peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/io
/test_stata.py
import bz2 | |
import datetime as dt | |
from datetime import datetime | |
import gzip | |
import io | |
import os | |
import struct | |
import tarfile | |
import zipfile | |
import numpy as np | |
import pytest | |
import pandas.util._test_decorators as td | |
import pandas as pd | |
from pandas import CategoricalDtype | |
import pandas._testing as tm | |
from pandas.core.frame import ( | |
DataFrame, | |
Series, | |
) | |
from pandas.io.parsers import read_csv | |
from pandas.io.stata import ( | |
CategoricalConversionWarning, | |
InvalidColumnName, | |
PossiblePrecisionLoss, | |
StataMissingValue, | |
StataReader, | |
StataWriter, | |
StataWriterUTF8, | |
ValueLabelTypeMismatch, | |
read_stata, | |
) | |
def mixed_frame(): | |
return DataFrame( | |
{ | |
"a": [1, 2, 3, 4], | |
"b": [1.0, 3.0, 27.0, 81.0], | |
"c": ["Atlanta", "Birmingham", "Cincinnati", "Detroit"], | |
} | |
) | |
def parsed_114(datapath): | |
dta14_114 = datapath("io", "data", "stata", "stata5_114.dta") | |
parsed_114 = read_stata(dta14_114, convert_dates=True) | |
parsed_114.index.name = "index" | |
return parsed_114 | |
class TestStata: | |
def read_dta(self, file): | |
# Legacy default reader configuration | |
return read_stata(file, convert_dates=True) | |
def read_csv(self, file): | |
return read_csv(file, parse_dates=True) | |
def test_read_empty_dta(self, version): | |
empty_ds = DataFrame(columns=["unit"]) | |
# GH 7369, make sure can read a 0-obs dta file | |
with tm.ensure_clean() as path: | |
empty_ds.to_stata(path, write_index=False, version=version) | |
empty_ds2 = read_stata(path) | |
tm.assert_frame_equal(empty_ds, empty_ds2) | |
def test_read_empty_dta_with_dtypes(self, version): | |
# GH 46240 | |
# Fixing above bug revealed that types are not correctly preserved when | |
# writing empty DataFrames | |
empty_df_typed = DataFrame( | |
{ | |
"i8": np.array([0], dtype=np.int8), | |
"i16": np.array([0], dtype=np.int16), | |
"i32": np.array([0], dtype=np.int32), | |
"i64": np.array([0], dtype=np.int64), | |
"u8": np.array([0], dtype=np.uint8), | |
"u16": np.array([0], dtype=np.uint16), | |
"u32": np.array([0], dtype=np.uint32), | |
"u64": np.array([0], dtype=np.uint64), | |
"f32": np.array([0], dtype=np.float32), | |
"f64": np.array([0], dtype=np.float64), | |
} | |
) | |
expected = empty_df_typed.copy() | |
# No uint# support. Downcast since values in range for int# | |
expected["u8"] = expected["u8"].astype(np.int8) | |
expected["u16"] = expected["u16"].astype(np.int16) | |
expected["u32"] = expected["u32"].astype(np.int32) | |
# No int64 supported at all. Downcast since values in range for int32 | |
expected["u64"] = expected["u64"].astype(np.int32) | |
expected["i64"] = expected["i64"].astype(np.int32) | |
# GH 7369, make sure can read a 0-obs dta file | |
with tm.ensure_clean() as path: | |
empty_df_typed.to_stata(path, write_index=False, version=version) | |
empty_reread = read_stata(path) | |
tm.assert_frame_equal(expected, empty_reread) | |
tm.assert_series_equal(expected.dtypes, empty_reread.dtypes) | |
def test_read_index_col_none(self, version): | |
df = DataFrame({"a": range(5), "b": ["b1", "b2", "b3", "b4", "b5"]}) | |
# GH 7369, make sure can read a 0-obs dta file | |
with tm.ensure_clean() as path: | |
df.to_stata(path, write_index=False, version=version) | |
read_df = read_stata(path) | |
assert isinstance(read_df.index, pd.RangeIndex) | |
expected = df.copy() | |
expected["a"] = expected["a"].astype(np.int32) | |
tm.assert_frame_equal(read_df, expected, check_index_type=True) | |
def test_read_dta1(self, file, datapath): | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = self.read_dta(file) | |
# Pandas uses np.nan as missing value. | |
# Thus, all columns will be of type float, regardless of their name. | |
expected = DataFrame( | |
[(np.nan, np.nan, np.nan, np.nan, np.nan)], | |
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], | |
) | |
# this is an oddity as really the nan should be float64, but | |
# the casting doesn't fail so need to match stata here | |
expected["float_miss"] = expected["float_miss"].astype(np.float32) | |
tm.assert_frame_equal(parsed, expected) | |
def test_read_dta2(self, datapath): | |
expected = DataFrame.from_records( | |
[ | |
( | |
datetime(2006, 11, 19, 23, 13, 20), | |
1479596223000, | |
datetime(2010, 1, 20), | |
datetime(2010, 1, 8), | |
datetime(2010, 1, 1), | |
datetime(1974, 7, 1), | |
datetime(2010, 1, 1), | |
datetime(2010, 1, 1), | |
), | |
( | |
datetime(1959, 12, 31, 20, 3, 20), | |
-1479590, | |
datetime(1953, 10, 2), | |
datetime(1948, 6, 10), | |
datetime(1955, 1, 1), | |
datetime(1955, 7, 1), | |
datetime(1955, 1, 1), | |
datetime(2, 1, 1), | |
), | |
(pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT), | |
], | |
columns=[ | |
"datetime_c", | |
"datetime_big_c", | |
"date", | |
"weekly_date", | |
"monthly_date", | |
"quarterly_date", | |
"half_yearly_date", | |
"yearly_date", | |
], | |
) | |
expected["yearly_date"] = expected["yearly_date"].astype("O") | |
path1 = datapath("io", "data", "stata", "stata2_114.dta") | |
path2 = datapath("io", "data", "stata", "stata2_115.dta") | |
path3 = datapath("io", "data", "stata", "stata2_117.dta") | |
with tm.assert_produces_warning(UserWarning): | |
parsed_114 = self.read_dta(path1) | |
with tm.assert_produces_warning(UserWarning): | |
parsed_115 = self.read_dta(path2) | |
with tm.assert_produces_warning(UserWarning): | |
parsed_117 = self.read_dta(path3) | |
# FIXME: don't leave commented-out | |
# 113 is buggy due to limits of date format support in Stata | |
# parsed_113 = self.read_dta( | |
# datapath("io", "data", "stata", "stata2_113.dta") | |
# ) | |
# FIXME: don't leave commented-out | |
# buggy test because of the NaT comparison on certain platforms | |
# Format 113 test fails since it does not support tc and tC formats | |
# tm.assert_frame_equal(parsed_113, expected) | |
tm.assert_frame_equal(parsed_114, expected, check_datetimelike_compat=True) | |
tm.assert_frame_equal(parsed_115, expected, check_datetimelike_compat=True) | |
tm.assert_frame_equal(parsed_117, expected, check_datetimelike_compat=True) | |
def test_read_dta3(self, file, datapath): | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = self.read_dta(file) | |
# match stata here | |
expected = self.read_csv(datapath("io", "data", "stata", "stata3.csv")) | |
expected = expected.astype(np.float32) | |
expected["year"] = expected["year"].astype(np.int16) | |
expected["quarter"] = expected["quarter"].astype(np.int8) | |
tm.assert_frame_equal(parsed, expected) | |
def test_read_dta4(self, file, datapath): | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = self.read_dta(file) | |
expected = DataFrame.from_records( | |
[ | |
["one", "ten", "one", "one", "one"], | |
["two", "nine", "two", "two", "two"], | |
["three", "eight", "three", "three", "three"], | |
["four", "seven", 4, "four", "four"], | |
["five", "six", 5, np.nan, "five"], | |
["six", "five", 6, np.nan, "six"], | |
["seven", "four", 7, np.nan, "seven"], | |
["eight", "three", 8, np.nan, "eight"], | |
["nine", "two", 9, np.nan, "nine"], | |
["ten", "one", "ten", np.nan, "ten"], | |
], | |
columns=[ | |
"fully_labeled", | |
"fully_labeled2", | |
"incompletely_labeled", | |
"labeled_with_missings", | |
"float_labelled", | |
], | |
) | |
# these are all categoricals | |
for col in expected: | |
orig = expected[col].copy() | |
categories = np.asarray(expected["fully_labeled"][orig.notna()]) | |
if col == "incompletely_labeled": | |
categories = orig | |
cat = orig.astype("category")._values | |
cat = cat.set_categories(categories, ordered=True) | |
cat.categories.rename(None, inplace=True) | |
expected[col] = cat | |
# stata doesn't save .category metadata | |
tm.assert_frame_equal(parsed, expected) | |
# File containing strls | |
def test_read_dta12(self, datapath): | |
parsed_117 = self.read_dta(datapath("io", "data", "stata", "stata12_117.dta")) | |
expected = DataFrame.from_records( | |
[ | |
[1, "abc", "abcdefghi"], | |
[3, "cba", "qwertywertyqwerty"], | |
[93, "", "strl"], | |
], | |
columns=["x", "y", "z"], | |
) | |
tm.assert_frame_equal(parsed_117, expected, check_dtype=False) | |
def test_read_dta18(self, datapath): | |
parsed_118 = self.read_dta(datapath("io", "data", "stata", "stata14_118.dta")) | |
parsed_118["Bytes"] = parsed_118["Bytes"].astype("O") | |
expected = DataFrame.from_records( | |
[ | |
["Cat", "Bogota", "Bogotá", 1, 1.0, "option b Ünicode", 1.0], | |
["Dog", "Boston", "Uzunköprü", np.nan, np.nan, np.nan, np.nan], | |
["Plane", "Rome", "Tromsø", 0, 0.0, "option a", 0.0], | |
["Potato", "Tokyo", "Elâzığ", -4, 4.0, 4, 4], # noqa: RUF001 | |
["", "", "", 0, 0.3332999, "option a", 1 / 3.0], | |
], | |
columns=[ | |
"Things", | |
"Cities", | |
"Unicode_Cities_Strl", | |
"Ints", | |
"Floats", | |
"Bytes", | |
"Longs", | |
], | |
) | |
expected["Floats"] = expected["Floats"].astype(np.float32) | |
for col in parsed_118.columns: | |
tm.assert_almost_equal(parsed_118[col], expected[col]) | |
with StataReader(datapath("io", "data", "stata", "stata14_118.dta")) as rdr: | |
vl = rdr.variable_labels() | |
vl_expected = { | |
"Unicode_Cities_Strl": "Here are some strls with Ünicode chars", | |
"Longs": "long data", | |
"Things": "Here are some things", | |
"Bytes": "byte data", | |
"Ints": "int data", | |
"Cities": "Here are some cities", | |
"Floats": "float data", | |
} | |
tm.assert_dict_equal(vl, vl_expected) | |
assert rdr.data_label == "This is a Ünicode data label" | |
def test_read_write_dta5(self): | |
original = DataFrame( | |
[(np.nan, np.nan, np.nan, np.nan, np.nan)], | |
columns=["float_miss", "double_miss", "byte_miss", "int_miss", "long_miss"], | |
) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
original.to_stata(path, convert_dates=None) | |
written_and_read_again = self.read_dta(path) | |
expected = original.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_write_dta6(self, datapath): | |
original = self.read_csv(datapath("io", "data", "stata", "stata3.csv")) | |
original.index.name = "index" | |
original.index = original.index.astype(np.int32) | |
original["year"] = original["year"].astype(np.int32) | |
original["quarter"] = original["quarter"].astype(np.int32) | |
with tm.ensure_clean() as path: | |
original.to_stata(path, convert_dates=None) | |
written_and_read_again = self.read_dta(path) | |
tm.assert_frame_equal( | |
written_and_read_again.set_index("index"), | |
original, | |
check_index_type=False, | |
) | |
def test_read_write_dta10(self, version): | |
original = DataFrame( | |
data=[["string", "object", 1, 1.1, np.datetime64("2003-12-25")]], | |
columns=["string", "object", "integer", "floating", "datetime"], | |
) | |
original["object"] = Series(original["object"], dtype=object) | |
original.index.name = "index" | |
original.index = original.index.astype(np.int32) | |
original["integer"] = original["integer"].astype(np.int32) | |
with tm.ensure_clean() as path: | |
original.to_stata(path, convert_dates={"datetime": "tc"}, version=version) | |
written_and_read_again = self.read_dta(path) | |
# original.index is np.int32, read index is np.int64 | |
tm.assert_frame_equal( | |
written_and_read_again.set_index("index"), | |
original, | |
check_index_type=False, | |
) | |
def test_stata_doc_examples(self): | |
with tm.ensure_clean() as path: | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB") | |
) | |
df.to_stata(path) | |
def test_write_preserves_original(self): | |
# 9795 | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 4)), columns=list("abcd") | |
) | |
df.loc[2, "a":"c"] = np.nan | |
df_copy = df.copy() | |
with tm.ensure_clean() as path: | |
df.to_stata(path, write_index=False) | |
tm.assert_frame_equal(df, df_copy) | |
def test_encoding(self, version, datapath): | |
# GH 4626, proper encoding handling | |
raw = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta")) | |
encoded = read_stata(datapath("io", "data", "stata", "stata1_encoding.dta")) | |
result = encoded.kreis1849[0] | |
expected = raw.kreis1849[0] | |
assert result == expected | |
assert isinstance(result, str) | |
with tm.ensure_clean() as path: | |
encoded.to_stata(path, write_index=False, version=version) | |
reread_encoded = read_stata(path) | |
tm.assert_frame_equal(encoded, reread_encoded) | |
def test_read_write_dta11(self): | |
original = DataFrame( | |
[(1, 2, 3, 4)], | |
columns=[ | |
"good", | |
"b\u00E4d", | |
"8number", | |
"astringwithmorethan32characters______", | |
], | |
) | |
formatted = DataFrame( | |
[(1, 2, 3, 4)], | |
columns=["good", "b_d", "_8number", "astringwithmorethan32characters_"], | |
) | |
formatted.index.name = "index" | |
formatted = formatted.astype(np.int32) | |
with tm.ensure_clean() as path: | |
with tm.assert_produces_warning(InvalidColumnName): | |
original.to_stata(path, convert_dates=None) | |
written_and_read_again = self.read_dta(path) | |
expected = formatted.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_read_write_dta12(self, version): | |
original = DataFrame( | |
[(1, 2, 3, 4, 5, 6)], | |
columns=[ | |
"astringwithmorethan32characters_1", | |
"astringwithmorethan32characters_2", | |
"+", | |
"-", | |
"short", | |
"delete", | |
], | |
) | |
formatted = DataFrame( | |
[(1, 2, 3, 4, 5, 6)], | |
columns=[ | |
"astringwithmorethan32characters_", | |
"_0astringwithmorethan32character", | |
"_", | |
"_1_", | |
"_short", | |
"_delete", | |
], | |
) | |
formatted.index.name = "index" | |
formatted = formatted.astype(np.int32) | |
with tm.ensure_clean() as path: | |
with tm.assert_produces_warning(InvalidColumnName): | |
original.to_stata(path, convert_dates=None, version=version) | |
# should get a warning for that format. | |
written_and_read_again = self.read_dta(path) | |
expected = formatted.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_read_write_dta13(self): | |
s1 = Series(2**9, dtype=np.int16) | |
s2 = Series(2**17, dtype=np.int32) | |
s3 = Series(2**33, dtype=np.int64) | |
original = DataFrame({"int16": s1, "int32": s2, "int64": s3}) | |
original.index.name = "index" | |
formatted = original | |
formatted["int64"] = formatted["int64"].astype(np.float64) | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
written_and_read_again = self.read_dta(path) | |
expected = formatted.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_read_write_reread_dta14(self, file, parsed_114, version, datapath): | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = self.read_dta(file) | |
parsed.index.name = "index" | |
tm.assert_frame_equal(parsed_114, parsed) | |
with tm.ensure_clean() as path: | |
parsed_114.to_stata(path, convert_dates={"date_td": "td"}, version=version) | |
written_and_read_again = self.read_dta(path) | |
expected = parsed_114.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_read_write_reread_dta15(self, file, datapath): | |
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) | |
expected["byte_"] = expected["byte_"].astype(np.int8) | |
expected["int_"] = expected["int_"].astype(np.int16) | |
expected["long_"] = expected["long_"].astype(np.int32) | |
expected["float_"] = expected["float_"].astype(np.float32) | |
expected["double_"] = expected["double_"].astype(np.float64) | |
expected["date_td"] = expected["date_td"].apply( | |
datetime.strptime, args=("%Y-%m-%d",) | |
) | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = self.read_dta(file) | |
tm.assert_frame_equal(expected, parsed) | |
def test_timestamp_and_label(self, version): | |
original = DataFrame([(1,)], columns=["variable"]) | |
time_stamp = datetime(2000, 2, 29, 14, 21) | |
data_label = "This is a data file." | |
with tm.ensure_clean() as path: | |
original.to_stata( | |
path, time_stamp=time_stamp, data_label=data_label, version=version | |
) | |
with StataReader(path) as reader: | |
assert reader.time_stamp == "29 Feb 2000 14:21" | |
assert reader.data_label == data_label | |
def test_invalid_timestamp(self, version): | |
original = DataFrame([(1,)], columns=["variable"]) | |
time_stamp = "01 Jan 2000, 00:00:00" | |
with tm.ensure_clean() as path: | |
msg = "time_stamp should be datetime type" | |
with pytest.raises(ValueError, match=msg): | |
original.to_stata(path, time_stamp=time_stamp, version=version) | |
assert not os.path.isfile(path) | |
def test_numeric_column_names(self): | |
original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
# should get a warning for that format. | |
with tm.assert_produces_warning(InvalidColumnName): | |
original.to_stata(path) | |
written_and_read_again = self.read_dta(path) | |
written_and_read_again = written_and_read_again.set_index("index") | |
columns = list(written_and_read_again.columns) | |
convert_col_name = lambda x: int(x[1]) | |
written_and_read_again.columns = map(convert_col_name, columns) | |
expected = original.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(expected, written_and_read_again) | |
def test_nan_to_missing_value(self, version): | |
s1 = Series(np.arange(4.0), dtype=np.float32) | |
s2 = Series(np.arange(4.0), dtype=np.float64) | |
s1[::2] = np.nan | |
s2[1::2] = np.nan | |
original = DataFrame({"s1": s1, "s2": s2}) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
original.to_stata(path, version=version) | |
written_and_read_again = self.read_dta(path) | |
written_and_read_again = written_and_read_again.set_index("index") | |
expected = original.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again, expected) | |
def test_no_index(self): | |
columns = ["x", "y"] | |
original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) | |
original.index.name = "index_not_written" | |
with tm.ensure_clean() as path: | |
original.to_stata(path, write_index=False) | |
written_and_read_again = self.read_dta(path) | |
with pytest.raises(KeyError, match=original.index.name): | |
written_and_read_again["index_not_written"] | |
def test_string_no_dates(self): | |
s1 = Series(["a", "A longer string"]) | |
s2 = Series([1.0, 2.0], dtype=np.float64) | |
original = DataFrame({"s1": s1, "s2": s2}) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
written_and_read_again = self.read_dta(path) | |
expected = original.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_large_value_conversion(self): | |
s0 = Series([1, 99], dtype=np.int8) | |
s1 = Series([1, 127], dtype=np.int8) | |
s2 = Series([1, 2**15 - 1], dtype=np.int16) | |
s3 = Series([1, 2**63 - 1], dtype=np.int64) | |
original = DataFrame({"s0": s0, "s1": s1, "s2": s2, "s3": s3}) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
with tm.assert_produces_warning(PossiblePrecisionLoss): | |
original.to_stata(path) | |
written_and_read_again = self.read_dta(path) | |
modified = original.copy() | |
modified["s1"] = Series(modified["s1"], dtype=np.int16) | |
modified["s2"] = Series(modified["s2"], dtype=np.int32) | |
modified["s3"] = Series(modified["s3"], dtype=np.float64) | |
modified.index = original.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) | |
def test_dates_invalid_column(self): | |
original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
with tm.assert_produces_warning(InvalidColumnName): | |
original.to_stata(path, convert_dates={0: "tc"}) | |
written_and_read_again = self.read_dta(path) | |
modified = original.copy() | |
modified.columns = ["_0"] | |
modified.index = original.index.astype(np.int32) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), modified) | |
def test_105(self, datapath): | |
# Data obtained from: | |
# http://go.worldbank.org/ZXY29PVJ21 | |
dpath = datapath("io", "data", "stata", "S4_EDUC1.dta") | |
df = read_stata(dpath) | |
df0 = [[1, 1, 3, -2], [2, 1, 2, -2], [4, 1, 1, -2]] | |
df0 = DataFrame(df0) | |
df0.columns = ["clustnum", "pri_schl", "psch_num", "psch_dis"] | |
df0["clustnum"] = df0["clustnum"].astype(np.int16) | |
df0["pri_schl"] = df0["pri_schl"].astype(np.int8) | |
df0["psch_num"] = df0["psch_num"].astype(np.int8) | |
df0["psch_dis"] = df0["psch_dis"].astype(np.float32) | |
tm.assert_frame_equal(df.head(3), df0) | |
def test_value_labels_old_format(self, datapath): | |
# GH 19417 | |
# | |
# Test that value_labels() returns an empty dict if the file format | |
# predates supporting value labels. | |
dpath = datapath("io", "data", "stata", "S4_EDUC1.dta") | |
with StataReader(dpath) as reader: | |
assert reader.value_labels() == {} | |
def test_date_export_formats(self): | |
columns = ["tc", "td", "tw", "tm", "tq", "th", "ty"] | |
conversions = {c: c for c in columns} | |
data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) | |
original = DataFrame([data], columns=columns) | |
original.index.name = "index" | |
expected_values = [ | |
datetime(2006, 11, 20, 23, 13, 20), # Time | |
datetime(2006, 11, 20), # Day | |
datetime(2006, 11, 19), # Week | |
datetime(2006, 11, 1), # Month | |
datetime(2006, 10, 1), # Quarter year | |
datetime(2006, 7, 1), # Half year | |
datetime(2006, 1, 1), | |
] # Year | |
expected = DataFrame( | |
[expected_values], | |
index=pd.Index([0], dtype=np.int32, name="index"), | |
columns=columns, | |
) | |
with tm.ensure_clean() as path: | |
original.to_stata(path, convert_dates=conversions) | |
written_and_read_again = self.read_dta(path) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_write_missing_strings(self): | |
original = DataFrame([["1"], [None]], columns=["foo"]) | |
expected = DataFrame( | |
[["1"], [""]], | |
index=pd.Index([0, 1], dtype=np.int32, name="index"), | |
columns=["foo"], | |
) | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
written_and_read_again = self.read_dta(path) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_bool_uint(self, byteorder, version): | |
s0 = Series([0, 1, True], dtype=np.bool_) | |
s1 = Series([0, 1, 100], dtype=np.uint8) | |
s2 = Series([0, 1, 255], dtype=np.uint8) | |
s3 = Series([0, 1, 2**15 - 100], dtype=np.uint16) | |
s4 = Series([0, 1, 2**16 - 1], dtype=np.uint16) | |
s5 = Series([0, 1, 2**31 - 100], dtype=np.uint32) | |
s6 = Series([0, 1, 2**32 - 1], dtype=np.uint32) | |
original = DataFrame( | |
{"s0": s0, "s1": s1, "s2": s2, "s3": s3, "s4": s4, "s5": s5, "s6": s6} | |
) | |
original.index.name = "index" | |
expected = original.copy() | |
expected.index = original.index.astype(np.int32) | |
expected_types = ( | |
np.int8, | |
np.int8, | |
np.int16, | |
np.int16, | |
np.int32, | |
np.int32, | |
np.float64, | |
) | |
for c, t in zip(expected.columns, expected_types): | |
expected[c] = expected[c].astype(t) | |
with tm.ensure_clean() as path: | |
original.to_stata(path, byteorder=byteorder, version=version) | |
written_and_read_again = self.read_dta(path) | |
written_and_read_again = written_and_read_again.set_index("index") | |
tm.assert_frame_equal(written_and_read_again, expected) | |
def test_variable_labels(self, datapath): | |
with StataReader(datapath("io", "data", "stata", "stata7_115.dta")) as rdr: | |
sr_115 = rdr.variable_labels() | |
with StataReader(datapath("io", "data", "stata", "stata7_117.dta")) as rdr: | |
sr_117 = rdr.variable_labels() | |
keys = ("var1", "var2", "var3") | |
labels = ("label1", "label2", "label3") | |
for k, v in sr_115.items(): | |
assert k in sr_117 | |
assert v == sr_117[k] | |
assert k in keys | |
assert v in labels | |
def test_minimal_size_col(self): | |
str_lens = (1, 100, 244) | |
s = {} | |
for str_len in str_lens: | |
s["s" + str(str_len)] = Series( | |
["a" * str_len, "b" * str_len, "c" * str_len] | |
) | |
original = DataFrame(s) | |
with tm.ensure_clean() as path: | |
original.to_stata(path, write_index=False) | |
with StataReader(path) as sr: | |
sr._ensure_open() # The `_*list` variables are initialized here | |
for variable, fmt, typ in zip(sr._varlist, sr._fmtlist, sr._typlist): | |
assert int(variable[1:]) == int(fmt[1:-1]) | |
assert int(variable[1:]) == typ | |
def test_excessively_long_string(self): | |
str_lens = (1, 244, 500) | |
s = {} | |
for str_len in str_lens: | |
s["s" + str(str_len)] = Series( | |
["a" * str_len, "b" * str_len, "c" * str_len] | |
) | |
original = DataFrame(s) | |
msg = ( | |
r"Fixed width strings in Stata \.dta files are limited to 244 " | |
r"\(or fewer\)\ncharacters\. Column 's500' does not satisfy " | |
r"this restriction\. Use the\n'version=117' parameter to write " | |
r"the newer \(Stata 13 and later\) format\." | |
) | |
with pytest.raises(ValueError, match=msg): | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
def test_missing_value_generator(self): | |
types = ("b", "h", "l") | |
df = DataFrame([[0.0]], columns=["float_"]) | |
with tm.ensure_clean() as path: | |
df.to_stata(path) | |
with StataReader(path) as rdr: | |
valid_range = rdr.VALID_RANGE | |
expected_values = ["." + chr(97 + i) for i in range(26)] | |
expected_values.insert(0, ".") | |
for t in types: | |
offset = valid_range[t][1] | |
for i in range(27): | |
val = StataMissingValue(offset + 1 + i) | |
assert val.string == expected_values[i] | |
# Test extremes for floats | |
val = StataMissingValue(struct.unpack("<f", b"\x00\x00\x00\x7f")[0]) | |
assert val.string == "." | |
val = StataMissingValue(struct.unpack("<f", b"\x00\xd0\x00\x7f")[0]) | |
assert val.string == ".z" | |
# Test extremes for floats | |
val = StataMissingValue( | |
struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] | |
) | |
assert val.string == "." | |
val = StataMissingValue( | |
struct.unpack("<d", b"\x00\x00\x00\x00\x00\x1a\xe0\x7f")[0] | |
) | |
assert val.string == ".z" | |
def test_missing_value_conversion(self, file, datapath): | |
columns = ["int8_", "int16_", "int32_", "float32_", "float64_"] | |
smv = StataMissingValue(101) | |
keys = sorted(smv.MISSING_VALUES.keys()) | |
data = [] | |
for i in range(27): | |
row = [StataMissingValue(keys[i + (j * 27)]) for j in range(5)] | |
data.append(row) | |
expected = DataFrame(data, columns=columns) | |
parsed = read_stata( | |
datapath("io", "data", "stata", f"{file}.dta"), convert_missing=True | |
) | |
tm.assert_frame_equal(parsed, expected) | |
def test_big_dates(self, datapath): | |
yr = [1960, 2000, 9999, 100, 2262, 1677] | |
mo = [1, 1, 12, 1, 4, 9] | |
dd = [1, 1, 31, 1, 22, 23] | |
hr = [0, 0, 23, 0, 0, 0] | |
mm = [0, 0, 59, 0, 0, 0] | |
ss = [0, 0, 59, 0, 0, 0] | |
expected = [] | |
for year, month, day, hour, minute, second in zip(yr, mo, dd, hr, mm, ss): | |
row = [] | |
for j in range(7): | |
if j == 0: | |
row.append(datetime(year, month, day, hour, minute, second)) | |
elif j == 6: | |
row.append(datetime(year, 1, 1)) | |
else: | |
row.append(datetime(year, month, day)) | |
expected.append(row) | |
expected.append([pd.NaT] * 7) | |
columns = [ | |
"date_tc", | |
"date_td", | |
"date_tw", | |
"date_tm", | |
"date_tq", | |
"date_th", | |
"date_ty", | |
] | |
# Fixes for weekly, quarterly,half,year | |
expected[2][2] = datetime(9999, 12, 24) | |
expected[2][3] = datetime(9999, 12, 1) | |
expected[2][4] = datetime(9999, 10, 1) | |
expected[2][5] = datetime(9999, 7, 1) | |
expected[4][2] = datetime(2262, 4, 16) | |
expected[4][3] = expected[4][4] = datetime(2262, 4, 1) | |
expected[4][5] = expected[4][6] = datetime(2262, 1, 1) | |
expected[5][2] = expected[5][3] = expected[5][4] = datetime(1677, 10, 1) | |
expected[5][5] = expected[5][6] = datetime(1678, 1, 1) | |
expected = DataFrame(expected, columns=columns, dtype=object) | |
parsed_115 = read_stata(datapath("io", "data", "stata", "stata9_115.dta")) | |
parsed_117 = read_stata(datapath("io", "data", "stata", "stata9_117.dta")) | |
tm.assert_frame_equal(expected, parsed_115, check_datetimelike_compat=True) | |
tm.assert_frame_equal(expected, parsed_117, check_datetimelike_compat=True) | |
date_conversion = {c: c[-2:] for c in columns} | |
# {c : c[-2:] for c in columns} | |
with tm.ensure_clean() as path: | |
expected.index.name = "index" | |
expected.to_stata(path, convert_dates=date_conversion) | |
written_and_read_again = self.read_dta(path) | |
tm.assert_frame_equal( | |
written_and_read_again.set_index("index"), | |
expected.set_index(expected.index.astype(np.int32)), | |
check_datetimelike_compat=True, | |
) | |
def test_dtype_conversion(self, datapath): | |
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) | |
expected["byte_"] = expected["byte_"].astype(np.int8) | |
expected["int_"] = expected["int_"].astype(np.int16) | |
expected["long_"] = expected["long_"].astype(np.int32) | |
expected["float_"] = expected["float_"].astype(np.float32) | |
expected["double_"] = expected["double_"].astype(np.float64) | |
expected["date_td"] = expected["date_td"].apply( | |
datetime.strptime, args=("%Y-%m-%d",) | |
) | |
no_conversion = read_stata( | |
datapath("io", "data", "stata", "stata6_117.dta"), convert_dates=True | |
) | |
tm.assert_frame_equal(expected, no_conversion) | |
conversion = read_stata( | |
datapath("io", "data", "stata", "stata6_117.dta"), | |
convert_dates=True, | |
preserve_dtypes=False, | |
) | |
# read_csv types are the same | |
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) | |
expected["date_td"] = expected["date_td"].apply( | |
datetime.strptime, args=("%Y-%m-%d",) | |
) | |
tm.assert_frame_equal(expected, conversion) | |
def test_drop_column(self, datapath): | |
expected = self.read_csv(datapath("io", "data", "stata", "stata6.csv")) | |
expected["byte_"] = expected["byte_"].astype(np.int8) | |
expected["int_"] = expected["int_"].astype(np.int16) | |
expected["long_"] = expected["long_"].astype(np.int32) | |
expected["float_"] = expected["float_"].astype(np.float32) | |
expected["double_"] = expected["double_"].astype(np.float64) | |
expected["date_td"] = expected["date_td"].apply( | |
datetime.strptime, args=("%Y-%m-%d",) | |
) | |
columns = ["byte_", "int_", "long_"] | |
expected = expected[columns] | |
dropped = read_stata( | |
datapath("io", "data", "stata", "stata6_117.dta"), | |
convert_dates=True, | |
columns=columns, | |
) | |
tm.assert_frame_equal(expected, dropped) | |
# See PR 10757 | |
columns = ["int_", "long_", "byte_"] | |
expected = expected[columns] | |
reordered = read_stata( | |
datapath("io", "data", "stata", "stata6_117.dta"), | |
convert_dates=True, | |
columns=columns, | |
) | |
tm.assert_frame_equal(expected, reordered) | |
msg = "columns contains duplicate entries" | |
with pytest.raises(ValueError, match=msg): | |
columns = ["byte_", "byte_"] | |
read_stata( | |
datapath("io", "data", "stata", "stata6_117.dta"), | |
convert_dates=True, | |
columns=columns, | |
) | |
msg = "The following columns were not found in the Stata data set: not_found" | |
with pytest.raises(ValueError, match=msg): | |
columns = ["byte_", "int_", "long_", "not_found"] | |
read_stata( | |
datapath("io", "data", "stata", "stata6_117.dta"), | |
convert_dates=True, | |
columns=columns, | |
) | |
def test_categorical_writing(self, version): | |
original = DataFrame.from_records( | |
[ | |
["one", "ten", "one", "one", "one", 1], | |
["two", "nine", "two", "two", "two", 2], | |
["three", "eight", "three", "three", "three", 3], | |
["four", "seven", 4, "four", "four", 4], | |
["five", "six", 5, np.nan, "five", 5], | |
["six", "five", 6, np.nan, "six", 6], | |
["seven", "four", 7, np.nan, "seven", 7], | |
["eight", "three", 8, np.nan, "eight", 8], | |
["nine", "two", 9, np.nan, "nine", 9], | |
["ten", "one", "ten", np.nan, "ten", 10], | |
], | |
columns=[ | |
"fully_labeled", | |
"fully_labeled2", | |
"incompletely_labeled", | |
"labeled_with_missings", | |
"float_labelled", | |
"unlabeled", | |
], | |
) | |
expected = original.copy() | |
# these are all categoricals | |
original = pd.concat( | |
[original[col].astype("category") for col in original], axis=1 | |
) | |
expected.index = expected.index.set_names("index").astype(np.int32) | |
expected["incompletely_labeled"] = expected["incompletely_labeled"].apply(str) | |
expected["unlabeled"] = expected["unlabeled"].apply(str) | |
for col in expected: | |
orig = expected[col].copy() | |
cat = orig.astype("category")._values | |
cat = cat.as_ordered() | |
if col == "unlabeled": | |
cat = cat.set_categories(orig, ordered=True) | |
cat.categories.rename(None, inplace=True) | |
expected[col] = cat | |
with tm.ensure_clean() as path: | |
original.to_stata(path, version=version) | |
written_and_read_again = self.read_dta(path) | |
res = written_and_read_again.set_index("index") | |
tm.assert_frame_equal(res, expected) | |
def test_categorical_warnings_and_errors(self): | |
# Warning for non-string labels | |
# Error for labels too long | |
original = DataFrame.from_records( | |
[["a" * 10000], ["b" * 10000], ["c" * 10000], ["d" * 10000]], | |
columns=["Too_long"], | |
) | |
original = pd.concat( | |
[original[col].astype("category") for col in original], axis=1 | |
) | |
with tm.ensure_clean() as path: | |
msg = ( | |
"Stata value labels for a single variable must have " | |
r"a combined length less than 32,000 characters\." | |
) | |
with pytest.raises(ValueError, match=msg): | |
original.to_stata(path) | |
original = DataFrame.from_records( | |
[["a"], ["b"], ["c"], ["d"], [1]], columns=["Too_long"] | |
) | |
original = pd.concat( | |
[original[col].astype("category") for col in original], axis=1 | |
) | |
with tm.assert_produces_warning(ValueLabelTypeMismatch): | |
original.to_stata(path) | |
# should get a warning for mixed content | |
def test_categorical_with_stata_missing_values(self, version): | |
values = [["a" + str(i)] for i in range(120)] | |
values.append([np.nan]) | |
original = DataFrame.from_records(values, columns=["many_labels"]) | |
original = pd.concat( | |
[original[col].astype("category") for col in original], axis=1 | |
) | |
original.index.name = "index" | |
with tm.ensure_clean() as path: | |
original.to_stata(path, version=version) | |
written_and_read_again = self.read_dta(path) | |
res = written_and_read_again.set_index("index") | |
expected = original.copy() | |
for col in expected: | |
cat = expected[col]._values | |
new_cats = cat.remove_unused_categories().categories | |
cat = cat.set_categories(new_cats, ordered=True) | |
expected[col] = cat | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(res, expected) | |
def test_categorical_order(self, file, datapath): | |
# Directly construct using expected codes | |
# Format is is_cat, col_name, labels (in order), underlying data | |
expected = [ | |
(True, "ordered", ["a", "b", "c", "d", "e"], np.arange(5)), | |
(True, "reverse", ["a", "b", "c", "d", "e"], np.arange(5)[::-1]), | |
(True, "noorder", ["a", "b", "c", "d", "e"], np.array([2, 1, 4, 0, 3])), | |
(True, "floating", ["a", "b", "c", "d", "e"], np.arange(0, 5)), | |
(True, "float_missing", ["a", "d", "e"], np.array([0, 1, 2, -1, -1])), | |
(False, "nolabel", [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)), | |
(True, "int32_mixed", ["d", 2, "e", "b", "a"], np.arange(5)), | |
] | |
cols = [] | |
for is_cat, col, labels, codes in expected: | |
if is_cat: | |
cols.append( | |
(col, pd.Categorical.from_codes(codes, labels, ordered=True)) | |
) | |
else: | |
cols.append((col, Series(labels, dtype=np.float32))) | |
expected = DataFrame.from_dict(dict(cols)) | |
# Read with and with out categoricals, ensure order is identical | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = read_stata(file) | |
tm.assert_frame_equal(expected, parsed) | |
# Check identity of codes | |
for col in expected: | |
if isinstance(expected[col].dtype, CategoricalDtype): | |
tm.assert_series_equal(expected[col].cat.codes, parsed[col].cat.codes) | |
tm.assert_index_equal( | |
expected[col].cat.categories, parsed[col].cat.categories | |
) | |
def test_categorical_sorting(self, file, datapath): | |
parsed = read_stata(datapath("io", "data", "stata", f"{file}.dta")) | |
# Sort based on codes, not strings | |
parsed = parsed.sort_values("srh", na_position="first") | |
# Don't sort index | |
parsed.index = pd.RangeIndex(len(parsed)) | |
codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4] | |
categories = ["Poor", "Fair", "Good", "Very good", "Excellent"] | |
cat = pd.Categorical.from_codes( | |
codes=codes, categories=categories, ordered=True | |
) | |
expected = Series(cat, name="srh") | |
tm.assert_series_equal(expected, parsed["srh"]) | |
def test_categorical_ordering(self, file, datapath): | |
file = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = read_stata(file) | |
parsed_unordered = read_stata(file, order_categoricals=False) | |
for col in parsed: | |
if not isinstance(parsed[col].dtype, CategoricalDtype): | |
continue | |
assert parsed[col].cat.ordered | |
assert not parsed_unordered[col].cat.ordered | |
def test_read_chunks_117( | |
self, file, chunksize, convert_categoricals, convert_dates, datapath | |
): | |
fname = datapath("io", "data", "stata", f"{file}.dta") | |
parsed = read_stata( | |
fname, | |
convert_categoricals=convert_categoricals, | |
convert_dates=convert_dates, | |
) | |
with read_stata( | |
fname, | |
iterator=True, | |
convert_categoricals=convert_categoricals, | |
convert_dates=convert_dates, | |
) as itr: | |
pos = 0 | |
for j in range(5): | |
try: | |
chunk = itr.read(chunksize) | |
except StopIteration: | |
break | |
from_frame = parsed.iloc[pos : pos + chunksize, :].copy() | |
from_frame = self._convert_categorical(from_frame) | |
tm.assert_frame_equal( | |
from_frame, chunk, check_dtype=False, check_datetimelike_compat=True | |
) | |
pos += chunksize | |
def _convert_categorical(from_frame: DataFrame) -> DataFrame: | |
""" | |
Emulate the categorical casting behavior we expect from roundtripping. | |
""" | |
for col in from_frame: | |
ser = from_frame[col] | |
if isinstance(ser.dtype, CategoricalDtype): | |
cat = ser._values.remove_unused_categories() | |
if cat.categories.dtype == object: | |
categories = pd.Index._with_infer(cat.categories._values) | |
cat = cat.set_categories(categories) | |
from_frame[col] = cat | |
return from_frame | |
def test_iterator(self, datapath): | |
fname = datapath("io", "data", "stata", "stata3_117.dta") | |
parsed = read_stata(fname) | |
with read_stata(fname, iterator=True) as itr: | |
chunk = itr.read(5) | |
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) | |
with read_stata(fname, chunksize=5) as itr: | |
chunk = list(itr) | |
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0]) | |
with read_stata(fname, iterator=True) as itr: | |
chunk = itr.get_chunk(5) | |
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) | |
with read_stata(fname, chunksize=5) as itr: | |
chunk = itr.get_chunk() | |
tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) | |
# GH12153 | |
with read_stata(fname, chunksize=4) as itr: | |
from_chunks = pd.concat(itr) | |
tm.assert_frame_equal(parsed, from_chunks) | |
def test_read_chunks_115( | |
self, file, chunksize, convert_categoricals, convert_dates, datapath | |
): | |
fname = datapath("io", "data", "stata", f"{file}.dta") | |
# Read the whole file | |
parsed = read_stata( | |
fname, | |
convert_categoricals=convert_categoricals, | |
convert_dates=convert_dates, | |
) | |
# Compare to what we get when reading by chunk | |
with read_stata( | |
fname, | |
iterator=True, | |
convert_dates=convert_dates, | |
convert_categoricals=convert_categoricals, | |
) as itr: | |
pos = 0 | |
for j in range(5): | |
try: | |
chunk = itr.read(chunksize) | |
except StopIteration: | |
break | |
from_frame = parsed.iloc[pos : pos + chunksize, :].copy() | |
from_frame = self._convert_categorical(from_frame) | |
tm.assert_frame_equal( | |
from_frame, chunk, check_dtype=False, check_datetimelike_compat=True | |
) | |
pos += chunksize | |
def test_read_chunks_columns(self, datapath): | |
fname = datapath("io", "data", "stata", "stata3_117.dta") | |
columns = ["quarter", "cpi", "m1"] | |
chunksize = 2 | |
parsed = read_stata(fname, columns=columns) | |
with read_stata(fname, iterator=True) as itr: | |
pos = 0 | |
for j in range(5): | |
chunk = itr.read(chunksize, columns=columns) | |
if chunk is None: | |
break | |
from_frame = parsed.iloc[pos : pos + chunksize, :] | |
tm.assert_frame_equal(from_frame, chunk, check_dtype=False) | |
pos += chunksize | |
def test_write_variable_labels(self, version, mixed_frame): | |
# GH 13631, add support for writing variable labels | |
mixed_frame.index.name = "index" | |
variable_labels = {"a": "City Rank", "b": "City Exponent", "c": "City"} | |
with tm.ensure_clean() as path: | |
mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) | |
with StataReader(path) as sr: | |
read_labels = sr.variable_labels() | |
expected_labels = { | |
"index": "", | |
"a": "City Rank", | |
"b": "City Exponent", | |
"c": "City", | |
} | |
assert read_labels == expected_labels | |
variable_labels["index"] = "The Index" | |
with tm.ensure_clean() as path: | |
mixed_frame.to_stata(path, variable_labels=variable_labels, version=version) | |
with StataReader(path) as sr: | |
read_labels = sr.variable_labels() | |
assert read_labels == variable_labels | |
def test_invalid_variable_labels(self, version, mixed_frame): | |
mixed_frame.index.name = "index" | |
variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} | |
with tm.ensure_clean() as path: | |
msg = "Variable labels must be 80 characters or fewer" | |
with pytest.raises(ValueError, match=msg): | |
mixed_frame.to_stata( | |
path, variable_labels=variable_labels, version=version | |
) | |
def test_invalid_variable_label_encoding(self, version, mixed_frame): | |
mixed_frame.index.name = "index" | |
variable_labels = {"a": "very long" * 10, "b": "City Exponent", "c": "City"} | |
variable_labels["a"] = "invalid character Œ" | |
with tm.ensure_clean() as path: | |
with pytest.raises( | |
ValueError, match="Variable labels must contain only characters" | |
): | |
mixed_frame.to_stata( | |
path, variable_labels=variable_labels, version=version | |
) | |
def test_write_variable_label_errors(self, mixed_frame): | |
values = ["\u03A1", "\u0391", "\u039D", "\u0394", "\u0391", "\u03A3"] | |
variable_labels_utf8 = { | |
"a": "City Rank", | |
"b": "City Exponent", | |
"c": "".join(values), | |
} | |
msg = ( | |
"Variable labels must contain only characters that can be " | |
"encoded in Latin-1" | |
) | |
with pytest.raises(ValueError, match=msg): | |
with tm.ensure_clean() as path: | |
mixed_frame.to_stata(path, variable_labels=variable_labels_utf8) | |
variable_labels_long = { | |
"a": "City Rank", | |
"b": "City Exponent", | |
"c": "A very, very, very long variable label " | |
"that is too long for Stata which means " | |
"that it has more than 80 characters", | |
} | |
msg = "Variable labels must be 80 characters or fewer" | |
with pytest.raises(ValueError, match=msg): | |
with tm.ensure_clean() as path: | |
mixed_frame.to_stata(path, variable_labels=variable_labels_long) | |
def test_default_date_conversion(self): | |
# GH 12259 | |
dates = [ | |
dt.datetime(1999, 12, 31, 12, 12, 12, 12000), | |
dt.datetime(2012, 12, 21, 12, 21, 12, 21000), | |
dt.datetime(1776, 7, 4, 7, 4, 7, 4000), | |
] | |
original = DataFrame( | |
{ | |
"nums": [1.0, 2.0, 3.0], | |
"strs": ["apple", "banana", "cherry"], | |
"dates": dates, | |
} | |
) | |
with tm.ensure_clean() as path: | |
original.to_stata(path, write_index=False) | |
reread = read_stata(path, convert_dates=True) | |
tm.assert_frame_equal(original, reread) | |
original.to_stata(path, write_index=False, convert_dates={"dates": "tc"}) | |
direct = read_stata(path, convert_dates=True) | |
tm.assert_frame_equal(reread, direct) | |
dates_idx = original.columns.tolist().index("dates") | |
original.to_stata(path, write_index=False, convert_dates={dates_idx: "tc"}) | |
direct = read_stata(path, convert_dates=True) | |
tm.assert_frame_equal(reread, direct) | |
def test_unsupported_type(self): | |
original = DataFrame({"a": [1 + 2j, 2 + 4j]}) | |
msg = "Data type complex128 not supported" | |
with pytest.raises(NotImplementedError, match=msg): | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
def test_unsupported_datetype(self): | |
dates = [ | |
dt.datetime(1999, 12, 31, 12, 12, 12, 12000), | |
dt.datetime(2012, 12, 21, 12, 21, 12, 21000), | |
dt.datetime(1776, 7, 4, 7, 4, 7, 4000), | |
] | |
original = DataFrame( | |
{ | |
"nums": [1.0, 2.0, 3.0], | |
"strs": ["apple", "banana", "cherry"], | |
"dates": dates, | |
} | |
) | |
msg = "Format %tC not implemented" | |
with pytest.raises(NotImplementedError, match=msg): | |
with tm.ensure_clean() as path: | |
original.to_stata(path, convert_dates={"dates": "tC"}) | |
dates = pd.date_range("1-1-1990", periods=3, tz="Asia/Hong_Kong") | |
original = DataFrame( | |
{ | |
"nums": [1.0, 2.0, 3.0], | |
"strs": ["apple", "banana", "cherry"], | |
"dates": dates, | |
} | |
) | |
with pytest.raises(NotImplementedError, match="Data type datetime64"): | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
def test_repeated_column_labels(self, datapath): | |
# GH 13923, 25772 | |
msg = """ | |
Value labels for column ethnicsn are not unique. These cannot be converted to | |
pandas categoricals. | |
Either read the file with `convert_categoricals` set to False or use the | |
low level interface in `StataReader` to separately read the values and the | |
value_labels. | |
The repeated labels are:\n-+\nwolof | |
""" | |
with pytest.raises(ValueError, match=msg): | |
read_stata( | |
datapath("io", "data", "stata", "stata15.dta"), | |
convert_categoricals=True, | |
) | |
def test_stata_111(self, datapath): | |
# 111 is an old version but still used by current versions of | |
# SAS when exporting to Stata format. We do not know of any | |
# on-line documentation for this version. | |
df = read_stata(datapath("io", "data", "stata", "stata7_111.dta")) | |
original = DataFrame( | |
{ | |
"y": [1, 1, 1, 1, 1, 0, 0, np.nan, 0, 0], | |
"x": [1, 2, 1, 3, np.nan, 4, 3, 5, 1, 6], | |
"w": [2, np.nan, 5, 2, 4, 4, 3, 1, 2, 3], | |
"z": ["a", "b", "c", "d", "e", "", "g", "h", "i", "j"], | |
} | |
) | |
original = original[["y", "x", "w", "z"]] | |
tm.assert_frame_equal(original, df) | |
def test_out_of_range_double(self): | |
# GH 14618 | |
df = DataFrame( | |
{ | |
"ColumnOk": [0.0, np.finfo(np.double).eps, 4.49423283715579e307], | |
"ColumnTooBig": [0.0, np.finfo(np.double).eps, np.finfo(np.double).max], | |
} | |
) | |
msg = ( | |
r"Column ColumnTooBig has a maximum value \(.+\) outside the range " | |
r"supported by Stata \(.+\)" | |
) | |
with pytest.raises(ValueError, match=msg): | |
with tm.ensure_clean() as path: | |
df.to_stata(path) | |
def test_out_of_range_float(self): | |
original = DataFrame( | |
{ | |
"ColumnOk": [ | |
0.0, | |
np.finfo(np.float32).eps, | |
np.finfo(np.float32).max / 10.0, | |
], | |
"ColumnTooBig": [ | |
0.0, | |
np.finfo(np.float32).eps, | |
np.finfo(np.float32).max, | |
], | |
} | |
) | |
original.index.name = "index" | |
for col in original: | |
original[col] = original[col].astype(np.float32) | |
with tm.ensure_clean() as path: | |
original.to_stata(path) | |
reread = read_stata(path) | |
original["ColumnTooBig"] = original["ColumnTooBig"].astype(np.float64) | |
expected = original.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(reread.set_index("index"), expected) | |
def test_inf(self, infval): | |
# GH 45350 | |
df = DataFrame({"WithoutInf": [0.0, 1.0], "WithInf": [2.0, infval]}) | |
msg = ( | |
"Column WithInf contains infinity or -infinity" | |
"which is outside the range supported by Stata." | |
) | |
with pytest.raises(ValueError, match=msg): | |
with tm.ensure_clean() as path: | |
df.to_stata(path) | |
def test_path_pathlib(self): | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
df.index.name = "index" | |
reader = lambda x: read_stata(x).set_index("index") | |
result = tm.round_trip_pathlib(df.to_stata, reader) | |
tm.assert_frame_equal(df, result) | |
def test_pickle_path_localpath(self): | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
df.index.name = "index" | |
reader = lambda x: read_stata(x).set_index("index") | |
result = tm.round_trip_localpath(df.to_stata, reader) | |
tm.assert_frame_equal(df, result) | |
def test_value_labels_iterator(self, write_index): | |
# GH 16923 | |
d = {"A": ["B", "E", "C", "A", "E"]} | |
df = DataFrame(data=d) | |
df["A"] = df["A"].astype("category") | |
with tm.ensure_clean() as path: | |
df.to_stata(path, write_index=write_index) | |
with read_stata(path, iterator=True) as dta_iter: | |
value_labels = dta_iter.value_labels() | |
assert value_labels == {"A": {0: "A", 1: "B", 2: "C", 3: "E"}} | |
def test_set_index(self): | |
# GH 17328 | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
df.index.name = "index" | |
with tm.ensure_clean() as path: | |
df.to_stata(path) | |
reread = read_stata(path, index_col="index") | |
tm.assert_frame_equal(df, reread) | |
def test_date_parsing_ignores_format_details(self, column, datapath): | |
# GH 17797 | |
# | |
# Test that display formats are ignored when determining if a numeric | |
# column is a date value. | |
# | |
# All date types are stored as numbers and format associated with the | |
# column denotes both the type of the date and the display format. | |
# | |
# STATA supports 9 date types which each have distinct units. We test 7 | |
# of the 9 types, ignoring %tC and %tb. %tC is a variant of %tc that | |
# accounts for leap seconds and %tb relies on STATAs business calendar. | |
df = read_stata(datapath("io", "data", "stata", "stata13_dates.dta")) | |
unformatted = df.loc[0, column] | |
formatted = df.loc[0, column + "_fmt"] | |
assert unformatted == formatted | |
def test_writer_117(self): | |
original = DataFrame( | |
data=[ | |
[ | |
"string", | |
"object", | |
1, | |
1, | |
1, | |
1.1, | |
1.1, | |
np.datetime64("2003-12-25"), | |
"a", | |
"a" * 2045, | |
"a" * 5000, | |
"a", | |
], | |
[ | |
"string-1", | |
"object-1", | |
1, | |
1, | |
1, | |
1.1, | |
1.1, | |
np.datetime64("2003-12-26"), | |
"b", | |
"b" * 2045, | |
"", | |
"", | |
], | |
], | |
columns=[ | |
"string", | |
"object", | |
"int8", | |
"int16", | |
"int32", | |
"float32", | |
"float64", | |
"datetime", | |
"s1", | |
"s2045", | |
"srtl", | |
"forced_strl", | |
], | |
) | |
original["object"] = Series(original["object"], dtype=object) | |
original["int8"] = Series(original["int8"], dtype=np.int8) | |
original["int16"] = Series(original["int16"], dtype=np.int16) | |
original["int32"] = original["int32"].astype(np.int32) | |
original["float32"] = Series(original["float32"], dtype=np.float32) | |
original.index.name = "index" | |
original.index = original.index.astype(np.int32) | |
copy = original.copy() | |
with tm.ensure_clean() as path: | |
original.to_stata( | |
path, | |
convert_dates={"datetime": "tc"}, | |
convert_strl=["forced_strl"], | |
version=117, | |
) | |
written_and_read_again = self.read_dta(path) | |
# original.index is np.int32, read index is np.int64 | |
tm.assert_frame_equal( | |
written_and_read_again.set_index("index"), | |
original, | |
check_index_type=False, | |
) | |
tm.assert_frame_equal(original, copy) | |
def test_convert_strl_name_swap(self): | |
original = DataFrame( | |
[["a" * 3000, "A", "apple"], ["b" * 1000, "B", "banana"]], | |
columns=["long1" * 10, "long", 1], | |
) | |
original.index.name = "index" | |
with tm.assert_produces_warning(InvalidColumnName): | |
with tm.ensure_clean() as path: | |
original.to_stata(path, convert_strl=["long", 1], version=117) | |
reread = self.read_dta(path) | |
reread = reread.set_index("index") | |
reread.columns = original.columns | |
tm.assert_frame_equal(reread, original, check_index_type=False) | |
def test_invalid_date_conversion(self): | |
# GH 12259 | |
dates = [ | |
dt.datetime(1999, 12, 31, 12, 12, 12, 12000), | |
dt.datetime(2012, 12, 21, 12, 21, 12, 21000), | |
dt.datetime(1776, 7, 4, 7, 4, 7, 4000), | |
] | |
original = DataFrame( | |
{ | |
"nums": [1.0, 2.0, 3.0], | |
"strs": ["apple", "banana", "cherry"], | |
"dates": dates, | |
} | |
) | |
with tm.ensure_clean() as path: | |
msg = "convert_dates key must be a column or an integer" | |
with pytest.raises(ValueError, match=msg): | |
original.to_stata(path, convert_dates={"wrong_name": "tc"}) | |
def test_nonfile_writing(self, version): | |
# GH 21041 | |
bio = io.BytesIO() | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
df.index.name = "index" | |
with tm.ensure_clean() as path: | |
df.to_stata(bio, version=version) | |
bio.seek(0) | |
with open(path, "wb") as dta: | |
dta.write(bio.read()) | |
reread = read_stata(path, index_col="index") | |
tm.assert_frame_equal(df, reread) | |
def test_gzip_writing(self): | |
# writing version 117 requires seek and cannot be used with gzip | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=pd.Index(list("ABCD"), dtype=object), | |
index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
df.index.name = "index" | |
with tm.ensure_clean() as path: | |
with gzip.GzipFile(path, "wb") as gz: | |
df.to_stata(gz, version=114) | |
with gzip.GzipFile(path, "rb") as gz: | |
reread = read_stata(gz, index_col="index") | |
tm.assert_frame_equal(df, reread) | |
def test_unicode_dta_118(self, datapath): | |
unicode_df = self.read_dta(datapath("io", "data", "stata", "stata16_118.dta")) | |
columns = ["utf8", "latin1", "ascii", "utf8_strl", "ascii_strl"] | |
values = [ | |
["ραηδας", "PÄNDÄS", "p", "ραηδας", "p"], | |
["ƤĀńĐąŜ", "Ö", "a", "ƤĀńĐąŜ", "a"], | |
["ᴘᴀᴎᴅᴀS", "Ü", "n", "ᴘᴀᴎᴅᴀS", "n"], | |
[" ", " ", "d", " ", "d"], | |
[" ", "", "a", " ", "a"], | |
["", "", "s", "", "s"], | |
["", "", " ", "", " "], | |
] | |
expected = DataFrame(values, columns=columns) | |
tm.assert_frame_equal(unicode_df, expected) | |
def test_mixed_string_strl(self): | |
# GH 23633 | |
output = [{"mixed": "string" * 500, "number": 0}, {"mixed": None, "number": 1}] | |
output = DataFrame(output) | |
output.number = output.number.astype("int32") | |
with tm.ensure_clean() as path: | |
output.to_stata(path, write_index=False, version=117) | |
reread = read_stata(path) | |
expected = output.fillna("") | |
tm.assert_frame_equal(reread, expected) | |
# Check strl supports all None (null) | |
output["mixed"] = None | |
output.to_stata( | |
path, write_index=False, convert_strl=["mixed"], version=117 | |
) | |
reread = read_stata(path) | |
expected = output.fillna("") | |
tm.assert_frame_equal(reread, expected) | |
def test_all_none_exception(self, version): | |
output = [{"none": "none", "number": 0}, {"none": None, "number": 1}] | |
output = DataFrame(output) | |
output["none"] = None | |
with tm.ensure_clean() as path: | |
with pytest.raises(ValueError, match="Column `none` cannot be exported"): | |
output.to_stata(path, version=version) | |
def test_invalid_file_not_written(self, version): | |
content = "Here is one __�__ Another one __·__ Another one __½__" | |
df = DataFrame([content], columns=["invalid"]) | |
with tm.ensure_clean() as path: | |
msg1 = ( | |
r"'latin-1' codec can't encode character '\\ufffd' " | |
r"in position 14: ordinal not in range\(256\)" | |
) | |
msg2 = ( | |
"'ascii' codec can't decode byte 0xef in position 14: " | |
r"ordinal not in range\(128\)" | |
) | |
with pytest.raises(UnicodeEncodeError, match=f"{msg1}|{msg2}"): | |
df.to_stata(path) | |
def test_strl_latin1(self): | |
# GH 23573, correct GSO data to reflect correct size | |
output = DataFrame( | |
[["pandas"] * 2, ["þâÑÐŧ"] * 2], columns=["var_str", "var_strl"] | |
) | |
with tm.ensure_clean() as path: | |
output.to_stata(path, version=117, convert_strl=["var_strl"]) | |
with open(path, "rb") as reread: | |
content = reread.read() | |
expected = "þâÑÐŧ" | |
assert expected.encode("latin-1") in content | |
assert expected.encode("utf-8") in content | |
gsos = content.split(b"strls")[1][1:-2] | |
for gso in gsos.split(b"GSO")[1:]: | |
val = gso.split(b"\x00")[-2] | |
size = gso[gso.find(b"\x82") + 1] | |
assert len(val) == size - 1 | |
def test_encoding_latin1_118(self, datapath): | |
# GH 25960 | |
msg = """ | |
One or more strings in the dta file could not be decoded using utf-8, and | |
so the fallback encoding of latin-1 is being used. This can happen when a file | |
has been incorrectly encoded by Stata or some other software. You should verify | |
the string values returned are correct.""" | |
# Move path outside of read_stata, or else assert_produces_warning | |
# will block pytests skip mechanism from triggering (failing the test) | |
# if the path is not present | |
path = datapath("io", "data", "stata", "stata1_encoding_118.dta") | |
with tm.assert_produces_warning(UnicodeWarning, filter_level="once") as w: | |
encoded = read_stata(path) | |
# with filter_level="always", produces 151 warnings which can be slow | |
assert len(w) == 1 | |
assert w[0].message.args[0] == msg | |
expected = DataFrame([["Düsseldorf"]] * 151, columns=["kreis1849"]) | |
tm.assert_frame_equal(encoded, expected) | |
def test_stata_119(self, datapath): | |
# Gzipped since contains 32,999 variables and uncompressed is 20MiB | |
# Just validate that the reader reports correct number of variables | |
# to avoid high peak memory | |
with gzip.open( | |
datapath("io", "data", "stata", "stata1_119.dta.gz"), "rb" | |
) as gz: | |
with StataReader(gz) as reader: | |
reader._ensure_open() | |
assert reader._nvar == 32999 | |
def test_utf8_writer(self, version): | |
cat = pd.Categorical(["a", "β", "ĉ"], ordered=True) | |
data = DataFrame( | |
[ | |
[1.0, 1, "ᴬ", "ᴀ relatively long ŝtring"], | |
[2.0, 2, "ᴮ", ""], | |
[3.0, 3, "ᴰ", None], | |
], | |
columns=["Å", "β", "ĉ", "strls"], | |
) | |
data["ᴐᴬᵀ"] = cat | |
variable_labels = { | |
"Å": "apple", | |
"β": "ᵈᵉᵊ", | |
"ĉ": "ᴎტჄႲႳႴႶႺ", | |
"strls": "Long Strings", | |
"ᴐᴬᵀ": "", | |
} | |
data_label = "ᴅaᵀa-label" | |
value_labels = {"β": {1: "label", 2: "æøå", 3: "ŋot valid latin-1"}} | |
data["β"] = data["β"].astype(np.int32) | |
with tm.ensure_clean() as path: | |
writer = StataWriterUTF8( | |
path, | |
data, | |
data_label=data_label, | |
convert_strl=["strls"], | |
variable_labels=variable_labels, | |
write_index=False, | |
version=version, | |
value_labels=value_labels, | |
) | |
writer.write_file() | |
reread_encoded = read_stata(path) | |
# Missing is intentionally converted to empty strl | |
data["strls"] = data["strls"].fillna("") | |
# Variable with value labels is reread as categorical | |
data["β"] = ( | |
data["β"].replace(value_labels["β"]).astype("category").cat.as_ordered() | |
) | |
tm.assert_frame_equal(data, reread_encoded) | |
with StataReader(path) as reader: | |
assert reader.data_label == data_label | |
assert reader.variable_labels() == variable_labels | |
data.to_stata(path, version=version, write_index=False) | |
reread_to_stata = read_stata(path) | |
tm.assert_frame_equal(data, reread_to_stata) | |
def test_writer_118_exceptions(self): | |
df = DataFrame(np.zeros((1, 33000), dtype=np.int8)) | |
with tm.ensure_clean() as path: | |
with pytest.raises(ValueError, match="version must be either 118 or 119."): | |
StataWriterUTF8(path, df, version=117) | |
with tm.ensure_clean() as path: | |
with pytest.raises(ValueError, match="You must use version 119"): | |
StataWriterUTF8(path, df, version=118) | |
def test_read_write_ea_dtypes(self, dtype_backend): | |
df = DataFrame( | |
{ | |
"a": [1, 2, None], | |
"b": ["a", "b", "c"], | |
"c": [True, False, None], | |
"d": [1.5, 2.5, 3.5], | |
"e": pd.date_range("2020-12-31", periods=3, freq="D"), | |
}, | |
index=pd.Index([0, 1, 2], name="index"), | |
) | |
df = df.convert_dtypes(dtype_backend=dtype_backend) | |
df.to_stata("test_stata.dta", version=118) | |
with tm.ensure_clean() as path: | |
df.to_stata(path) | |
written_and_read_again = self.read_dta(path) | |
expected = DataFrame( | |
{ | |
"a": [1, 2, np.nan], | |
"b": ["a", "b", "c"], | |
"c": [1.0, 0, np.nan], | |
"d": [1.5, 2.5, 3.5], | |
"e": pd.date_range("2020-12-31", periods=3, freq="D"), | |
}, | |
index=pd.Index([0, 1, 2], name="index", dtype=np.int32), | |
) | |
tm.assert_frame_equal(written_and_read_again.set_index("index"), expected) | |
def test_backward_compat(version, datapath): | |
data_base = datapath("io", "data", "stata") | |
ref = os.path.join(data_base, "stata-compat-118.dta") | |
old = os.path.join(data_base, f"stata-compat-{version}.dta") | |
expected = read_stata(ref) | |
old_dta = read_stata(old) | |
tm.assert_frame_equal(old_dta, expected, check_dtype=False) | |
def test_direct_read(datapath, monkeypatch): | |
file_path = datapath("io", "data", "stata", "stata-compat-118.dta") | |
# Test that opening a file path doesn't buffer the file. | |
with StataReader(file_path) as reader: | |
# Must not have been buffered to memory | |
assert not reader.read().empty | |
assert not isinstance(reader._path_or_buf, io.BytesIO) | |
# Test that we use a given fp exactly, if possible. | |
with open(file_path, "rb") as fp: | |
with StataReader(fp) as reader: | |
assert not reader.read().empty | |
assert reader._path_or_buf is fp | |
# Test that we use a given BytesIO exactly, if possible. | |
with open(file_path, "rb") as fp: | |
with io.BytesIO(fp.read()) as bio: | |
with StataReader(bio) as reader: | |
assert not reader.read().empty | |
assert reader._path_or_buf is bio | |
def test_statareader_warns_when_used_without_context(datapath): | |
file_path = datapath("io", "data", "stata", "stata-compat-118.dta") | |
with tm.assert_produces_warning( | |
ResourceWarning, | |
match="without using a context manager", | |
): | |
sr = StataReader(file_path) | |
sr.read() | |
with tm.assert_produces_warning( | |
FutureWarning, | |
match="is not part of the public API", | |
): | |
sr.close() | |
def test_compression(compression, version, use_dict, infer, compression_to_extension): | |
file_name = "dta_inferred_compression.dta" | |
if compression: | |
if use_dict: | |
file_ext = compression | |
else: | |
file_ext = compression_to_extension[compression] | |
file_name += f".{file_ext}" | |
compression_arg = compression | |
if infer: | |
compression_arg = "infer" | |
if use_dict: | |
compression_arg = {"method": compression} | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB") | |
) | |
df.index.name = "index" | |
with tm.ensure_clean(file_name) as path: | |
df.to_stata(path, version=version, compression=compression_arg) | |
if compression == "gzip": | |
with gzip.open(path, "rb") as comp: | |
fp = io.BytesIO(comp.read()) | |
elif compression == "zip": | |
with zipfile.ZipFile(path, "r") as comp: | |
fp = io.BytesIO(comp.read(comp.filelist[0])) | |
elif compression == "tar": | |
with tarfile.open(path) as tar: | |
fp = io.BytesIO(tar.extractfile(tar.getnames()[0]).read()) | |
elif compression == "bz2": | |
with bz2.open(path, "rb") as comp: | |
fp = io.BytesIO(comp.read()) | |
elif compression == "zstd": | |
zstd = pytest.importorskip("zstandard") | |
with zstd.open(path, "rb") as comp: | |
fp = io.BytesIO(comp.read()) | |
elif compression == "xz": | |
lzma = pytest.importorskip("lzma") | |
with lzma.open(path, "rb") as comp: | |
fp = io.BytesIO(comp.read()) | |
elif compression is None: | |
fp = path | |
reread = read_stata(fp, index_col="index") | |
expected = df.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(reread, expected) | |
def test_compression_dict(method, file_ext): | |
file_name = f"test.{file_ext}" | |
archive_name = "test.dta" | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 2)), columns=list("AB") | |
) | |
df.index.name = "index" | |
with tm.ensure_clean(file_name) as path: | |
compression = {"method": method, "archive_name": archive_name} | |
df.to_stata(path, compression=compression) | |
if method == "zip" or file_ext == "zip": | |
with zipfile.ZipFile(path, "r") as zp: | |
assert len(zp.filelist) == 1 | |
assert zp.filelist[0].filename == archive_name | |
fp = io.BytesIO(zp.read(zp.filelist[0])) | |
else: | |
fp = path | |
reread = read_stata(fp, index_col="index") | |
expected = df.copy() | |
expected.index = expected.index.astype(np.int32) | |
tm.assert_frame_equal(reread, expected) | |
def test_chunked_categorical(version): | |
df = DataFrame({"cats": Series(["a", "b", "a", "b", "c"], dtype="category")}) | |
df.index.name = "index" | |
expected = df.copy() | |
expected.index = expected.index.astype(np.int32) | |
with tm.ensure_clean() as path: | |
df.to_stata(path, version=version) | |
with StataReader(path, chunksize=2, order_categoricals=False) as reader: | |
for i, block in enumerate(reader): | |
block = block.set_index("index") | |
assert "cats" in block | |
tm.assert_series_equal( | |
block.cats, expected.cats.iloc[2 * i : 2 * (i + 1)] | |
) | |
def test_chunked_categorical_partial(datapath): | |
dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta") | |
values = ["a", "b", "a", "b", 3.0] | |
with StataReader(dta_file, chunksize=2) as reader: | |
with tm.assert_produces_warning(CategoricalConversionWarning): | |
for i, block in enumerate(reader): | |
assert list(block.cats) == values[2 * i : 2 * (i + 1)] | |
if i < 2: | |
idx = pd.Index(["a", "b"]) | |
else: | |
idx = pd.Index([3.0], dtype="float64") | |
tm.assert_index_equal(block.cats.cat.categories, idx) | |
with tm.assert_produces_warning(CategoricalConversionWarning): | |
with StataReader(dta_file, chunksize=5) as reader: | |
large_chunk = reader.__next__() | |
direct = read_stata(dta_file) | |
tm.assert_frame_equal(direct, large_chunk) | |
def test_iterator_errors(datapath, chunksize): | |
dta_file = datapath("io", "data", "stata", "stata-dta-partially-labeled.dta") | |
with pytest.raises(ValueError, match="chunksize must be a positive"): | |
with StataReader(dta_file, chunksize=chunksize): | |
pass | |
def test_iterator_value_labels(): | |
# GH 31544 | |
values = ["c_label", "b_label"] + ["a_label"] * 500 | |
df = DataFrame({f"col{k}": pd.Categorical(values, ordered=True) for k in range(2)}) | |
with tm.ensure_clean() as path: | |
df.to_stata(path, write_index=False) | |
expected = pd.Index(["a_label", "b_label", "c_label"], dtype="object") | |
with read_stata(path, chunksize=100) as reader: | |
for j, chunk in enumerate(reader): | |
for i in range(2): | |
tm.assert_index_equal(chunk.dtypes.iloc[i].categories, expected) | |
tm.assert_frame_equal(chunk, df.iloc[j * 100 : (j + 1) * 100]) | |
def test_precision_loss(): | |
df = DataFrame( | |
[[sum(2**i for i in range(60)), sum(2**i for i in range(52))]], | |
columns=["big", "little"], | |
) | |
with tm.ensure_clean() as path: | |
with tm.assert_produces_warning( | |
PossiblePrecisionLoss, match="Column converted from int64 to float64" | |
): | |
df.to_stata(path, write_index=False) | |
reread = read_stata(path) | |
expected_dt = Series([np.float64, np.float64], index=["big", "little"]) | |
tm.assert_series_equal(reread.dtypes, expected_dt) | |
assert reread.loc[0, "little"] == df.loc[0, "little"] | |
assert reread.loc[0, "big"] == float(df.loc[0, "big"]) | |
def test_compression_roundtrip(compression): | |
df = DataFrame( | |
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], | |
index=["A", "B"], | |
columns=["X", "Y", "Z"], | |
) | |
df.index.name = "index" | |
with tm.ensure_clean() as path: | |
df.to_stata(path, compression=compression) | |
reread = read_stata(path, compression=compression, index_col="index") | |
tm.assert_frame_equal(df, reread) | |
# explicitly ensure file was compressed. | |
with tm.decompress_file(path, compression) as fh: | |
contents = io.BytesIO(fh.read()) | |
reread = read_stata(contents, index_col="index") | |
tm.assert_frame_equal(df, reread) | |
def test_stata_compression( | |
compression_only, read_infer, to_infer, compression_to_extension | |
): | |
compression = compression_only | |
ext = compression_to_extension[compression] | |
filename = f"test.{ext}" | |
df = DataFrame( | |
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], | |
index=["A", "B"], | |
columns=["X", "Y", "Z"], | |
) | |
df.index.name = "index" | |
to_compression = "infer" if to_infer else compression | |
read_compression = "infer" if read_infer else compression | |
with tm.ensure_clean(filename) as path: | |
df.to_stata(path, compression=to_compression) | |
result = read_stata(path, compression=read_compression, index_col="index") | |
tm.assert_frame_equal(result, df) | |
def test_non_categorical_value_labels(): | |
data = DataFrame( | |
{ | |
"fully_labelled": [1, 2, 3, 3, 1], | |
"partially_labelled": [1.0, 2.0, np.nan, 9.0, np.nan], | |
"Y": [7, 7, 9, 8, 10], | |
"Z": pd.Categorical(["j", "k", "l", "k", "j"]), | |
} | |
) | |
with tm.ensure_clean() as path: | |
value_labels = { | |
"fully_labelled": {1: "one", 2: "two", 3: "three"}, | |
"partially_labelled": {1.0: "one", 2.0: "two"}, | |
} | |
expected = {**value_labels, "Z": {0: "j", 1: "k", 2: "l"}} | |
writer = StataWriter(path, data, value_labels=value_labels) | |
writer.write_file() | |
with StataReader(path) as reader: | |
reader_value_labels = reader.value_labels() | |
assert reader_value_labels == expected | |
msg = "Can't create value labels for notY, it wasn't found in the dataset." | |
with pytest.raises(KeyError, match=msg): | |
value_labels = {"notY": {7: "label1", 8: "label2"}} | |
StataWriter(path, data, value_labels=value_labels) | |
msg = ( | |
"Can't create value labels for Z, value labels " | |
"can only be applied to numeric columns." | |
) | |
with pytest.raises(ValueError, match=msg): | |
value_labels = {"Z": {1: "a", 2: "k", 3: "j", 4: "i"}} | |
StataWriter(path, data, value_labels=value_labels) | |
def test_non_categorical_value_label_name_conversion(): | |
# Check conversion of invalid variable names | |
data = DataFrame( | |
{ | |
"invalid~!": [1, 1, 2, 3, 5, 8], # Only alphanumeric and _ | |
"6_invalid": [1, 1, 2, 3, 5, 8], # Must start with letter or _ | |
"invalid_name_longer_than_32_characters": [8, 8, 9, 9, 8, 8], # Too long | |
"aggregate": [2, 5, 5, 6, 6, 9], # Reserved words | |
(1, 2): [1, 2, 3, 4, 5, 6], # Hashable non-string | |
} | |
) | |
value_labels = { | |
"invalid~!": {1: "label1", 2: "label2"}, | |
"6_invalid": {1: "label1", 2: "label2"}, | |
"invalid_name_longer_than_32_characters": {8: "eight", 9: "nine"}, | |
"aggregate": {5: "five"}, | |
(1, 2): {3: "three"}, | |
} | |
expected = { | |
"invalid__": {1: "label1", 2: "label2"}, | |
"_6_invalid": {1: "label1", 2: "label2"}, | |
"invalid_name_longer_than_32_char": {8: "eight", 9: "nine"}, | |
"_aggregate": {5: "five"}, | |
"_1__2_": {3: "three"}, | |
} | |
with tm.ensure_clean() as path: | |
with tm.assert_produces_warning(InvalidColumnName): | |
data.to_stata(path, value_labels=value_labels) | |
with StataReader(path) as reader: | |
reader_value_labels = reader.value_labels() | |
assert reader_value_labels == expected | |
def test_non_categorical_value_label_convert_categoricals_error(): | |
# Mapping more than one value to the same label is valid for Stata | |
# labels, but can't be read with convert_categoricals=True | |
value_labels = { | |
"repeated_labels": {10: "Ten", 20: "More than ten", 40: "More than ten"} | |
} | |
data = DataFrame( | |
{ | |
"repeated_labels": [10, 10, 20, 20, 40, 40], | |
} | |
) | |
with tm.ensure_clean() as path: | |
data.to_stata(path, value_labels=value_labels) | |
with StataReader(path, convert_categoricals=False) as reader: | |
reader_value_labels = reader.value_labels() | |
assert reader_value_labels == value_labels | |
col = "repeated_labels" | |
repeats = "-" * 80 + "\n" + "\n".join(["More than ten"]) | |
msg = f""" | |
Value labels for column {col} are not unique. These cannot be converted to | |
pandas categoricals. | |
Either read the file with `convert_categoricals` set to False or use the | |
low level interface in `StataReader` to separately read the values and the | |
value_labels. | |
The repeated labels are: | |
{repeats} | |
""" | |
with pytest.raises(ValueError, match=msg): | |
read_stata(path, convert_categoricals=True) | |
def test_nullable_support(dtype, version): | |
df = DataFrame( | |
{ | |
"a": Series([1.0, 2.0, 3.0]), | |
"b": Series([1, pd.NA, pd.NA], dtype=dtype.name), | |
"c": Series(["a", "b", None]), | |
} | |
) | |
dtype_name = df.b.dtype.numpy_dtype.name | |
# Only use supported names: no uint, bool or int64 | |
dtype_name = dtype_name.replace("u", "") | |
if dtype_name == "int64": | |
dtype_name = "int32" | |
elif dtype_name == "bool": | |
dtype_name = "int8" | |
value = StataMissingValue.BASE_MISSING_VALUES[dtype_name] | |
smv = StataMissingValue(value) | |
expected_b = Series([1, smv, smv], dtype=object, name="b") | |
expected_c = Series(["a", "b", ""], name="c") | |
with tm.ensure_clean() as path: | |
df.to_stata(path, write_index=False, version=version) | |
reread = read_stata(path, convert_missing=True) | |
tm.assert_series_equal(df.a, reread.a) | |
tm.assert_series_equal(reread.b, expected_b) | |
tm.assert_series_equal(reread.c, expected_c) | |
def test_empty_frame(): | |
# GH 46240 | |
# create an empty DataFrame with int64 and float64 dtypes | |
df = DataFrame(data={"a": range(3), "b": [1.0, 2.0, 3.0]}).head(0) | |
with tm.ensure_clean() as path: | |
df.to_stata(path, write_index=False, version=117) | |
# Read entire dataframe | |
df2 = read_stata(path) | |
assert "b" in df2 | |
# Dtypes don't match since no support for int32 | |
dtypes = Series({"a": np.dtype("int32"), "b": np.dtype("float64")}) | |
tm.assert_series_equal(df2.dtypes, dtypes) | |
# read one column of empty .dta file | |
df3 = read_stata(path, columns=["a"]) | |
assert "b" not in df3 | |
tm.assert_series_equal(df3.dtypes, dtypes.loc[["a"]]) | |