peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/pandas
/util
/_doctools.py
from __future__ import annotations | |
from typing import TYPE_CHECKING | |
import numpy as np | |
import pandas as pd | |
if TYPE_CHECKING: | |
from collections.abc import Iterable | |
class TablePlotter: | |
""" | |
Layout some DataFrames in vertical/horizontal layout for explanation. | |
Used in merging.rst | |
""" | |
def __init__( | |
self, | |
cell_width: float = 0.37, | |
cell_height: float = 0.25, | |
font_size: float = 7.5, | |
) -> None: | |
self.cell_width = cell_width | |
self.cell_height = cell_height | |
self.font_size = font_size | |
def _shape(self, df: pd.DataFrame) -> tuple[int, int]: | |
""" | |
Calculate table shape considering index levels. | |
""" | |
row, col = df.shape | |
return row + df.columns.nlevels, col + df.index.nlevels | |
def _get_cells(self, left, right, vertical) -> tuple[int, int]: | |
""" | |
Calculate appropriate figure size based on left and right data. | |
""" | |
if vertical: | |
# calculate required number of cells | |
vcells = max(sum(self._shape(df)[0] for df in left), self._shape(right)[0]) | |
hcells = max(self._shape(df)[1] for df in left) + self._shape(right)[1] | |
else: | |
vcells = max([self._shape(df)[0] for df in left] + [self._shape(right)[0]]) | |
hcells = sum([self._shape(df)[1] for df in left] + [self._shape(right)[1]]) | |
return hcells, vcells | |
def plot(self, left, right, labels: Iterable[str] = (), vertical: bool = True): | |
""" | |
Plot left / right DataFrames in specified layout. | |
Parameters | |
---------- | |
left : list of DataFrames before operation is applied | |
right : DataFrame of operation result | |
labels : list of str to be drawn as titles of left DataFrames | |
vertical : bool, default True | |
If True, use vertical layout. If False, use horizontal layout. | |
""" | |
from matplotlib import gridspec | |
import matplotlib.pyplot as plt | |
if not isinstance(left, list): | |
left = [left] | |
left = [self._conv(df) for df in left] | |
right = self._conv(right) | |
hcells, vcells = self._get_cells(left, right, vertical) | |
if vertical: | |
figsize = self.cell_width * hcells, self.cell_height * vcells | |
else: | |
# include margin for titles | |
figsize = self.cell_width * hcells, self.cell_height * vcells | |
fig = plt.figure(figsize=figsize) | |
if vertical: | |
gs = gridspec.GridSpec(len(left), hcells) | |
# left | |
max_left_cols = max(self._shape(df)[1] for df in left) | |
max_left_rows = max(self._shape(df)[0] for df in left) | |
for i, (_left, _label) in enumerate(zip(left, labels)): | |
ax = fig.add_subplot(gs[i, 0:max_left_cols]) | |
self._make_table(ax, _left, title=_label, height=1.0 / max_left_rows) | |
# right | |
ax = plt.subplot(gs[:, max_left_cols:]) | |
self._make_table(ax, right, title="Result", height=1.05 / vcells) | |
fig.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95) | |
else: | |
max_rows = max(self._shape(df)[0] for df in left + [right]) | |
height = 1.0 / np.max(max_rows) | |
gs = gridspec.GridSpec(1, hcells) | |
# left | |
i = 0 | |
for df, _label in zip(left, labels): | |
sp = self._shape(df) | |
ax = fig.add_subplot(gs[0, i : i + sp[1]]) | |
self._make_table(ax, df, title=_label, height=height) | |
i += sp[1] | |
# right | |
ax = plt.subplot(gs[0, i:]) | |
self._make_table(ax, right, title="Result", height=height) | |
fig.subplots_adjust(top=0.85, bottom=0.05, left=0.05, right=0.95) | |
return fig | |
def _conv(self, data): | |
""" | |
Convert each input to appropriate for table outplot. | |
""" | |
if isinstance(data, pd.Series): | |
if data.name is None: | |
data = data.to_frame(name="") | |
else: | |
data = data.to_frame() | |
data = data.fillna("NaN") | |
return data | |
def _insert_index(self, data): | |
# insert is destructive | |
data = data.copy() | |
idx_nlevels = data.index.nlevels | |
if idx_nlevels == 1: | |
data.insert(0, "Index", data.index) | |
else: | |
for i in range(idx_nlevels): | |
data.insert(i, f"Index{i}", data.index._get_level_values(i)) | |
col_nlevels = data.columns.nlevels | |
if col_nlevels > 1: | |
col = data.columns._get_level_values(0) | |
values = [ | |
data.columns._get_level_values(i)._values for i in range(1, col_nlevels) | |
] | |
col_df = pd.DataFrame(values) | |
data.columns = col_df.columns | |
data = pd.concat([col_df, data]) | |
data.columns = col | |
return data | |
def _make_table(self, ax, df, title: str, height: float | None = None) -> None: | |
if df is None: | |
ax.set_visible(False) | |
return | |
from pandas import plotting | |
idx_nlevels = df.index.nlevels | |
col_nlevels = df.columns.nlevels | |
# must be convert here to get index levels for colorization | |
df = self._insert_index(df) | |
tb = plotting.table(ax, df, loc=9) | |
tb.set_fontsize(self.font_size) | |
if height is None: | |
height = 1.0 / (len(df) + 1) | |
props = tb.properties() | |
for (r, c), cell in props["celld"].items(): | |
if c == -1: | |
cell.set_visible(False) | |
elif r < col_nlevels and c < idx_nlevels: | |
cell.set_visible(False) | |
elif r < col_nlevels or c < idx_nlevels: | |
cell.set_facecolor("#AAAAAA") | |
cell.set_height(height) | |
ax.set_title(title, size=self.font_size) | |
ax.axis("off") | |
def main() -> None: | |
import matplotlib.pyplot as plt | |
p = TablePlotter() | |
df1 = pd.DataFrame({"A": [10, 11, 12], "B": [20, 21, 22], "C": [30, 31, 32]}) | |
df2 = pd.DataFrame({"A": [10, 12], "C": [30, 32]}) | |
p.plot([df1, df2], pd.concat([df1, df2]), labels=["df1", "df2"], vertical=True) | |
plt.show() | |
df3 = pd.DataFrame({"X": [10, 12], "Z": [30, 32]}) | |
p.plot( | |
[df1, df3], pd.concat([df1, df3], axis=1), labels=["df1", "df2"], vertical=False | |
) | |
plt.show() | |
idx = pd.MultiIndex.from_tuples( | |
[(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")] | |
) | |
column = pd.MultiIndex.from_tuples([(1, "A"), (1, "B")]) | |
df3 = pd.DataFrame({"v1": [1, 2, 3, 4, 5, 6], "v2": [5, 6, 7, 8, 9, 10]}, index=idx) | |
df3.columns = column | |
p.plot(df3, df3, labels=["df3"]) | |
plt.show() | |
if __name__ == "__main__": | |
main() | |