peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/tests
/window
/test_pairwise.py
import numpy as np | |
import pytest | |
from pandas.compat import IS64 | |
from pandas import ( | |
DataFrame, | |
Index, | |
MultiIndex, | |
Series, | |
date_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.algorithms import safe_sort | |
def pairwise_frames(request): | |
"""Pairwise frames test_pairwise""" | |
return request.param | |
def pairwise_target_frame(): | |
"""Pairwise target frame for test_pairwise""" | |
return DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1]) | |
def pairwise_other_frame(): | |
"""Pairwise other frame for test_pairwise""" | |
return DataFrame( | |
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]], | |
columns=["Y", "Z", "X"], | |
) | |
def test_rolling_cov(series): | |
A = series | |
B = A + np.random.default_rng(2).standard_normal(len(A)) | |
result = A.rolling(window=50, min_periods=25).cov(B) | |
tm.assert_almost_equal(result.iloc[-1], np.cov(A[-50:], B[-50:])[0, 1]) | |
def test_rolling_corr(series): | |
A = series | |
B = A + np.random.default_rng(2).standard_normal(len(A)) | |
result = A.rolling(window=50, min_periods=25).corr(B) | |
tm.assert_almost_equal(result.iloc[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) | |
def test_rolling_corr_bias_correction(): | |
# test for correct bias correction | |
a = Series( | |
np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) | |
) | |
b = a.copy() | |
a[:5] = np.nan | |
b[:10] = np.nan | |
result = a.rolling(window=len(a), min_periods=1).corr(b) | |
tm.assert_almost_equal(result.iloc[-1], a.corr(b)) | |
def test_rolling_pairwise_cov_corr(func, frame): | |
result = getattr(frame.rolling(window=10, min_periods=5), func)() | |
result = result.loc[(slice(None), 1), 5] | |
result.index = result.index.droplevel(1) | |
expected = getattr(frame[1].rolling(window=10, min_periods=5), func)(frame[5]) | |
tm.assert_series_equal(result, expected, check_names=False) | |
def test_flex_binary_frame(method, frame): | |
series = frame[1] | |
res = getattr(series.rolling(window=10), method)(frame) | |
res2 = getattr(frame.rolling(window=10), method)(series) | |
exp = frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) | |
tm.assert_frame_equal(res, exp) | |
tm.assert_frame_equal(res2, exp) | |
frame2 = frame.copy() | |
frame2 = DataFrame( | |
np.random.default_rng(2).standard_normal(frame2.shape), | |
index=frame2.index, | |
columns=frame2.columns, | |
) | |
res3 = getattr(frame.rolling(window=10), method)(frame2) | |
exp = DataFrame( | |
{k: getattr(frame[k].rolling(window=10), method)(frame2[k]) for k in frame} | |
) | |
tm.assert_frame_equal(res3, exp) | |
def test_rolling_corr_with_zero_variance(window): | |
# GH 18430 | |
s = Series(np.zeros(20)) | |
other = Series(np.arange(20)) | |
assert s.rolling(window=window).corr(other=other).isna().all() | |
def test_corr_sanity(): | |
# GH 3155 | |
df = DataFrame( | |
np.array( | |
[ | |
[0.87024726, 0.18505595], | |
[0.64355431, 0.3091617], | |
[0.92372966, 0.50552513], | |
[0.00203756, 0.04520709], | |
[0.84780328, 0.33394331], | |
[0.78369152, 0.63919667], | |
] | |
) | |
) | |
res = df[0].rolling(5, center=True).corr(df[1]) | |
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) | |
df = DataFrame(np.random.default_rng(2).random((30, 2))) | |
res = df[0].rolling(5, center=True).corr(df[1]) | |
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) | |
def test_rolling_cov_diff_length(): | |
# GH 7512 | |
s1 = Series([1, 2, 3], index=[0, 1, 2]) | |
s2 = Series([1, 3], index=[0, 2]) | |
result = s1.rolling(window=3, min_periods=2).cov(s2) | |
expected = Series([None, None, 2.0]) | |
tm.assert_series_equal(result, expected) | |
s2a = Series([1, None, 3], index=[0, 1, 2]) | |
result = s1.rolling(window=3, min_periods=2).cov(s2a) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_corr_diff_length(): | |
# GH 7512 | |
s1 = Series([1, 2, 3], index=[0, 1, 2]) | |
s2 = Series([1, 3], index=[0, 2]) | |
result = s1.rolling(window=3, min_periods=2).corr(s2) | |
expected = Series([None, None, 1.0]) | |
tm.assert_series_equal(result, expected) | |
s2a = Series([1, None, 3], index=[0, 1, 2]) | |
result = s1.rolling(window=3, min_periods=2).corr(s2a) | |
tm.assert_series_equal(result, expected) | |
def test_rolling_functions_window_non_shrinkage_binary(f): | |
# corr/cov return a MI DataFrame | |
df = DataFrame( | |
[[1, 5], [3, 2], [3, 9], [-1, 0]], | |
columns=Index(["A", "B"], name="foo"), | |
index=Index(range(4), name="bar"), | |
) | |
df_expected = DataFrame( | |
columns=Index(["A", "B"], name="foo"), | |
index=MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]), | |
dtype="float64", | |
) | |
df_result = f(df) | |
tm.assert_frame_equal(df_result, df_expected) | |
def test_moment_functions_zero_length_pairwise(f): | |
df1 = DataFrame() | |
df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar")) | |
df2["a"] = df2["a"].astype("float64") | |
df1_expected = DataFrame(index=MultiIndex.from_product([df1.index, df1.columns])) | |
df2_expected = DataFrame( | |
index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]), | |
columns=Index(["a"], name="foo"), | |
dtype="float64", | |
) | |
df1_result = f(df1) | |
tm.assert_frame_equal(df1_result, df1_expected) | |
df2_result = f(df2) | |
tm.assert_frame_equal(df2_result, df2_expected) | |
class TestPairwise: | |
# GH 7738 | |
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f): | |
# DataFrame methods (which do not call flex_binary_moment()) | |
result = f(pairwise_frames) | |
tm.assert_index_equal(result.index, pairwise_frames.columns) | |
tm.assert_index_equal(result.columns, pairwise_frames.columns) | |
expected = f(pairwise_target_frame) | |
# since we have sorted the results | |
# we can only compare non-nans | |
result = result.dropna().values | |
expected = expected.dropna().values | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): | |
# DataFrame with itself, pairwise=True | |
# note that we may construct the 1st level of the MI | |
# in a non-monotonic way, so compare accordingly | |
result = f(pairwise_frames) | |
tm.assert_index_equal( | |
result.index.levels[0], pairwise_frames.index, check_names=False | |
) | |
tm.assert_index_equal( | |
safe_sort(result.index.levels[1]), | |
safe_sort(pairwise_frames.columns.unique()), | |
) | |
tm.assert_index_equal(result.columns, pairwise_frames.columns) | |
expected = f(pairwise_target_frame) | |
# since we have sorted the results | |
# we can only compare non-nans | |
result = result.dropna().values | |
expected = expected.dropna().values | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): | |
# DataFrame with itself, pairwise=False | |
result = f(pairwise_frames) | |
tm.assert_index_equal(result.index, pairwise_frames.index) | |
tm.assert_index_equal(result.columns, pairwise_frames.columns) | |
expected = f(pairwise_target_frame) | |
# since we have sorted the results | |
# we can only compare non-nans | |
result = result.dropna().values | |
expected = expected.dropna().values | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
def test_pairwise_with_other( | |
self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f | |
): | |
# DataFrame with another DataFrame, pairwise=True | |
result = f(pairwise_frames, pairwise_other_frame) | |
tm.assert_index_equal( | |
result.index.levels[0], pairwise_frames.index, check_names=False | |
) | |
tm.assert_index_equal( | |
safe_sort(result.index.levels[1]), | |
safe_sort(pairwise_other_frame.columns.unique()), | |
) | |
expected = f(pairwise_target_frame, pairwise_other_frame) | |
# since we have sorted the results | |
# we can only compare non-nans | |
result = result.dropna().values | |
expected = expected.dropna().values | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f): | |
# DataFrame with another DataFrame, pairwise=False | |
result = ( | |
f(pairwise_frames, pairwise_other_frame) | |
if pairwise_frames.columns.is_unique | |
else None | |
) | |
if result is not None: | |
# we can have int and str columns | |
expected_index = pairwise_frames.index.union(pairwise_other_frame.index) | |
expected_columns = pairwise_frames.columns.union( | |
pairwise_other_frame.columns | |
) | |
tm.assert_index_equal(result.index, expected_index) | |
tm.assert_index_equal(result.columns, expected_columns) | |
else: | |
with pytest.raises(ValueError, match="'arg1' columns are not unique"): | |
f(pairwise_frames, pairwise_other_frame) | |
with pytest.raises(ValueError, match="'arg2' columns are not unique"): | |
f(pairwise_other_frame, pairwise_frames) | |
def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f): | |
# DataFrame with a Series | |
result = f(pairwise_frames, Series([1, 1, 3, 8])) | |
tm.assert_index_equal(result.index, pairwise_frames.index) | |
tm.assert_index_equal(result.columns, pairwise_frames.columns) | |
expected = f(pairwise_target_frame, Series([1, 1, 3, 8])) | |
# since we have sorted the results | |
# we can only compare non-nans | |
result = result.dropna().values | |
expected = expected.dropna().values | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
result = f(Series([1, 1, 3, 8]), pairwise_frames) | |
tm.assert_index_equal(result.index, pairwise_frames.index) | |
tm.assert_index_equal(result.columns, pairwise_frames.columns) | |
expected = f(Series([1, 1, 3, 8]), pairwise_target_frame) | |
# since we have sorted the results | |
# we can only compare non-nans | |
result = result.dropna().values | |
expected = expected.dropna().values | |
tm.assert_numpy_array_equal(result, expected, check_dtype=False) | |
def test_corr_freq_memory_error(self): | |
# GH 31789 | |
s = Series(range(5), index=date_range("2020", periods=5)) | |
result = s.rolling("12h").corr(s) | |
expected = Series([np.nan] * 5, index=date_range("2020", periods=5)) | |
tm.assert_series_equal(result, expected) | |
def test_cov_mulittindex(self): | |
# GH 34440 | |
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) | |
index = range(3) | |
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns) | |
result = df.ewm(alpha=0.1).cov() | |
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")]) | |
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) | |
expected = DataFrame( | |
np.vstack( | |
( | |
np.full((8, 8), np.nan), | |
np.full((8, 8), 32.000000), | |
np.full((8, 8), 63.881919), | |
) | |
), | |
index=index, | |
columns=columns, | |
) | |
tm.assert_frame_equal(result, expected) | |
def test_multindex_columns_pairwise_func(self): | |
# GH 21157 | |
columns = MultiIndex.from_arrays([["M", "N"], ["P", "Q"]], names=["a", "b"]) | |
df = DataFrame(np.ones((5, 2)), columns=columns) | |
result = df.rolling(3).corr() | |
expected = DataFrame( | |
np.nan, | |
index=MultiIndex.from_arrays( | |
[ | |
np.repeat(np.arange(5, dtype=np.int64), 2), | |
["M", "N"] * 5, | |
["P", "Q"] * 5, | |
], | |
names=[None, "a", "b"], | |
), | |
columns=columns, | |
) | |
tm.assert_frame_equal(result, expected) | |