, 0, 0, 0), | |
] | |
df = sql.read_sql_query( | |
"SELECT * FROM types", | |
conn, | |
parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, | |
) | |
assert issubclass(df.DateCol.dtype.type, np.datetime64) | |
assert df.DateCol.tolist() == [ | |
Timestamp(2000, 1, 3, 0, 0, 0), | |
Timestamp(2000, 1, 4, 0, 0, 0), | |
] | |
df = sql.read_sql_query("SELECT * FROM types", conn, parse_dates=["IntDateCol"]) | |
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) | |
assert df.IntDateCol.tolist() == [ | |
Timestamp(1986, 12, 25, 0, 0, 0), | |
Timestamp(2013, 1, 1, 0, 0, 0), | |
] | |
df = sql.read_sql_query( | |
"SELECT * FROM types", conn, parse_dates={"IntDateCol": "s"} | |
) | |
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) | |
assert df.IntDateCol.tolist() == [ | |
Timestamp(1986, 12, 25, 0, 0, 0), | |
Timestamp(2013, 1, 1, 0, 0, 0), | |
] | |
df = sql.read_sql_query( | |
"SELECT * FROM types", | |
conn, | |
parse_dates={"IntDateOnlyCol": "%Y%m%d"}, | |
) | |
assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) | |
assert df.IntDateOnlyCol.tolist() == [ | |
Timestamp("2010-10-10"), | |
Timestamp("2010-12-12"), | |
] | |
def test_api_custom_dateparsing_error( | |
conn, request, read_sql, text, mode, error, types_data_frame | |
): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if text == "types" and conn_name == "sqlite_buildin_types": | |
request.applymarker( | |
pytest.mark.xfail(reason="failing combination of arguments") | |
) | |
expected = types_data_frame.astype({"DateCol": "datetime64[ns]"}) | |
result = read_sql( | |
text, | |
con=conn, | |
parse_dates={ | |
"DateCol": {"errors": error}, | |
}, | |
) | |
if "postgres" in conn_name: | |
# TODO: clean up types_data_frame fixture | |
result["BoolCol"] = result["BoolCol"].astype(int) | |
result["BoolColWithNull"] = result["BoolColWithNull"].astype(float) | |
if conn_name == "postgresql_adbc_types": | |
expected = expected.astype( | |
{ | |
"IntDateCol": "int32", | |
"IntDateOnlyCol": "int32", | |
"IntCol": "int32", | |
} | |
) | |
if not pa_version_under13p0: | |
# TODO: is this astype safe? | |
expected["DateCol"] = expected["DateCol"].astype("datetime64[us]") | |
tm.assert_frame_equal(result, expected) | |
def test_api_date_and_index(conn, request): | |
# Test case where same column appears in parse_date and index_col | |
conn = request.getfixturevalue(conn) | |
df = sql.read_sql_query( | |
"SELECT * FROM types", | |
conn, | |
index_col="DateCol", | |
parse_dates=["DateCol", "IntDateCol"], | |
) | |
assert issubclass(df.index.dtype.type, np.datetime64) | |
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) | |
def test_api_timedelta(conn, request): | |
# see #6921 | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_timedelta", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_timedelta") | |
df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() | |
if conn_name == "sqlite_adbc_conn": | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="sqlite ADBC driver doesn't implement timedelta", | |
) | |
) | |
if "adbc" in conn_name: | |
if pa_version_under14p1: | |
exp_warning = DeprecationWarning | |
else: | |
exp_warning = None | |
else: | |
exp_warning = UserWarning | |
with tm.assert_produces_warning(exp_warning, check_stacklevel=False): | |
result_count = df.to_sql(name="test_timedelta", con=conn) | |
assert result_count == 2 | |
result = sql.read_sql_query("SELECT * FROM test_timedelta", conn) | |
if conn_name == "postgresql_adbc_conn": | |
# TODO: Postgres stores an INTERVAL, which ADBC reads as a Month-Day-Nano | |
# Interval; the default pandas type mapper maps this to a DateOffset | |
# but maybe we should try and restore the timedelta here? | |
expected = Series( | |
[ | |
pd.DateOffset(months=0, days=0, microseconds=1000000, nanoseconds=0), | |
pd.DateOffset(months=0, days=0, microseconds=3000000, nanoseconds=0), | |
], | |
name="foo", | |
) | |
else: | |
expected = df["foo"].astype("int64") | |
tm.assert_series_equal(result["foo"], expected) | |
def test_api_complex_raises(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
df = DataFrame({"a": [1 + 1j, 2j]}) | |
if "adbc" in conn_name: | |
msg = "datatypes not supported" | |
else: | |
msg = "Complex datatypes not supported" | |
with pytest.raises(ValueError, match=msg): | |
assert df.to_sql("test_complex", con=conn) is None | |
def test_api_to_sql_index_label(conn, request, index_name, index_label, expected): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="index_label argument NotImplemented with ADBC") | |
) | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_index_label", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_index_label") | |
temp_frame = DataFrame({"col1": range(4)}) | |
temp_frame.index.name = index_name | |
query = "SELECT * FROM test_index_label" | |
sql.to_sql(temp_frame, "test_index_label", conn, index_label=index_label) | |
frame = sql.read_sql_query(query, conn) | |
assert frame.columns[0] == expected | |
def test_api_to_sql_index_label_multiindex(conn, request): | |
conn_name = conn | |
if "mysql" in conn_name: | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="MySQL can fail using TEXT without length as key", strict=False | |
) | |
) | |
elif "adbc" in conn_name: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="index_label argument NotImplemented with ADBC") | |
) | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_index_label", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_index_label") | |
expected_row_count = 4 | |
temp_frame = DataFrame( | |
{"col1": range(4)}, | |
index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), | |
) | |
# no index name, defaults to 'level_0' and 'level_1' | |
result = sql.to_sql(temp_frame, "test_index_label", conn) | |
assert result == expected_row_count | |
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) | |
assert frame.columns[0] == "level_0" | |
assert frame.columns[1] == "level_1" | |
# specifying index_label | |
result = sql.to_sql( | |
temp_frame, | |
"test_index_label", | |
conn, | |
if_exists="replace", | |
index_label=["A", "B"], | |
) | |
assert result == expected_row_count | |
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) | |
assert frame.columns[:2].tolist() == ["A", "B"] | |
# using the index name | |
temp_frame.index.names = ["A", "B"] | |
result = sql.to_sql(temp_frame, "test_index_label", conn, if_exists="replace") | |
assert result == expected_row_count | |
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) | |
assert frame.columns[:2].tolist() == ["A", "B"] | |
# has index name, but specifying index_label | |
result = sql.to_sql( | |
temp_frame, | |
"test_index_label", | |
conn, | |
if_exists="replace", | |
index_label=["C", "D"], | |
) | |
assert result == expected_row_count | |
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) | |
assert frame.columns[:2].tolist() == ["C", "D"] | |
msg = "Length of 'index_label' should match number of levels, which is 2" | |
with pytest.raises(ValueError, match=msg): | |
sql.to_sql( | |
temp_frame, | |
"test_index_label", | |
conn, | |
if_exists="replace", | |
index_label="C", | |
) | |
def test_api_multiindex_roundtrip(conn, request): | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_multiindex_roundtrip", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_multiindex_roundtrip") | |
df = DataFrame.from_records( | |
[(1, 2.1, "line1"), (2, 1.5, "line2")], | |
columns=["A", "B", "C"], | |
index=["A", "B"], | |
) | |
df.to_sql(name="test_multiindex_roundtrip", con=conn) | |
result = sql.read_sql_query( | |
"SELECT * FROM test_multiindex_roundtrip", conn, index_col=["A", "B"] | |
) | |
tm.assert_frame_equal(df, result, check_index_type=True) | |
def test_api_dtype_argument(conn, request, dtype): | |
# GH10285 Add dtype argument to read_sql_query | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_dtype_argument", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_dtype_argument") | |
df = DataFrame([[1.2, 3.4], [5.6, 7.8]], columns=["A", "B"]) | |
assert df.to_sql(name="test_dtype_argument", con=conn) == 2 | |
expected = df.astype(dtype) | |
if "postgres" in conn_name: | |
query = 'SELECT "A", "B" FROM test_dtype_argument' | |
else: | |
query = "SELECT A, B FROM test_dtype_argument" | |
result = sql.read_sql_query(query, con=conn, dtype=dtype) | |
tm.assert_frame_equal(result, expected) | |
def test_api_integer_col_names(conn, request): | |
conn = request.getfixturevalue(conn) | |
df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) | |
sql.to_sql(df, "test_frame_integer_col_names", conn, if_exists="replace") | |
def test_api_get_schema(conn, request, test_frame1): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'get_schema' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
create_sql = sql.get_schema(test_frame1, "test", con=conn) | |
assert "CREATE" in create_sql | |
def test_api_get_schema_with_schema(conn, request, test_frame1): | |
# GH28486 | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'get_schema' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
create_sql = sql.get_schema(test_frame1, "test", con=conn, schema="pypi") | |
assert "CREATE TABLE pypi." in create_sql | |
def test_api_get_schema_dtypes(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'get_schema' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) | |
if conn_name == "sqlite_buildin": | |
dtype = "INTEGER" | |
else: | |
from sqlalchemy import Integer | |
dtype = Integer | |
create_sql = sql.get_schema(float_frame, "test", con=conn, dtype={"b": dtype}) | |
assert "CREATE" in create_sql | |
assert "INTEGER" in create_sql | |
def test_api_get_schema_keys(conn, request, test_frame1): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="'get_schema' not implemented for ADBC drivers", | |
strict=True, | |
) | |
) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) | |
create_sql = sql.get_schema(frame, "test", con=conn, keys="Col1") | |
if "mysql" in conn_name: | |
constraint_sentence = "CONSTRAINT test_pk PRIMARY KEY (`Col1`)" | |
else: | |
constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' | |
assert constraint_sentence in create_sql | |
# multiple columns as key (GH10385) | |
create_sql = sql.get_schema(test_frame1, "test", con=conn, keys=["A", "B"]) | |
if "mysql" in conn_name: | |
constraint_sentence = "CONSTRAINT test_pk PRIMARY KEY (`A`, `B`)" | |
else: | |
constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' | |
assert constraint_sentence in create_sql | |
def test_api_chunksize_read(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") | |
) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_chunksize", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_chunksize") | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((22, 5)), columns=list("abcde") | |
) | |
df.to_sql(name="test_chunksize", con=conn, index=False) | |
# reading the query in one time | |
res1 = sql.read_sql_query("select * from test_chunksize", conn) | |
# reading the query in chunks with read_sql_query | |
res2 = DataFrame() | |
i = 0 | |
sizes = [5, 5, 5, 5, 2] | |
for chunk in sql.read_sql_query("select * from test_chunksize", conn, chunksize=5): | |
res2 = concat([res2, chunk], ignore_index=True) | |
assert len(chunk) == sizes[i] | |
i += 1 | |
tm.assert_frame_equal(res1, res2) | |
# reading the query in chunks with read_sql_query | |
if conn_name == "sqlite_buildin": | |
with pytest.raises(NotImplementedError, match=""): | |
sql.read_sql_table("test_chunksize", conn, chunksize=5) | |
else: | |
res3 = DataFrame() | |
i = 0 | |
sizes = [5, 5, 5, 5, 2] | |
for chunk in sql.read_sql_table("test_chunksize", conn, chunksize=5): | |
res3 = concat([res3, chunk], ignore_index=True) | |
assert len(chunk) == sizes[i] | |
i += 1 | |
tm.assert_frame_equal(res1, res3) | |
def test_api_categorical(conn, request): | |
if conn == "postgresql_adbc_conn": | |
adbc = import_optional_dependency("adbc_driver_postgresql", errors="ignore") | |
if adbc is not None and Version(adbc.__version__) < Version("0.9.0"): | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="categorical dtype not implemented for ADBC postgres driver", | |
strict=True, | |
) | |
) | |
# GH8624 | |
# test that categorical gets written correctly as dense column | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_categorical", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_categorical") | |
df = DataFrame( | |
{ | |
"person_id": [1, 2, 3], | |
"person_name": ["John P. Doe", "Jane Dove", "John P. Doe"], | |
} | |
) | |
df2 = df.copy() | |
df2["person_name"] = df2["person_name"].astype("category") | |
df2.to_sql(name="test_categorical", con=conn, index=False) | |
res = sql.read_sql_query("SELECT * FROM test_categorical", conn) | |
tm.assert_frame_equal(res, df) | |
def test_api_unicode_column_name(conn, request): | |
# GH 11431 | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_unicode", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_unicode") | |
df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) | |
df.to_sql(name="test_unicode", con=conn, index=False) | |
def test_api_escaped_table_name(conn, request): | |
# GH 13206 | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("d1187b08-4943-4c8d-a7f6", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("d1187b08-4943-4c8d-a7f6") | |
df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) | |
df.to_sql(name="d1187b08-4943-4c8d-a7f6", con=conn, index=False) | |
if "postgres" in conn_name: | |
query = 'SELECT * FROM "d1187b08-4943-4c8d-a7f6"' | |
else: | |
query = "SELECT * FROM `d1187b08-4943-4c8d-a7f6`" | |
res = sql.read_sql_query(query, conn) | |
tm.assert_frame_equal(res, df) | |
def test_api_read_sql_duplicate_columns(conn, request): | |
# GH#53117 | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="pyarrow->pandas throws ValueError", strict=True) | |
) | |
conn = request.getfixturevalue(conn) | |
if sql.has_table("test_table", conn): | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("test_table") | |
df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3], "c": 1}) | |
df.to_sql(name="test_table", con=conn, index=False) | |
result = pd.read_sql("SELECT a, b, a +1 as a, c FROM test_table", conn) | |
expected = DataFrame( | |
[[1, 0.1, 2, 1], [2, 0.2, 3, 1], [3, 0.3, 4, 1]], | |
columns=["a", "b", "a", "c"], | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_read_table_columns(conn, request, test_frame1): | |
# test columns argument in read_table | |
conn_name = conn | |
if conn_name == "sqlite_buildin": | |
request.applymarker(pytest.mark.xfail(reason="Not Implemented")) | |
conn = request.getfixturevalue(conn) | |
sql.to_sql(test_frame1, "test_frame", conn) | |
cols = ["A", "B"] | |
result = sql.read_sql_table("test_frame", conn, columns=cols) | |
assert result.columns.tolist() == cols | |
def test_read_table_index_col(conn, request, test_frame1): | |
# test columns argument in read_table | |
conn_name = conn | |
if conn_name == "sqlite_buildin": | |
request.applymarker(pytest.mark.xfail(reason="Not Implemented")) | |
conn = request.getfixturevalue(conn) | |
sql.to_sql(test_frame1, "test_frame", conn) | |
result = sql.read_sql_table("test_frame", conn, index_col="index") | |
assert result.index.names == ["index"] | |
result = sql.read_sql_table("test_frame", conn, index_col=["A", "B"]) | |
assert result.index.names == ["A", "B"] | |
result = sql.read_sql_table( | |
"test_frame", conn, index_col=["A", "B"], columns=["C", "D"] | |
) | |
assert result.index.names == ["A", "B"] | |
assert result.columns.tolist() == ["C", "D"] | |
def test_read_sql_delegate(conn, request): | |
if conn == "sqlite_buildin_iris": | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="sqlite_buildin connection does not implement read_sql_table" | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
iris_frame1 = sql.read_sql_query("SELECT * FROM iris", conn) | |
iris_frame2 = sql.read_sql("SELECT * FROM iris", conn) | |
tm.assert_frame_equal(iris_frame1, iris_frame2) | |
iris_frame1 = sql.read_sql_table("iris", conn) | |
iris_frame2 = sql.read_sql("iris", conn) | |
tm.assert_frame_equal(iris_frame1, iris_frame2) | |
def test_not_reflect_all_tables(sqlite_conn): | |
conn = sqlite_conn | |
from sqlalchemy import text | |
from sqlalchemy.engine import Engine | |
# create invalid table | |
query_list = [ | |
text("CREATE TABLE invalid (x INTEGER, y UNKNOWN);"), | |
text("CREATE TABLE other_table (x INTEGER, y INTEGER);"), | |
] | |
for query in query_list: | |
if isinstance(conn, Engine): | |
with conn.connect() as conn: | |
with conn.begin(): | |
conn.execute(query) | |
else: | |
with conn.begin(): | |
conn.execute(query) | |
with tm.assert_produces_warning(None): | |
sql.read_sql_table("other_table", conn) | |
sql.read_sql_query("SELECT * FROM other_table", conn) | |
def test_warning_case_insensitive_table_name(conn, request, test_frame1): | |
conn_name = conn | |
if conn_name == "sqlite_buildin" or "adbc" in conn_name: | |
request.applymarker(pytest.mark.xfail(reason="Does not raise warning")) | |
conn = request.getfixturevalue(conn) | |
# see gh-7815 | |
with tm.assert_produces_warning( | |
UserWarning, | |
match=( | |
r"The provided table name 'TABLE1' is not found exactly as such in " | |
r"the database after writing the table, possibly due to case " | |
r"sensitivity issues. Consider using lower case table names." | |
), | |
): | |
with sql.SQLDatabase(conn) as db: | |
db.check_case_sensitive("TABLE1", "") | |
# Test that the warning is certainly NOT triggered in a normal case. | |
with tm.assert_produces_warning(None): | |
test_frame1.to_sql(name="CaseSensitive", con=conn) | |
def test_sqlalchemy_type_mapping(conn, request): | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import TIMESTAMP | |
# Test Timestamp objects (no datetime64 because of timezone) (GH9085) | |
df = DataFrame( | |
{"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)} | |
) | |
with sql.SQLDatabase(conn) as db: | |
table = sql.SQLTable("test_type", db, frame=df) | |
# GH 9086: TIMESTAMP is the suggested type for datetimes with timezones | |
assert isinstance(table.table.c["time"].type, TIMESTAMP) | |
def test_sqlalchemy_integer_mapping(conn, request, integer, expected): | |
# GH35076 Map pandas integer to optimal SQLAlchemy integer type | |
conn = request.getfixturevalue(conn) | |
df = DataFrame([0, 1], columns=["a"], dtype=integer) | |
with sql.SQLDatabase(conn) as db: | |
table = sql.SQLTable("test_type", db, frame=df) | |
result = str(table.table.c.a.type) | |
assert result == expected | |
def test_sqlalchemy_integer_overload_mapping(conn, request, integer): | |
conn = request.getfixturevalue(conn) | |
# GH35076 Map pandas integer to optimal SQLAlchemy integer type | |
df = DataFrame([0, 1], columns=["a"], dtype=integer) | |
with sql.SQLDatabase(conn) as db: | |
with pytest.raises( | |
ValueError, match="Unsigned 64 bit integer datatype is not supported" | |
): | |
sql.SQLTable("test_type", db, frame=df) | |
def test_database_uri_string(conn, request, test_frame1): | |
pytest.importorskip("sqlalchemy") | |
conn = request.getfixturevalue(conn) | |
# Test read_sql and .to_sql method with a database URI (GH10654) | |
# db_uri = 'sqlite:///:memory:' # raises | |
# sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near | |
# "iris": syntax error [SQL: 'iris'] | |
with tm.ensure_clean() as name: | |
db_uri = "sqlite:///" + name | |
table = "iris" | |
test_frame1.to_sql(name=table, con=db_uri, if_exists="replace", index=False) | |
test_frame2 = sql.read_sql(table, db_uri) | |
test_frame3 = sql.read_sql_table(table, db_uri) | |
query = "SELECT * FROM iris" | |
test_frame4 = sql.read_sql_query(query, db_uri) | |
tm.assert_frame_equal(test_frame1, test_frame2) | |
tm.assert_frame_equal(test_frame1, test_frame3) | |
tm.assert_frame_equal(test_frame1, test_frame4) | |
def test_pg8000_sqlalchemy_passthrough_error(conn, request): | |
pytest.importorskip("sqlalchemy") | |
conn = request.getfixturevalue(conn) | |
# using driver that will not be installed on CI to trigger error | |
# in sqlalchemy.create_engine -> test passing of this error to user | |
db_uri = "postgresql+pg8000://user:pass@host/dbname" | |
with pytest.raises(ImportError, match="pg8000"): | |
sql.read_sql("select * from table", db_uri) | |
def test_query_by_text_obj(conn, request): | |
# WIP : GH10846 | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import text | |
if "postgres" in conn_name: | |
name_text = text('select * from iris where "Name"=:name') | |
else: | |
name_text = text("select * from iris where name=:name") | |
iris_df = sql.read_sql(name_text, conn, params={"name": "Iris-versicolor"}) | |
all_names = set(iris_df["Name"]) | |
assert all_names == {"Iris-versicolor"} | |
def test_query_by_select_obj(conn, request): | |
conn = request.getfixturevalue(conn) | |
# WIP : GH10846 | |
from sqlalchemy import ( | |
bindparam, | |
select, | |
) | |
iris = iris_table_metadata() | |
name_select = select(iris).where(iris.c.Name == bindparam("name")) | |
iris_df = sql.read_sql(name_select, conn, params={"name": "Iris-setosa"}) | |
all_names = set(iris_df["Name"]) | |
assert all_names == {"Iris-setosa"} | |
def test_column_with_percentage(conn, request): | |
# GH 37157 | |
conn_name = conn | |
if conn_name == "sqlite_buildin": | |
request.applymarker(pytest.mark.xfail(reason="Not Implemented")) | |
conn = request.getfixturevalue(conn) | |
df = DataFrame({"A": [0, 1, 2], "%_variation": [3, 4, 5]}) | |
df.to_sql(name="test_column_percentage", con=conn, index=False) | |
res = sql.read_sql_table("test_column_percentage", conn) | |
tm.assert_frame_equal(res, df) | |
def test_sql_open_close(test_frame3): | |
# Test if the IO in the database still work if the connection closed | |
# between the writing and reading (as in many real situations). | |
with tm.ensure_clean() as name: | |
with closing(sqlite3.connect(name)) as conn: | |
assert sql.to_sql(test_frame3, "test_frame3_legacy", conn, index=False) == 4 | |
with closing(sqlite3.connect(name)) as conn: | |
result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) | |
tm.assert_frame_equal(test_frame3, result) | |
def test_con_string_import_error(): | |
conn = "mysql://root@localhost/pandas" | |
msg = "Using URI string without sqlalchemy installed" | |
with pytest.raises(ImportError, match=msg): | |
sql.read_sql("SELECT * FROM iris", conn) | |
def test_con_unknown_dbapi2_class_does_not_error_without_sql_alchemy_installed(): | |
class MockSqliteConnection: | |
def __init__(self, *args, **kwargs) -> None: | |
self.conn = sqlite3.Connection(*args, **kwargs) | |
def __getattr__(self, name): | |
return getattr(self.conn, name) | |
def close(self): | |
self.conn.close() | |
with contextlib.closing(MockSqliteConnection(":memory:")) as conn: | |
with tm.assert_produces_warning(UserWarning): | |
sql.read_sql("SELECT 1", conn) | |
def test_sqlite_read_sql_delegate(sqlite_buildin_iris): | |
conn = sqlite_buildin_iris | |
iris_frame1 = sql.read_sql_query("SELECT * FROM iris", conn) | |
iris_frame2 = sql.read_sql("SELECT * FROM iris", conn) | |
tm.assert_frame_equal(iris_frame1, iris_frame2) | |
msg = "Execution failed on sql 'iris': near \"iris\": syntax error" | |
with pytest.raises(sql.DatabaseError, match=msg): | |
sql.read_sql("iris", conn) | |
def test_get_schema2(test_frame1): | |
# without providing a connection object (available for backwards comp) | |
create_sql = sql.get_schema(test_frame1, "test") | |
assert "CREATE" in create_sql | |
def test_sqlite_type_mapping(sqlite_buildin): | |
# Test Timestamp objects (no datetime64 because of timezone) (GH9085) | |
conn = sqlite_buildin | |
df = DataFrame( | |
{"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)} | |
) | |
db = sql.SQLiteDatabase(conn) | |
table = sql.SQLiteTable("test_type", db, frame=df) | |
schema = table.sql_schema() | |
for col in schema.split("\n"): | |
if col.split()[0].strip('"') == "time": | |
assert col.split()[1] == "TIMESTAMP" | |
# ----------------------------------------------------------------------------- | |
# -- Database flavor specific tests | |
def test_create_table(conn, request): | |
if conn == "sqlite_str": | |
pytest.skip("sqlite_str has no inspection system") | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import inspect | |
temp_frame = DataFrame({"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}) | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4 | |
insp = inspect(conn) | |
assert insp.has_table("temp_frame") | |
# Cleanup | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("temp_frame") | |
def test_drop_table(conn, request): | |
if conn == "sqlite_str": | |
pytest.skip("sqlite_str has no inspection system") | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import inspect | |
temp_frame = DataFrame({"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}) | |
with sql.SQLDatabase(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4 | |
insp = inspect(conn) | |
assert insp.has_table("temp_frame") | |
with pandasSQL.run_transaction(): | |
pandasSQL.drop_table("temp_frame") | |
try: | |
insp.clear_cache() # needed with SQLAlchemy 2.0, unavailable prior | |
except AttributeError: | |
pass | |
assert not insp.has_table("temp_frame") | |
def test_roundtrip(conn, request, test_frame1): | |
if conn == "sqlite_str": | |
pytest.skip("sqlite_str has no inspection system") | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
pandasSQL = pandasSQL_builder(conn) | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(test_frame1, "test_frame_roundtrip") == 4 | |
result = pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") | |
if "adbc" in conn_name: | |
result = result.rename(columns={"__index_level_0__": "level_0"}) | |
result.set_index("level_0", inplace=True) | |
# result.index.astype(int) | |
result.index.name = None | |
tm.assert_frame_equal(result, test_frame1) | |
def test_execute_sql(conn, request): | |
conn = request.getfixturevalue(conn) | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
iris_results = pandasSQL.execute("SELECT * FROM iris") | |
row = iris_results.fetchone() | |
iris_results.close() | |
assert list(row) == [5.1, 3.5, 1.4, 0.2, "Iris-setosa"] | |
def test_sqlalchemy_read_table(conn, request): | |
conn = request.getfixturevalue(conn) | |
iris_frame = sql.read_sql_table("iris", con=conn) | |
check_iris_frame(iris_frame) | |
def test_sqlalchemy_read_table_columns(conn, request): | |
conn = request.getfixturevalue(conn) | |
iris_frame = sql.read_sql_table( | |
"iris", con=conn, columns=["SepalLength", "SepalLength"] | |
) | |
tm.assert_index_equal(iris_frame.columns, Index(["SepalLength", "SepalLength__1"])) | |
def test_read_table_absent_raises(conn, request): | |
conn = request.getfixturevalue(conn) | |
msg = "Table this_doesnt_exist not found" | |
with pytest.raises(ValueError, match=msg): | |
sql.read_sql_table("this_doesnt_exist", con=conn) | |
def test_sqlalchemy_default_type_conversion(conn, request): | |
conn_name = conn | |
if conn_name == "sqlite_str": | |
pytest.skip("types tables not created in sqlite_str fixture") | |
elif "mysql" in conn_name or "sqlite" in conn_name: | |
request.applymarker( | |
pytest.mark.xfail(reason="boolean dtype not inferred properly") | |
) | |
conn = request.getfixturevalue(conn) | |
df = sql.read_sql_table("types", conn) | |
assert issubclass(df.FloatCol.dtype.type, np.floating) | |
assert issubclass(df.IntCol.dtype.type, np.integer) | |
assert issubclass(df.BoolCol.dtype.type, np.bool_) | |
# Int column with NA values stays as float | |
assert issubclass(df.IntColWithNull.dtype.type, np.floating) | |
# Bool column with NA values becomes object | |
assert issubclass(df.BoolColWithNull.dtype.type, object) | |
def test_bigint(conn, request): | |
# int64 should be converted to BigInteger, GH7433 | |
conn = request.getfixturevalue(conn) | |
df = DataFrame(data={"i64": [2**62]}) | |
assert df.to_sql(name="test_bigint", con=conn, index=False) == 1 | |
result = sql.read_sql_table("test_bigint", conn) | |
tm.assert_frame_equal(df, result) | |
def test_default_date_load(conn, request): | |
conn_name = conn | |
if conn_name == "sqlite_str": | |
pytest.skip("types tables not created in sqlite_str fixture") | |
elif "sqlite" in conn_name: | |
request.applymarker( | |
pytest.mark.xfail(reason="sqlite does not read date properly") | |
) | |
conn = request.getfixturevalue(conn) | |
df = sql.read_sql_table("types", conn) | |
assert issubclass(df.DateCol.dtype.type, np.datetime64) | |
def test_datetime_with_timezone_query(conn, request, parse_dates): | |
# edge case that converts postgresql datetime with time zone types | |
# to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok | |
# but should be more natural, so coerce to datetime64[ns] for now | |
conn = request.getfixturevalue(conn) | |
expected = create_and_load_postgres_datetz(conn) | |
# GH11216 | |
df = read_sql_query("select * from datetz", conn, parse_dates=parse_dates) | |
col = df.DateColWithTz | |
tm.assert_series_equal(col, expected) | |
def test_datetime_with_timezone_query_chunksize(conn, request): | |
conn = request.getfixturevalue(conn) | |
expected = create_and_load_postgres_datetz(conn) | |
df = concat( | |
list(read_sql_query("select * from datetz", conn, chunksize=1)), | |
ignore_index=True, | |
) | |
col = df.DateColWithTz | |
tm.assert_series_equal(col, expected) | |
def test_datetime_with_timezone_table(conn, request): | |
conn = request.getfixturevalue(conn) | |
expected = create_and_load_postgres_datetz(conn) | |
result = sql.read_sql_table("datetz", conn) | |
tm.assert_frame_equal(result, expected.to_frame()) | |
def test_datetime_with_timezone_roundtrip(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
# GH 9086 | |
# Write datetimetz data to a db and read it back | |
# For dbs that support timestamps with timezones, should get back UTC | |
# otherwise naive data should be returned | |
expected = DataFrame( | |
{"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} | |
) | |
assert expected.to_sql(name="test_datetime_tz", con=conn, index=False) == 3 | |
if "postgresql" in conn_name: | |
# SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC | |
expected["A"] = expected["A"].dt.tz_convert("UTC") | |
else: | |
# Otherwise, timestamps are returned as local, naive | |
expected["A"] = expected["A"].dt.tz_localize(None) | |
result = sql.read_sql_table("test_datetime_tz", conn) | |
tm.assert_frame_equal(result, expected) | |
result = sql.read_sql_query("SELECT * FROM test_datetime_tz", conn) | |
if "sqlite" in conn_name: | |
# read_sql_query does not return datetime type like read_sql_table | |
assert isinstance(result.loc[0, "A"], str) | |
result["A"] = to_datetime(result["A"]) | |
tm.assert_frame_equal(result, expected) | |
def test_out_of_bounds_datetime(conn, request): | |
# GH 26761 | |
conn = request.getfixturevalue(conn) | |
data = DataFrame({"date": datetime(9999, 1, 1)}, index=[0]) | |
assert data.to_sql(name="test_datetime_obb", con=conn, index=False) == 1 | |
result = sql.read_sql_table("test_datetime_obb", conn) | |
expected = DataFrame([pd.NaT], columns=["date"]) | |
tm.assert_frame_equal(result, expected) | |
def test_naive_datetimeindex_roundtrip(conn, request): | |
# GH 23510 | |
# Ensure that a naive DatetimeIndex isn't converted to UTC | |
conn = request.getfixturevalue(conn) | |
dates = date_range("2018-01-01", periods=5, freq="6h")._with_freq(None) | |
expected = DataFrame({"nums": range(5)}, index=dates) | |
assert expected.to_sql(name="foo_table", con=conn, index_label="info_date") == 5 | |
result = sql.read_sql_table("foo_table", conn, index_col="info_date") | |
# result index with gain a name from a set_index operation; expected | |
tm.assert_frame_equal(result, expected, check_names=False) | |
def test_date_parsing(conn, request): | |
# No Parsing | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
df = sql.read_sql_table("types", conn) | |
expected_type = object if "sqlite" in conn_name else np.datetime64 | |
assert issubclass(df.DateCol.dtype.type, expected_type) | |
df = sql.read_sql_table("types", conn, parse_dates=["DateCol"]) | |
assert issubclass(df.DateCol.dtype.type, np.datetime64) | |
df = sql.read_sql_table("types", conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}) | |
assert issubclass(df.DateCol.dtype.type, np.datetime64) | |
df = sql.read_sql_table( | |
"types", | |
conn, | |
parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, | |
) | |
assert issubclass(df.DateCol.dtype.type, np.datetime64) | |
df = sql.read_sql_table("types", conn, parse_dates=["IntDateCol"]) | |
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) | |
df = sql.read_sql_table("types", conn, parse_dates={"IntDateCol": "s"}) | |
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) | |
df = sql.read_sql_table("types", conn, parse_dates={"IntDateCol": {"unit": "s"}}) | |
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) | |
def test_datetime(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
df = DataFrame( | |
{"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} | |
) | |
assert df.to_sql(name="test_datetime", con=conn) == 3 | |
# with read_table -> type information from schema used | |
result = sql.read_sql_table("test_datetime", conn) | |
result = result.drop("index", axis=1) | |
tm.assert_frame_equal(result, df) | |
# with read_sql -> no type information -> sqlite has no native | |
result = sql.read_sql_query("SELECT * FROM test_datetime", conn) | |
result = result.drop("index", axis=1) | |
if "sqlite" in conn_name: | |
assert isinstance(result.loc[0, "A"], str) | |
result["A"] = to_datetime(result["A"]) | |
tm.assert_frame_equal(result, df) | |
else: | |
tm.assert_frame_equal(result, df) | |
def test_datetime_NaT(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
df = DataFrame( | |
{"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} | |
) | |
df.loc[1, "A"] = np.nan | |
assert df.to_sql(name="test_datetime", con=conn, index=False) == 3 | |
# with read_table -> type information from schema used | |
result = sql.read_sql_table("test_datetime", conn) | |
tm.assert_frame_equal(result, df) | |
# with read_sql -> no type information -> sqlite has no native | |
result = sql.read_sql_query("SELECT * FROM test_datetime", conn) | |
if "sqlite" in conn_name: | |
assert isinstance(result.loc[0, "A"], str) | |
result["A"] = to_datetime(result["A"], errors="coerce") | |
tm.assert_frame_equal(result, df) | |
else: | |
tm.assert_frame_equal(result, df) | |
def test_datetime_date(conn, request): | |
# test support for datetime.date | |
conn = request.getfixturevalue(conn) | |
df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) | |
assert df.to_sql(name="test_date", con=conn, index=False) == 2 | |
res = read_sql_table("test_date", conn) | |
result = res["a"] | |
expected = to_datetime(df["a"]) | |
# comes back as datetime64 | |
tm.assert_series_equal(result, expected) | |
def test_datetime_time(conn, request, sqlite_buildin): | |
# test support for datetime.time | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) | |
assert df.to_sql(name="test_time", con=conn, index=False) == 2 | |
res = read_sql_table("test_time", conn) | |
tm.assert_frame_equal(res, df) | |
# GH8341 | |
# first, use the fallback to have the sqlite adapter put in place | |
sqlite_conn = sqlite_buildin | |
assert sql.to_sql(df, "test_time2", sqlite_conn, index=False) == 2 | |
res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) | |
ref = df.map(lambda _: _.strftime("%H:%M:%S.%f")) | |
tm.assert_frame_equal(ref, res) # check if adapter is in place | |
# then test if sqlalchemy is unaffected by the sqlite adapter | |
assert sql.to_sql(df, "test_time3", conn, index=False) == 2 | |
if "sqlite" in conn_name: | |
res = sql.read_sql_query("SELECT * FROM test_time3", conn) | |
ref = df.map(lambda _: _.strftime("%H:%M:%S.%f")) | |
tm.assert_frame_equal(ref, res) | |
res = sql.read_sql_table("test_time3", conn) | |
tm.assert_frame_equal(df, res) | |
def test_mixed_dtype_insert(conn, request): | |
# see GH6509 | |
conn = request.getfixturevalue(conn) | |
s1 = Series(2**25 + 1, dtype=np.int32) | |
s2 = Series(0.0, dtype=np.float32) | |
df = DataFrame({"s1": s1, "s2": s2}) | |
# write and read again | |
assert df.to_sql(name="test_read_write", con=conn, index=False) == 1 | |
df2 = sql.read_sql_table("test_read_write", conn) | |
tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) | |
def test_nan_numeric(conn, request): | |
# NaNs in numeric float column | |
conn = request.getfixturevalue(conn) | |
df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) | |
assert df.to_sql(name="test_nan", con=conn, index=False) == 3 | |
# with read_table | |
result = sql.read_sql_table("test_nan", conn) | |
tm.assert_frame_equal(result, df) | |
# with read_sql | |
result = sql.read_sql_query("SELECT * FROM test_nan", conn) | |
tm.assert_frame_equal(result, df) | |
def test_nan_fullcolumn(conn, request): | |
# full NaN column (numeric float column) | |
conn = request.getfixturevalue(conn) | |
df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) | |
assert df.to_sql(name="test_nan", con=conn, index=False) == 3 | |
# with read_table | |
result = sql.read_sql_table("test_nan", conn) | |
tm.assert_frame_equal(result, df) | |
# with read_sql -> not type info from table -> stays None | |
df["B"] = df["B"].astype("object") | |
df["B"] = None | |
result = sql.read_sql_query("SELECT * FROM test_nan", conn) | |
tm.assert_frame_equal(result, df) | |
def test_nan_string(conn, request): | |
# NaNs in string column | |
conn = request.getfixturevalue(conn) | |
df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) | |
assert df.to_sql(name="test_nan", con=conn, index=False) == 3 | |
# NaNs are coming back as None | |
df.loc[2, "B"] = None | |
# with read_table | |
result = sql.read_sql_table("test_nan", conn) | |
tm.assert_frame_equal(result, df) | |
# with read_sql | |
result = sql.read_sql_query("SELECT * FROM test_nan", conn) | |
tm.assert_frame_equal(result, df) | |
def test_to_sql_save_index(conn, request): | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail( | |
reason="ADBC implementation does not create index", strict=True | |
) | |
) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
df = DataFrame.from_records( | |
[(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] | |
) | |
tbl_name = "test_to_sql_saves_index" | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(df, tbl_name) == 2 | |
if conn_name in {"sqlite_buildin", "sqlite_str"}: | |
ixs = sql.read_sql_query( | |
"SELECT * FROM sqlite_master WHERE type = 'index' " | |
f"AND tbl_name = '{tbl_name}'", | |
conn, | |
) | |
ix_cols = [] | |
for ix_name in ixs.name: | |
ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", conn) | |
ix_cols.append(ix_info.name.tolist()) | |
else: | |
from sqlalchemy import inspect | |
insp = inspect(conn) | |
ixs = insp.get_indexes(tbl_name) | |
ix_cols = [i["column_names"] for i in ixs] | |
assert ix_cols == [["A"]] | |
def test_transactions(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
stmt = "CREATE TABLE test_trans (A INT, B TEXT)" | |
if conn_name != "sqlite_buildin" and "adbc" not in conn_name: | |
from sqlalchemy import text | |
stmt = text(stmt) | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction() as trans: | |
trans.execute(stmt) | |
def test_transaction_rollback(conn, request): | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction() as trans: | |
stmt = "CREATE TABLE test_trans (A INT, B TEXT)" | |
if "adbc" in conn_name or isinstance(pandasSQL, SQLiteDatabase): | |
trans.execute(stmt) | |
else: | |
from sqlalchemy import text | |
stmt = text(stmt) | |
trans.execute(stmt) | |
class DummyException(Exception): | |
pass | |
# Make sure when transaction is rolled back, no rows get inserted | |
ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" | |
if isinstance(pandasSQL, SQLDatabase): | |
from sqlalchemy import text | |
ins_sql = text(ins_sql) | |
try: | |
with pandasSQL.run_transaction() as trans: | |
trans.execute(ins_sql) | |
raise DummyException("error") | |
except DummyException: | |
# ignore raised exception | |
pass | |
with pandasSQL.run_transaction(): | |
res = pandasSQL.read_query("SELECT * FROM test_trans") | |
assert len(res) == 0 | |
# Make sure when transaction is committed, rows do get inserted | |
with pandasSQL.run_transaction() as trans: | |
trans.execute(ins_sql) | |
res2 = pandasSQL.read_query("SELECT * FROM test_trans") | |
assert len(res2) == 1 | |
def test_get_schema_create_table(conn, request, test_frame3): | |
# Use a dataframe without a bool column, since MySQL converts bool to | |
# TINYINT (which read_sql_table returns as an int and causes a dtype | |
# mismatch) | |
if conn == "sqlite_str": | |
request.applymarker( | |
pytest.mark.xfail(reason="test does not support sqlite_str fixture") | |
) | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import text | |
from sqlalchemy.engine import Engine | |
tbl = "test_get_schema_create_table" | |
create_sql = sql.get_schema(test_frame3, tbl, con=conn) | |
blank_test_df = test_frame3.iloc[:0] | |
create_sql = text(create_sql) | |
if isinstance(conn, Engine): | |
with conn.connect() as newcon: | |
with newcon.begin(): | |
newcon.execute(create_sql) | |
else: | |
conn.execute(create_sql) | |
returned_df = sql.read_sql_table(tbl, conn) | |
tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) | |
def test_dtype(conn, request): | |
if conn == "sqlite_str": | |
pytest.skip("sqlite_str has no inspection system") | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import ( | |
TEXT, | |
String, | |
) | |
from sqlalchemy.schema import MetaData | |
cols = ["A", "B"] | |
data = [(0.8, True), (0.9, None)] | |
df = DataFrame(data, columns=cols) | |
assert df.to_sql(name="dtype_test", con=conn) == 2 | |
assert df.to_sql(name="dtype_test2", con=conn, dtype={"B": TEXT}) == 2 | |
meta = MetaData() | |
meta.reflect(bind=conn) | |
sqltype = meta.tables["dtype_test2"].columns["B"].type | |
assert isinstance(sqltype, TEXT) | |
msg = "The type of B is not a SQLAlchemy type" | |
with pytest.raises(ValueError, match=msg): | |
df.to_sql(name="error", con=conn, dtype={"B": str}) | |
# GH9083 | |
assert df.to_sql(name="dtype_test3", con=conn, dtype={"B": String(10)}) == 2 | |
meta.reflect(bind=conn) | |
sqltype = meta.tables["dtype_test3"].columns["B"].type | |
assert isinstance(sqltype, String) | |
assert sqltype.length == 10 | |
# single dtype | |
assert df.to_sql(name="single_dtype_test", con=conn, dtype=TEXT) == 2 | |
meta.reflect(bind=conn) | |
sqltypea = meta.tables["single_dtype_test"].columns["A"].type | |
sqltypeb = meta.tables["single_dtype_test"].columns["B"].type | |
assert isinstance(sqltypea, TEXT) | |
assert isinstance(sqltypeb, TEXT) | |
def test_notna_dtype(conn, request): | |
if conn == "sqlite_str": | |
pytest.skip("sqlite_str has no inspection system") | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import ( | |
Boolean, | |
DateTime, | |
Float, | |
Integer, | |
) | |
from sqlalchemy.schema import MetaData | |
cols = { | |
"Bool": Series([True, None]), | |
"Date": Series([datetime(2012, 5, 1), None]), | |
"Int": Series([1, None], dtype="object"), | |
"Float": Series([1.1, None]), | |
} | |
df = DataFrame(cols) | |
tbl = "notna_dtype_test" | |
assert df.to_sql(name=tbl, con=conn) == 2 | |
_ = sql.read_sql_table(tbl, conn) | |
meta = MetaData() | |
meta.reflect(bind=conn) | |
my_type = Integer if "mysql" in conn_name else Boolean | |
col_dict = meta.tables[tbl].columns | |
assert isinstance(col_dict["Bool"].type, my_type) | |
assert isinstance(col_dict["Date"].type, DateTime) | |
assert isinstance(col_dict["Int"].type, Integer) | |
assert isinstance(col_dict["Float"].type, Float) | |
def test_double_precision(conn, request): | |
if conn == "sqlite_str": | |
pytest.skip("sqlite_str has no inspection system") | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import ( | |
BigInteger, | |
Float, | |
Integer, | |
) | |
from sqlalchemy.schema import MetaData | |
V = 1.23456789101112131415 | |
df = DataFrame( | |
{ | |
"f32": Series([V], dtype="float32"), | |
"f64": Series([V], dtype="float64"), | |
"f64_as_f32": Series([V], dtype="float64"), | |
"i32": Series([5], dtype="int32"), | |
"i64": Series([5], dtype="int64"), | |
} | |
) | |
assert ( | |
df.to_sql( | |
name="test_dtypes", | |
con=conn, | |
index=False, | |
if_exists="replace", | |
dtype={"f64_as_f32": Float(precision=23)}, | |
) | |
== 1 | |
) | |
res = sql.read_sql_table("test_dtypes", conn) | |
# check precision of float64 | |
assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) | |
# check sql types | |
meta = MetaData() | |
meta.reflect(bind=conn) | |
col_dict = meta.tables["test_dtypes"].columns | |
assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) | |
assert isinstance(col_dict["f32"].type, Float) | |
assert isinstance(col_dict["f64"].type, Float) | |
assert isinstance(col_dict["i32"].type, Integer) | |
assert isinstance(col_dict["i64"].type, BigInteger) | |
def test_connectable_issue_example(conn, request): | |
conn = request.getfixturevalue(conn) | |
# This tests the example raised in issue | |
# https://github.com/pandas-dev/pandas/issues/10104 | |
from sqlalchemy.engine import Engine | |
def test_select(connection): | |
query = "SELECT test_foo_data FROM test_foo_data" | |
return sql.read_sql_query(query, con=connection) | |
def test_append(connection, data): | |
data.to_sql(name="test_foo_data", con=connection, if_exists="append") | |
def test_connectable(conn): | |
# https://github.com/sqlalchemy/sqlalchemy/commit/ | |
# 00b5c10846e800304caa86549ab9da373b42fa5d#r48323973 | |
foo_data = test_select(conn) | |
test_append(conn, foo_data) | |
def main(connectable): | |
if isinstance(connectable, Engine): | |
with connectable.connect() as conn: | |
with conn.begin(): | |
test_connectable(conn) | |
else: | |
test_connectable(connectable) | |
assert ( | |
DataFrame({"test_foo_data": [0, 1, 2]}).to_sql(name="test_foo_data", con=conn) | |
== 3 | |
) | |
main(conn) | |
def test_to_sql_with_negative_npinf(conn, request, input): | |
# GH 34431 | |
df = DataFrame(input) | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
if "mysql" in conn_name: | |
# GH 36465 | |
# The input {"foo": [-np.inf], "infe0": ["bar"]} does not raise any error | |
# for pymysql version >= 0.10 | |
# TODO(GH#36465): remove this version check after GH 36465 is fixed | |
pymysql = pytest.importorskip("pymysql") | |
if Version(pymysql.__version__) < Version("1.0.3") and "infe0" in df.columns: | |
mark = pytest.mark.xfail(reason="GH 36465") | |
request.applymarker(mark) | |
msg = "inf cannot be used with MySQL" | |
with pytest.raises(ValueError, match=msg): | |
df.to_sql(name="foobar", con=conn, index=False) | |
else: | |
assert df.to_sql(name="foobar", con=conn, index=False) == 1 | |
res = sql.read_sql_table("foobar", conn) | |
tm.assert_equal(df, res) | |
def test_temporary_table(conn, request): | |
if conn == "sqlite_str": | |
pytest.skip("test does not work with str connection") | |
conn = request.getfixturevalue(conn) | |
from sqlalchemy import ( | |
Column, | |
Integer, | |
Unicode, | |
select, | |
) | |
from sqlalchemy.orm import ( | |
Session, | |
declarative_base, | |
) | |
test_data = "Hello, World!" | |
expected = DataFrame({"spam": [test_data]}) | |
Base = declarative_base() | |
class Temporary(Base): | |
__tablename__ = "temp_test" | |
__table_args__ = {"prefixes": ["TEMPORARY"]} | |
id = Column(Integer, primary_key=True) | |
spam = Column(Unicode(30), nullable=False) | |
with Session(conn) as session: | |
with session.begin(): | |
conn = session.connection() | |
Temporary.__table__.create(conn) | |
session.add(Temporary(spam=test_data)) | |
session.flush() | |
df = sql.read_sql_query(sql=select(Temporary.spam), con=conn) | |
tm.assert_frame_equal(df, expected) | |
def test_invalid_engine(conn, request, test_frame1): | |
if conn == "sqlite_buildin" or "adbc" in conn: | |
request.applymarker( | |
pytest.mark.xfail( | |
reason="SQLiteDatabase/ADBCDatabase does not raise for bad engine" | |
) | |
) | |
conn = request.getfixturevalue(conn) | |
msg = "engine must be one of 'auto', 'sqlalchemy'" | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pytest.raises(ValueError, match=msg): | |
pandasSQL.to_sql(test_frame1, "test_frame1", engine="bad_engine") | |
def test_to_sql_with_sql_engine(conn, request, test_frame1): | |
"""`to_sql` with the `engine` param""" | |
# mostly copied from this class's `_to_sql()` method | |
conn = request.getfixturevalue(conn) | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(test_frame1, "test_frame1", engine="auto") == 4 | |
assert pandasSQL.has_table("test_frame1") | |
num_entries = len(test_frame1) | |
num_rows = count_rows(conn, "test_frame1") | |
assert num_rows == num_entries | |
def test_options_sqlalchemy(conn, request, test_frame1): | |
# use the set option | |
conn = request.getfixturevalue(conn) | |
with pd.option_context("io.sql.engine", "sqlalchemy"): | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(test_frame1, "test_frame1") == 4 | |
assert pandasSQL.has_table("test_frame1") | |
num_entries = len(test_frame1) | |
num_rows = count_rows(conn, "test_frame1") | |
assert num_rows == num_entries | |
def test_options_auto(conn, request, test_frame1): | |
# use the set option | |
conn = request.getfixturevalue(conn) | |
with pd.option_context("io.sql.engine", "auto"): | |
with pandasSQL_builder(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(test_frame1, "test_frame1") == 4 | |
assert pandasSQL.has_table("test_frame1") | |
num_entries = len(test_frame1) | |
num_rows = count_rows(conn, "test_frame1") | |
assert num_rows == num_entries | |
def test_options_get_engine(): | |
pytest.importorskip("sqlalchemy") | |
assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) | |
with pd.option_context("io.sql.engine", "sqlalchemy"): | |
assert isinstance(get_engine("auto"), SQLAlchemyEngine) | |
assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) | |
with pd.option_context("io.sql.engine", "auto"): | |
assert isinstance(get_engine("auto"), SQLAlchemyEngine) | |
assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) | |
def test_get_engine_auto_error_message(): | |
# Expect different error messages from get_engine(engine="auto") | |
# if engines aren't installed vs. are installed but bad version | |
pass | |
# TODO(GH#36893) fill this in when we add more engines | |
def test_read_sql_dtype_backend( | |
conn, | |
request, | |
string_storage, | |
func, | |
dtype_backend, | |
dtype_backend_data, | |
dtype_backend_expected, | |
): | |
# GH#50048 | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
table = "test" | |
df = dtype_backend_data | |
df.to_sql(name=table, con=conn, index=False, if_exists="replace") | |
with pd.option_context("mode.string_storage", string_storage): | |
result = getattr(pd, func)( | |
f"Select * from {table}", conn, dtype_backend=dtype_backend | |
) | |
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) | |
tm.assert_frame_equal(result, expected) | |
if "adbc" in conn_name: | |
# adbc does not support chunksize argument | |
request.applymarker( | |
pytest.mark.xfail(reason="adbc does not support chunksize argument") | |
) | |
with pd.option_context("mode.string_storage", string_storage): | |
iterator = getattr(pd, func)( | |
f"Select * from {table}", | |
con=conn, | |
dtype_backend=dtype_backend, | |
chunksize=3, | |
) | |
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) | |
for result in iterator: | |
tm.assert_frame_equal(result, expected) | |
def test_read_sql_dtype_backend_table( | |
conn, | |
request, | |
string_storage, | |
func, | |
dtype_backend, | |
dtype_backend_data, | |
dtype_backend_expected, | |
): | |
if "sqlite" in conn and "adbc" not in conn: | |
request.applymarker( | |
pytest.mark.xfail( | |
reason=( | |
"SQLite actually returns proper boolean values via " | |
"read_sql_table, but before pytest refactor was skipped" | |
) | |
) | |
) | |
# GH#50048 | |
conn_name = conn | |
conn = request.getfixturevalue(conn) | |
table = "test" | |
df = dtype_backend_data | |
df.to_sql(name=table, con=conn, index=False, if_exists="replace") | |
with pd.option_context("mode.string_storage", string_storage): | |
result = getattr(pd, func)(table, conn, dtype_backend=dtype_backend) | |
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) | |
tm.assert_frame_equal(result, expected) | |
if "adbc" in conn_name: | |
# adbc does not support chunksize argument | |
return | |
with pd.option_context("mode.string_storage", string_storage): | |
iterator = getattr(pd, func)( | |
table, | |
conn, | |
dtype_backend=dtype_backend, | |
chunksize=3, | |
) | |
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) | |
for result in iterator: | |
tm.assert_frame_equal(result, expected) | |
def test_read_sql_invalid_dtype_backend_table(conn, request, func, dtype_backend_data): | |
conn = request.getfixturevalue(conn) | |
table = "test" | |
df = dtype_backend_data | |
df.to_sql(name=table, con=conn, index=False, if_exists="replace") | |
msg = ( | |
"dtype_backend numpy is invalid, only 'numpy_nullable' and " | |
"'pyarrow' are allowed." | |
) | |
with pytest.raises(ValueError, match=msg): | |
getattr(pd, func)(table, conn, dtype_backend="numpy") | |
def dtype_backend_data() -> DataFrame: | |
return DataFrame( | |
{ | |
"a": Series([1, np.nan, 3], dtype="Int64"), | |
"b": Series([1, 2, 3], dtype="Int64"), | |
"c": Series([1.5, np.nan, 2.5], dtype="Float64"), | |
"d": Series([1.5, 2.0, 2.5], dtype="Float64"), | |
"e": [True, False, None], | |
"f": [True, False, True], | |
"g": ["a", "b", "c"], | |
"h": ["a", "b", None], | |
} | |
) | |
def dtype_backend_expected(): | |
def func(storage, dtype_backend, conn_name) -> DataFrame: | |
string_array: StringArray | ArrowStringArray | |
string_array_na: StringArray | ArrowStringArray | |
if storage == "python": | |
string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_)) | |
string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_)) | |
elif dtype_backend == "pyarrow": | |
pa = pytest.importorskip("pyarrow") | |
from pandas.arrays import ArrowExtensionArray | |
string_array = ArrowExtensionArray(pa.array(["a", "b", "c"])) # type: ignore[assignment] | |
string_array_na = ArrowExtensionArray(pa.array(["a", "b", None])) # type: ignore[assignment] | |
else: | |
pa = pytest.importorskip("pyarrow") | |
string_array = ArrowStringArray(pa.array(["a", "b", "c"])) | |
string_array_na = ArrowStringArray(pa.array(["a", "b", None])) | |
df = DataFrame( | |
{ | |
"a": Series([1, np.nan, 3], dtype="Int64"), | |
"b": Series([1, 2, 3], dtype="Int64"), | |
"c": Series([1.5, np.nan, 2.5], dtype="Float64"), | |
"d": Series([1.5, 2.0, 2.5], dtype="Float64"), | |
"e": Series([True, False, pd.NA], dtype="boolean"), | |
"f": Series([True, False, True], dtype="boolean"), | |
"g": string_array, | |
"h": string_array_na, | |
} | |
) | |
if dtype_backend == "pyarrow": | |
pa = pytest.importorskip("pyarrow") | |
from pandas.arrays import ArrowExtensionArray | |
df = DataFrame( | |
{ | |
col: ArrowExtensionArray(pa.array(df[col], from_pandas=True)) | |
for col in df.columns | |
} | |
) | |
if "mysql" in conn_name or "sqlite" in conn_name: | |
if dtype_backend == "numpy_nullable": | |
df = df.astype({"e": "Int64", "f": "Int64"}) | |
else: | |
df = df.astype({"e": "int64[pyarrow]", "f": "int64[pyarrow]"}) | |
return df | |
return func | |
def test_chunksize_empty_dtypes(conn, request): | |
# GH#50245 | |
if "adbc" in conn: | |
request.node.add_marker( | |
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") | |
) | |
conn = request.getfixturevalue(conn) | |
dtypes = {"a": "int64", "b": "object"} | |
df = DataFrame(columns=["a", "b"]).astype(dtypes) | |
expected = df.copy() | |
df.to_sql(name="test", con=conn, index=False, if_exists="replace") | |
for result in read_sql_query( | |
"SELECT * FROM test", | |
conn, | |
dtype=dtypes, | |
chunksize=1, | |
): | |
tm.assert_frame_equal(result, expected) | |
def test_read_sql_dtype(conn, request, func, dtype_backend): | |
# GH#50797 | |
conn = request.getfixturevalue(conn) | |
table = "test" | |
df = DataFrame({"a": [1, 2, 3], "b": 5}) | |
df.to_sql(name=table, con=conn, index=False, if_exists="replace") | |
result = getattr(pd, func)( | |
f"Select * from {table}", | |
conn, | |
dtype={"a": np.float64}, | |
dtype_backend=dtype_backend, | |
) | |
expected = DataFrame( | |
{ | |
"a": Series([1, 2, 3], dtype=np.float64), | |
"b": Series( | |
[5, 5, 5], | |
dtype="int64" if not dtype_backend == "numpy_nullable" else "Int64", | |
), | |
} | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_keyword_deprecation(sqlite_engine): | |
conn = sqlite_engine | |
# GH 54397 | |
msg = ( | |
"Starting with pandas version 3.0 all arguments of to_sql except for the " | |
"arguments 'name' and 'con' will be keyword-only." | |
) | |
df = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 1, "B": 2, "C": 3}]) | |
df.to_sql("example", conn) | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
df.to_sql("example", conn, None, if_exists="replace") | |
def test_bigint_warning(sqlite_engine): | |
conn = sqlite_engine | |
# test no warning for BIGINT (to support int64) is raised (GH7433) | |
df = DataFrame({"a": [1, 2]}, dtype="int64") | |
assert df.to_sql(name="test_bigintwarning", con=conn, index=False) == 2 | |
with tm.assert_produces_warning(None): | |
sql.read_sql_table("test_bigintwarning", conn) | |
def test_valueerror_exception(sqlite_engine): | |
conn = sqlite_engine | |
df = DataFrame({"col1": [1, 2], "col2": [3, 4]}) | |
with pytest.raises(ValueError, match="Empty table name specified"): | |
df.to_sql(name="", con=conn, if_exists="replace", index=False) | |
def test_row_object_is_named_tuple(sqlite_engine): | |
conn = sqlite_engine | |
# GH 40682 | |
# Test for the is_named_tuple() function | |
# Placed here due to its usage of sqlalchemy | |
from sqlalchemy import ( | |
Column, | |
Integer, | |
String, | |
) | |
from sqlalchemy.orm import ( | |
declarative_base, | |
sessionmaker, | |
) | |
BaseModel = declarative_base() | |
class Test(BaseModel): | |
__tablename__ = "test_frame" | |
id = Column(Integer, primary_key=True) | |
string_column = Column(String(50)) | |
with conn.begin(): | |
BaseModel.metadata.create_all(conn) | |
Session = sessionmaker(bind=conn) | |
with Session() as session: | |
df = DataFrame({"id": [0, 1], "string_column": ["hello", "world"]}) | |
assert ( | |
df.to_sql(name="test_frame", con=conn, index=False, if_exists="replace") | |
== 2 | |
) | |
session.commit() | |
test_query = session.query(Test.id, Test.string_column) | |
df = DataFrame(test_query) | |
assert list(df.columns) == ["id", "string_column"] | |
def test_read_sql_string_inference(sqlite_engine): | |
conn = sqlite_engine | |
# GH#54430 | |
pytest.importorskip("pyarrow") | |
table = "test" | |
df = DataFrame({"a": ["x", "y"]}) | |
df.to_sql(table, con=conn, index=False, if_exists="replace") | |
with pd.option_context("future.infer_string", True): | |
result = read_sql_table(table, conn) | |
dtype = "string[pyarrow_numpy]" | |
expected = DataFrame( | |
{"a": ["x", "y"]}, dtype=dtype, columns=Index(["a"], dtype=dtype) | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_roundtripping_datetimes(sqlite_engine): | |
conn = sqlite_engine | |
# GH#54877 | |
df = DataFrame({"t": [datetime(2020, 12, 31, 12)]}, dtype="datetime64[ns]") | |
df.to_sql("test", conn, if_exists="replace", index=False) | |
result = pd.read_sql("select * from test", conn).iloc[0, 0] | |
assert result == "2020-12-31 12:00:00.000000" | |
def sqlite_builtin_detect_types(): | |
with contextlib.closing( | |
sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES) | |
) as closing_conn: | |
with closing_conn as conn: | |
yield conn | |
def test_roundtripping_datetimes_detect_types(sqlite_builtin_detect_types): | |
# https://github.com/pandas-dev/pandas/issues/55554 | |
conn = sqlite_builtin_detect_types | |
df = DataFrame({"t": [datetime(2020, 12, 31, 12)]}, dtype="datetime64[ns]") | |
df.to_sql("test", conn, if_exists="replace", index=False) | |
result = pd.read_sql("select * from test", conn).iloc[0, 0] | |
assert result == Timestamp("2020-12-31 12:00:00.000000") | |
def test_psycopg2_schema_support(postgresql_psycopg2_engine): | |
conn = postgresql_psycopg2_engine | |
# only test this for postgresql (schema's not supported in | |
# mysql/sqlite) | |
df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) | |
# create a schema | |
with conn.connect() as con: | |
with con.begin(): | |
con.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;") | |
con.exec_driver_sql("CREATE SCHEMA other;") | |
# write dataframe to different schema's | |
assert df.to_sql(name="test_schema_public", con=conn, index=False) == 2 | |
assert ( | |
df.to_sql( | |
name="test_schema_public_explicit", | |
con=conn, | |
index=False, | |
schema="public", | |
) | |
== 2 | |
) | |
assert ( | |
df.to_sql(name="test_schema_other", con=conn, index=False, schema="other") == 2 | |
) | |
# read dataframes back in | |
res1 = sql.read_sql_table("test_schema_public", conn) | |
tm.assert_frame_equal(df, res1) | |
res2 = sql.read_sql_table("test_schema_public_explicit", conn) | |
tm.assert_frame_equal(df, res2) | |
res3 = sql.read_sql_table("test_schema_public_explicit", conn, schema="public") | |
tm.assert_frame_equal(df, res3) | |
res4 = sql.read_sql_table("test_schema_other", conn, schema="other") | |
tm.assert_frame_equal(df, res4) | |
msg = "Table test_schema_other not found" | |
with pytest.raises(ValueError, match=msg): | |
sql.read_sql_table("test_schema_other", conn, schema="public") | |
# different if_exists options | |
# create a schema | |
with conn.connect() as con: | |
with con.begin(): | |
con.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;") | |
con.exec_driver_sql("CREATE SCHEMA other;") | |
# write dataframe with different if_exists options | |
assert ( | |
df.to_sql(name="test_schema_other", con=conn, schema="other", index=False) == 2 | |
) | |
df.to_sql( | |
name="test_schema_other", | |
con=conn, | |
schema="other", | |
index=False, | |
if_exists="replace", | |
) | |
assert ( | |
df.to_sql( | |
name="test_schema_other", | |
con=conn, | |
schema="other", | |
index=False, | |
if_exists="append", | |
) | |
== 2 | |
) | |
res = sql.read_sql_table("test_schema_other", conn, schema="other") | |
tm.assert_frame_equal(concat([df, df], ignore_index=True), res) | |
def test_self_join_date_columns(postgresql_psycopg2_engine): | |
# GH 44421 | |
conn = postgresql_psycopg2_engine | |
from sqlalchemy.sql import text | |
create_table = text( | |
""" | |
CREATE TABLE person | |
( | |
id serial constraint person_pkey primary key, | |
created_dt timestamp with time zone | |
); | |
INSERT INTO person | |
VALUES (1, '2021-01-01T00:00:00Z'); | |
""" | |
) | |
with conn.connect() as con: | |
with con.begin(): | |
con.execute(create_table) | |
sql_query = ( | |
'SELECT * FROM "person" AS p1 INNER JOIN "person" AS p2 ON p1.id = p2.id;' | |
) | |
result = pd.read_sql(sql_query, conn) | |
expected = DataFrame( | |
[[1, Timestamp("2021", tz="UTC")] * 2], columns=["id", "created_dt"] * 2 | |
) | |
tm.assert_frame_equal(result, expected) | |
# Cleanup | |
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: | |
pandasSQL.drop_table("person") | |
def test_create_and_drop_table(sqlite_engine): | |
conn = sqlite_engine | |
temp_frame = DataFrame({"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}) | |
with sql.SQLDatabase(conn) as pandasSQL: | |
with pandasSQL.run_transaction(): | |
assert pandasSQL.to_sql(temp_frame, "drop_test_frame") == 4 | |
assert pandasSQL.has_table("drop_test_frame") | |
with pandasSQL.run_transaction(): | |
pandasSQL.drop_table("drop_test_frame") | |
assert not pandasSQL.has_table("drop_test_frame") | |
def test_sqlite_datetime_date(sqlite_buildin): | |
conn = sqlite_buildin | |
df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) | |
assert df.to_sql(name="test_date", con=conn, index=False) == 2 | |
res = read_sql_query("SELECT * FROM test_date", conn) | |
# comes back as strings | |
tm.assert_frame_equal(res, df.astype(str)) | |
def test_sqlite_datetime_time(tz_aware, sqlite_buildin): | |
conn = sqlite_buildin | |
# test support for datetime.time, GH #8341 | |
if not tz_aware: | |
tz_times = [time(9, 0, 0), time(9, 1, 30)] | |
else: | |
tz_dt = date_range("2013-01-01 09:00:00", periods=2, tz="US/Pacific") | |
tz_times = Series(tz_dt.to_pydatetime()).map(lambda dt: dt.timetz()) | |
df = DataFrame(tz_times, columns=["a"]) | |
assert df.to_sql(name="test_time", con=conn, index=False) == 2 | |
res = read_sql_query("SELECT * FROM test_time", conn) | |
# comes back as strings | |
expected = df.map(lambda _: _.strftime("%H:%M:%S.%f")) | |
tm.assert_frame_equal(res, expected) | |
def get_sqlite_column_type(conn, table, column): | |
recs = conn.execute(f"PRAGMA table_info({table})") | |
for cid, name, ctype, not_null, default, pk in recs: | |
if name == column: | |
return ctype | |
raise ValueError(f"Table {table}, column {column} not found") | |
def test_sqlite_test_dtype(sqlite_buildin): | |
conn = sqlite_buildin | |
cols = ["A", "B"] | |
data = [(0.8, True), (0.9, None)] | |
df = DataFrame(data, columns=cols) | |
assert df.to_sql(name="dtype_test", con=conn) == 2 | |
assert df.to_sql(name="dtype_test2", con=conn, dtype={"B": "STRING"}) == 2 | |
# sqlite stores Boolean values as INTEGER | |
assert get_sqlite_column_type(conn, "dtype_test", "B") == "INTEGER" | |
assert get_sqlite_column_type(conn, "dtype_test2", "B") == "STRING" | |
msg = r"B \(<class 'bool'>\) not a string" | |
with pytest.raises(ValueError, match=msg): | |
df.to_sql(name="error", con=conn, dtype={"B": bool}) | |
# single dtype | |
assert df.to_sql(name="single_dtype_test", con=conn, dtype="STRING") == 2 | |
assert get_sqlite_column_type(conn, "single_dtype_test", "A") == "STRING" | |
assert get_sqlite_column_type(conn, "single_dtype_test", "B") == "STRING" | |
def test_sqlite_notna_dtype(sqlite_buildin): | |
conn = sqlite_buildin | |
cols = { | |
"Bool": Series([True, None]), | |
"Date": Series([datetime(2012, 5, 1), None]), | |
"Int": Series([1, None], dtype="object"), | |
"Float": Series([1.1, None]), | |
} | |
df = DataFrame(cols) | |
tbl = "notna_dtype_test" | |
assert df.to_sql(name=tbl, con=conn) == 2 | |
assert get_sqlite_column_type(conn, tbl, "Bool") == "INTEGER" | |
assert get_sqlite_column_type(conn, tbl, "Date") == "TIMESTAMP" | |
assert get_sqlite_column_type(conn, tbl, "Int") == "INTEGER" | |
assert get_sqlite_column_type(conn, tbl, "Float") == "REAL" | |
def test_sqlite_illegal_names(sqlite_buildin): | |
# For sqlite, these should work fine | |
conn = sqlite_buildin | |
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) | |
msg = "Empty table or column name specified" | |
with pytest.raises(ValueError, match=msg): | |
df.to_sql(name="", con=conn) | |
for ndx, weird_name in enumerate( | |
[ | |
"test_weird_name]", | |
"test_weird_name[", | |
"test_weird_name`", | |
'test_weird_name"', | |
"test_weird_name'", | |
"_b.test_weird_name_01-30", | |
'"_b.test_weird_name_01-30"', | |
"99beginswithnumber", | |
"12345", | |
"\xe9", | |
] | |
): | |
assert df.to_sql(name=weird_name, con=conn) == 2 | |
sql.table_exists(weird_name, conn) | |
df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name]) | |
c_tbl = f"test_weird_col_name{ndx:d}" | |
assert df2.to_sql(name=c_tbl, con=conn) == 2 | |
sql.table_exists(c_tbl, conn) | |
def format_query(sql, *args): | |
_formatters = { | |
datetime: "'{}'".format, | |
str: "'{}'".format, | |
np.str_: "'{}'".format, | |
bytes: "'{}'".format, | |
float: "{:.8f}".format, | |
int: "{:d}".format, | |
type(None): lambda x: "NULL", | |
np.float64: "{:.10f}".format, | |
bool: "'{!s}'".format, | |
} | |
processed_args = [] | |
for arg in args: | |
if isinstance(arg, float) and isna(arg): | |
arg = None | |
formatter = _formatters[type(arg)] | |
processed_args.append(formatter(arg)) | |
return sql % tuple(processed_args) | |
def tquery(query, con=None): | |
"""Replace removed sql.tquery function""" | |
with sql.pandasSQL_builder(con) as pandas_sql: | |
res = pandas_sql.execute(query).fetchall() | |
return None if res is None else list(res) | |
def test_xsqlite_basic(sqlite_buildin): | |
frame = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
assert sql.to_sql(frame, name="test_table", con=sqlite_buildin, index=False) == 10 | |
result = sql.read_sql("select * from test_table", sqlite_buildin) | |
# HACK! Change this once indexes are handled properly. | |
result.index = frame.index | |
expected = frame | |
tm.assert_frame_equal(result, frame) | |
frame["txt"] = ["a"] * len(frame) | |
frame2 = frame.copy() | |
new_idx = Index(np.arange(len(frame2)), dtype=np.int64) + 10 | |
frame2["Idx"] = new_idx.copy() | |
assert sql.to_sql(frame2, name="test_table2", con=sqlite_buildin, index=False) == 10 | |
result = sql.read_sql("select * from test_table2", sqlite_buildin, index_col="Idx") | |
expected = frame.copy() | |
expected.index = new_idx | |
expected.index.name = "Idx" | |
tm.assert_frame_equal(expected, result) | |
def test_xsqlite_write_row_by_row(sqlite_buildin): | |
frame = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
frame.iloc[0, 0] = np.nan | |
create_sql = sql.get_schema(frame, "test") | |
cur = sqlite_buildin.cursor() | |
cur.execute(create_sql) | |
ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" | |
for _, row in frame.iterrows(): | |
fmt_sql = format_query(ins, *row) | |
tquery(fmt_sql, con=sqlite_buildin) | |
sqlite_buildin.commit() | |
result = sql.read_sql("select * from test", con=sqlite_buildin) | |
result.index = frame.index | |
tm.assert_frame_equal(result, frame, rtol=1e-3) | |
def test_xsqlite_execute(sqlite_buildin): | |
frame = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
create_sql = sql.get_schema(frame, "test") | |
cur = sqlite_buildin.cursor() | |
cur.execute(create_sql) | |
ins = "INSERT INTO test VALUES (?, ?, ?, ?)" | |
row = frame.iloc[0] | |
with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: | |
pandas_sql.execute(ins, tuple(row)) | |
sqlite_buildin.commit() | |
result = sql.read_sql("select * from test", sqlite_buildin) | |
result.index = frame.index[:1] | |
tm.assert_frame_equal(result, frame[:1]) | |
def test_xsqlite_schema(sqlite_buildin): | |
frame = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
create_sql = sql.get_schema(frame, "test") | |
lines = create_sql.splitlines() | |
for line in lines: | |
tokens = line.split(" ") | |
if len(tokens) == 2 and tokens[0] == "A": | |
assert tokens[1] == "DATETIME" | |
create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) | |
lines = create_sql.splitlines() | |
assert 'PRIMARY KEY ("A", "B")' in create_sql | |
cur = sqlite_buildin.cursor() | |
cur.execute(create_sql) | |
def test_xsqlite_execute_fail(sqlite_buildin): | |
create_sql = """ | |
CREATE TABLE test | |
( | |
a TEXT, | |
b TEXT, | |
c REAL, | |
PRIMARY KEY (a, b) | |
); | |
""" | |
cur = sqlite_buildin.cursor() | |
cur.execute(create_sql) | |
with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: | |
pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') | |
pandas_sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)') | |
with pytest.raises(sql.DatabaseError, match="Execution failed on sql"): | |
pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 7)') | |
def test_xsqlite_execute_closed_connection(): | |
create_sql = """ | |
CREATE TABLE test | |
( | |
a TEXT, | |
b TEXT, | |
c REAL, | |
PRIMARY KEY (a, b) | |
); | |
""" | |
with contextlib.closing(sqlite3.connect(":memory:")) as conn: | |
cur = conn.cursor() | |
cur.execute(create_sql) | |
with sql.pandasSQL_builder(conn) as pandas_sql: | |
pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') | |
msg = "Cannot operate on a closed database." | |
with pytest.raises(sqlite3.ProgrammingError, match=msg): | |
tquery("select * from test", con=conn) | |
def test_xsqlite_keyword_as_column_names(sqlite_buildin): | |
df = DataFrame({"From": np.ones(5)}) | |
assert sql.to_sql(df, con=sqlite_buildin, name="testkeywords", index=False) == 5 | |
def test_xsqlite_onecolumn_of_integer(sqlite_buildin): | |
# GH 3628 | |
# a column_of_integers dataframe should transfer well to sql | |
mono_df = DataFrame([1, 2], columns=["c0"]) | |
assert sql.to_sql(mono_df, con=sqlite_buildin, name="mono_df", index=False) == 2 | |
# computing the sum via sql | |
con_x = sqlite_buildin | |
the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) | |
# it should not fail, and gives 3 ( Issue #3628 ) | |
assert the_sum == 3 | |
result = sql.read_sql("select * from mono_df", con_x) | |
tm.assert_frame_equal(result, mono_df) | |
def test_xsqlite_if_exists(sqlite_buildin): | |
df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) | |
df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) | |
table_name = "table_if_exists" | |
sql_select = f"SELECT * FROM {table_name}" | |
msg = "'notvalidvalue' is not valid for if_exists" | |
with pytest.raises(ValueError, match=msg): | |
sql.to_sql( | |
frame=df_if_exists_1, | |
con=sqlite_buildin, | |
name=table_name, | |
if_exists="notvalidvalue", | |
) | |
drop_table(table_name, sqlite_buildin) | |
# test if_exists='fail' | |
sql.to_sql( | |
frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="fail" | |
) | |
msg = "Table 'table_if_exists' already exists" | |
with pytest.raises(ValueError, match=msg): | |
sql.to_sql( | |
frame=df_if_exists_1, | |
con=sqlite_buildin, | |
name=table_name, | |
if_exists="fail", | |
) | |
# test if_exists='replace' | |
sql.to_sql( | |
frame=df_if_exists_1, | |
con=sqlite_buildin, | |
name=table_name, | |
if_exists="replace", | |
index=False, | |
) | |
assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")] | |
assert ( | |
sql.to_sql( | |
frame=df_if_exists_2, | |
con=sqlite_buildin, | |
name=table_name, | |
if_exists="replace", | |
index=False, | |
) | |
== 3 | |
) | |
assert tquery(sql_select, con=sqlite_buildin) == [(3, "C"), (4, "D"), (5, "E")] | |
drop_table(table_name, sqlite_buildin) | |
# test if_exists='append' | |
assert ( | |
sql.to_sql( | |
frame=df_if_exists_1, | |
con=sqlite_buildin, | |
name=table_name, | |
if_exists="fail", | |
index=False, | |
) | |
== 2 | |
) | |
assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")] | |
assert ( | |
sql.to_sql( | |
frame=df_if_exists_2, | |
con=sqlite_buildin, | |
name=table_name, | |
if_exists="append", | |
index=False, | |
) | |
== 3 | |
) | |
assert tquery(sql_select, con=sqlite_buildin) == [ | |
(1, "A"), | |
(2, "B"), | |
(3, "C"), | |
(4, "D"), | |
(5, "E"), | |
] | |
drop_table(table_name, sqlite_buildin) | |