peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/series
/test_missing.py
from datetime import timedelta | |
import numpy as np | |
import pytest | |
from pandas._libs import iNaT | |
import pandas as pd | |
from pandas import ( | |
Categorical, | |
Index, | |
NaT, | |
Series, | |
isna, | |
) | |
import pandas._testing as tm | |
class TestSeriesMissingData: | |
def test_categorical_nan_handling(self): | |
# NaNs are represented as -1 in labels | |
s = Series(Categorical(["a", "b", np.nan, "a"])) | |
tm.assert_index_equal(s.cat.categories, Index(["a", "b"])) | |
tm.assert_numpy_array_equal( | |
s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8) | |
) | |
def test_isna_for_inf(self): | |
s = Series(["a", np.inf, np.nan, pd.NA, 1.0]) | |
msg = "use_inf_as_na option is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
with pd.option_context("mode.use_inf_as_na", True): | |
r = s.isna() | |
dr = s.dropna() | |
e = Series([False, True, True, True, False]) | |
de = Series(["a", 1.0], index=[0, 4]) | |
tm.assert_series_equal(r, e) | |
tm.assert_series_equal(dr, de) | |
def test_timedelta64_nan(self): | |
td = Series([timedelta(days=i) for i in range(10)]) | |
# nan ops on timedeltas | |
td1 = td.copy() | |
td1[0] = np.nan | |
assert isna(td1[0]) | |
assert td1[0]._value == iNaT | |
td1[0] = td[0] | |
assert not isna(td1[0]) | |
# GH#16674 iNaT is treated as an integer when given by the user | |
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): | |
td1[1] = iNaT | |
assert not isna(td1[1]) | |
assert td1.dtype == np.object_ | |
assert td1[1] == iNaT | |
td1[1] = td[1] | |
assert not isna(td1[1]) | |
td1[2] = NaT | |
assert isna(td1[2]) | |
assert td1[2]._value == iNaT | |
td1[2] = td[2] | |
assert not isna(td1[2]) | |
# boolean setting | |
# GH#2899 boolean setting | |
td3 = np.timedelta64(timedelta(days=3)) | |
td7 = np.timedelta64(timedelta(days=7)) | |
td[(td > td3) & (td < td7)] = np.nan | |
assert isna(td).sum() == 3 | |
def test_logical_range_select(self, datetime_series): | |
# NumPy limitation =( | |
# https://github.com/pandas-dev/pandas/commit/9030dc021f07c76809848925cb34828f6c8484f3 | |
selector = -0.5 <= datetime_series <= 0.5 | |
expected = (datetime_series >= -0.5) & (datetime_series <= 0.5) | |
tm.assert_series_equal(selector, expected) | |
def test_valid(self, datetime_series): | |
ts = datetime_series.copy() | |
ts.index = ts.index._with_freq(None) | |
ts[::2] = np.nan | |
result = ts.dropna() | |
assert len(result) == ts.count() | |
tm.assert_series_equal(result, ts[1::2]) | |
tm.assert_series_equal(result, ts[pd.notna(ts)]) | |
def test_hasnans_uncached_for_series(): | |
# GH#19700 | |
# set float64 dtype to avoid upcast when setting nan | |
idx = Index([0, 1], dtype="float64") | |
assert idx.hasnans is False | |
assert "hasnans" in idx._cache | |
ser = idx.to_series() | |
assert ser.hasnans is False | |
assert not hasattr(ser, "_cache") | |
ser.iloc[-1] = np.nan | |
assert ser.hasnans is True | |