peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/series
/test_api.py
import inspect | |
import pydoc | |
import numpy as np | |
import pytest | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
Index, | |
Series, | |
date_range, | |
period_range, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
class TestSeriesMisc: | |
def test_tab_completion(self): | |
# GH 9910 | |
s = Series(list("abcd")) | |
# Series of str values should have .str but not .dt/.cat in __dir__ | |
assert "str" in dir(s) | |
assert "dt" not in dir(s) | |
assert "cat" not in dir(s) | |
def test_tab_completion_dt(self): | |
# similarly for .dt | |
s = Series(date_range("1/1/2015", periods=5)) | |
assert "dt" in dir(s) | |
assert "str" not in dir(s) | |
assert "cat" not in dir(s) | |
def test_tab_completion_cat(self): | |
# Similarly for .cat, but with the twist that str and dt should be | |
# there if the categories are of that type first cat and str. | |
s = Series(list("abbcd"), dtype="category") | |
assert "cat" in dir(s) | |
assert "str" in dir(s) # as it is a string categorical | |
assert "dt" not in dir(s) | |
def test_tab_completion_cat_str(self): | |
# similar to cat and str | |
s = Series(date_range("1/1/2015", periods=5)).astype("category") | |
assert "cat" in dir(s) | |
assert "str" not in dir(s) | |
assert "dt" in dir(s) # as it is a datetime categorical | |
def test_tab_completion_with_categorical(self): | |
# test the tab completion display | |
ok_for_cat = [ | |
"categories", | |
"codes", | |
"ordered", | |
"set_categories", | |
"add_categories", | |
"remove_categories", | |
"rename_categories", | |
"reorder_categories", | |
"remove_unused_categories", | |
"as_ordered", | |
"as_unordered", | |
] | |
s = Series(list("aabbcde")).astype("category") | |
results = sorted({r for r in s.cat.__dir__() if not r.startswith("_")}) | |
tm.assert_almost_equal(results, sorted(set(ok_for_cat))) | |
def test_index_tab_completion(self, index): | |
# dir contains string-like values of the Index. | |
s = Series(index=index, dtype=object) | |
dir_s = dir(s) | |
for i, x in enumerate(s.index.unique(level=0)): | |
if i < 100: | |
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s | |
else: | |
assert x not in dir_s | |
def test_not_hashable(self, ser): | |
msg = "unhashable type: 'Series'" | |
with pytest.raises(TypeError, match=msg): | |
hash(ser) | |
def test_contains(self, datetime_series): | |
tm.assert_contains_all(datetime_series.index, datetime_series) | |
def test_axis_alias(self): | |
s = Series([1, 2, np.nan]) | |
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index")) | |
assert s.dropna().sum("rows") == 3 | |
assert s._get_axis_number("rows") == 0 | |
assert s._get_axis_name("rows") == "index" | |
def test_class_axis(self): | |
# https://github.com/pandas-dev/pandas/issues/18147 | |
# no exception and no empty docstring | |
assert pydoc.getdoc(Series.index) | |
def test_ndarray_compat(self): | |
# test numpy compat with Series as sub-class of NDFrame | |
tsdf = DataFrame( | |
np.random.default_rng(2).standard_normal((1000, 3)), | |
columns=["A", "B", "C"], | |
index=date_range("1/1/2000", periods=1000), | |
) | |
def f(x): | |
return x[x.idxmax()] | |
result = tsdf.apply(f) | |
expected = tsdf.max() | |
tm.assert_series_equal(result, expected) | |
def test_ndarray_compat_like_func(self): | |
# using an ndarray like function | |
s = Series(np.random.default_rng(2).standard_normal(10)) | |
result = Series(np.ones_like(s)) | |
expected = Series(1, index=range(10), dtype="float64") | |
tm.assert_series_equal(result, expected) | |
def test_ndarray_compat_ravel(self): | |
# ravel | |
s = Series(np.random.default_rng(2).standard_normal(10)) | |
with tm.assert_produces_warning(FutureWarning, match="ravel is deprecated"): | |
result = s.ravel(order="F") | |
tm.assert_almost_equal(result, s.values.ravel(order="F")) | |
def test_empty_method(self): | |
s_empty = Series(dtype=object) | |
assert s_empty.empty | |
def test_empty_method_full_series(self, dtype): | |
full_series = Series(index=[1], dtype=dtype) | |
assert not full_series.empty | |
def test_integer_series_size(self, dtype): | |
# GH 25580 | |
s = Series(range(9), dtype=dtype) | |
assert s.size == 9 | |
def test_attrs(self): | |
s = Series([0, 1], name="abc") | |
assert s.attrs == {} | |
s.attrs["version"] = 1 | |
result = s + 1 | |
assert result.attrs == {"version": 1} | |
def test_inspect_getmembers(self): | |
# GH38782 | |
pytest.importorskip("jinja2") | |
ser = Series(dtype=object) | |
msg = "Series._data is deprecated" | |
with tm.assert_produces_warning( | |
DeprecationWarning, match=msg, check_stacklevel=False | |
): | |
inspect.getmembers(ser) | |
def test_unknown_attribute(self): | |
# GH#9680 | |
tdi = timedelta_range(start=0, periods=10, freq="1s") | |
ser = Series(np.random.default_rng(2).normal(size=10), index=tdi) | |
assert "foo" not in ser.__dict__ | |
msg = "'Series' object has no attribute 'foo'" | |
with pytest.raises(AttributeError, match=msg): | |
ser.foo | |
def test_datetime_series_no_datelike_attrs(self, op, datetime_series): | |
# GH#7206 | |
msg = f"'Series' object has no attribute '{op}'" | |
with pytest.raises(AttributeError, match=msg): | |
getattr(datetime_series, op) | |
def test_series_datetimelike_attribute_access(self): | |
# attribute access should still work! | |
ser = Series({"year": 2000, "month": 1, "day": 10}) | |
assert ser.year == 2000 | |
assert ser.month == 1 | |
assert ser.day == 10 | |
def test_series_datetimelike_attribute_access_invalid(self): | |
ser = Series({"year": 2000, "month": 1, "day": 10}) | |
msg = "'Series' object has no attribute 'weekday'" | |
with pytest.raises(AttributeError, match=msg): | |
ser.weekday | |
def test_numeric_only(self, kernel, has_numeric_only, dtype): | |
# GH#47500 | |
ser = Series([0, 1, 1], dtype=dtype) | |
if kernel == "corrwith": | |
args = (ser,) | |
elif kernel == "corr": | |
args = (ser,) | |
elif kernel == "cov": | |
args = (ser,) | |
elif kernel == "nth": | |
args = (0,) | |
elif kernel == "fillna": | |
args = (True,) | |
elif kernel == "fillna": | |
args = ("ffill",) | |
elif kernel == "take": | |
args = ([0],) | |
elif kernel == "quantile": | |
args = (0.5,) | |
else: | |
args = () | |
method = getattr(ser, kernel) | |
if not has_numeric_only: | |
msg = ( | |
"(got an unexpected keyword argument 'numeric_only'" | |
"|too many arguments passed in)" | |
) | |
with pytest.raises(TypeError, match=msg): | |
method(*args, numeric_only=True) | |
elif dtype is object: | |
msg = f"Series.{kernel} does not allow numeric_only=True with non-numeric" | |
with pytest.raises(TypeError, match=msg): | |
method(*args, numeric_only=True) | |
else: | |
result = method(*args, numeric_only=True) | |
expected = method(*args, numeric_only=False) | |
if isinstance(expected, Series): | |
# transformer | |
tm.assert_series_equal(result, expected) | |
else: | |
# reducer | |
assert result == expected | |
def test_float_int_deprecated(converter): | |
# GH 51101 | |
with tm.assert_produces_warning(FutureWarning): | |
assert converter(Series([1])) == converter(1) | |