peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/test
/data.doctest
| .. Copyright (C) 2001-2023 NLTK Project | |
| .. For license information, see LICENSE.TXT | |
| ========================================= | |
| Loading Resources From the Data Package | |
| ========================================= | |
| >>> import nltk.data | |
| Overview | |
| ~~~~~~~~ | |
| The `nltk.data` module contains functions that can be used to load | |
| NLTK resource files, such as corpora, grammars, and saved processing | |
| objects. | |
| Loading Data Files | |
| ~~~~~~~~~~~~~~~~~~ | |
| Resources are loaded using the function `nltk.data.load()`, which | |
| takes as its first argument a URL specifying what file should be | |
| loaded. The ``nltk:`` protocol loads files from the NLTK data | |
| distribution: | |
| >>> tokenizer = nltk.data.load('nltk:tokenizers/punkt/english.pickle') | |
| >>> tokenizer.tokenize('Hello. This is a test. It works!') | |
| ['Hello.', 'This is a test.', 'It works!'] | |
| It is important to note that there should be no space following the | |
| colon (':') in the URL; 'nltk: tokenizers/punkt/english.pickle' will | |
| not work! | |
| The ``nltk:`` protocol is used by default if no protocol is specified: | |
| >>> nltk.data.load('tokenizers/punkt/english.pickle') | |
| <nltk.tokenize.punkt.PunktSentenceTokenizer object at ...> | |
| But it is also possible to load resources from ``http:``, ``ftp:``, | |
| and ``file:`` URLs: | |
| >>> # Load a grammar from the NLTK webpage. | |
| >>> cfg = nltk.data.load('https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg') | |
| >>> print(cfg) # doctest: +ELLIPSIS | |
| Grammar with 14 productions (start state = S) | |
| S -> NP VP | |
| PP -> P NP | |
| ... | |
| P -> 'on' | |
| P -> 'in' | |
| >>> # Load a grammar using an absolute path. | |
| >>> url = 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg') | |
| >>> url.replace('\\', '/') | |
| 'file:...toy.cfg' | |
| >>> print(nltk.data.load(url)) | |
| Grammar with 14 productions (start state = S) | |
| S -> NP VP | |
| PP -> P NP | |
| ... | |
| P -> 'on' | |
| P -> 'in' | |
| The second argument to the `nltk.data.load()` function specifies the | |
| file format, which determines how the file's contents are processed | |
| before they are returned by ``load()``. The formats that are | |
| currently supported by the data module are described by the dictionary | |
| `nltk.data.FORMATS`: | |
| >>> for format, descr in sorted(nltk.data.FORMATS.items()): | |
| ... print('{0:<7} {1:}'.format(format, descr)) | |
| cfg A context free grammar. | |
| fcfg A feature CFG. | |
| fol A list of first order logic expressions, parsed with | |
| nltk.sem.logic.Expression.fromstring. | |
| json A serialized python object, stored using the json module. | |
| logic A list of first order logic expressions, parsed with | |
| nltk.sem.logic.LogicParser. Requires an additional logic_parser | |
| parameter | |
| pcfg A probabilistic CFG. | |
| pickle A serialized python object, stored using the pickle | |
| module. | |
| raw The raw (byte string) contents of a file. | |
| text The raw (unicode string) contents of a file. | |
| val A semantic valuation, parsed by | |
| nltk.sem.Valuation.fromstring. | |
| yaml A serialized python object, stored using the yaml module. | |
| `nltk.data.load()` will raise a ValueError if a bad format name is | |
| specified: | |
| >>> nltk.data.load('grammars/sample_grammars/toy.cfg', 'bar') | |
| Traceback (most recent call last): | |
| . . . | |
| ValueError: Unknown format type! | |
| By default, the ``"auto"`` format is used, which chooses a format | |
| based on the filename's extension. The mapping from file extensions | |
| to format names is specified by `nltk.data.AUTO_FORMATS`: | |
| >>> for ext, format in sorted(nltk.data.AUTO_FORMATS.items()): | |
| ... print('.%-7s -> %s' % (ext, format)) | |
| .cfg -> cfg | |
| .fcfg -> fcfg | |
| .fol -> fol | |
| .json -> json | |
| .logic -> logic | |
| .pcfg -> pcfg | |
| .pickle -> pickle | |
| .text -> text | |
| .txt -> text | |
| .val -> val | |
| .yaml -> yaml | |
| If `nltk.data.load()` is unable to determine the format based on the | |
| filename's extension, it will raise a ValueError: | |
| >>> nltk.data.load('foo.bar') | |
| Traceback (most recent call last): | |
| . . . | |
| ValueError: Could not determine format for foo.bar based on its file | |
| extension; use the "format" argument to specify the format explicitly. | |
| Note that by explicitly specifying the ``format`` argument, you can | |
| override the load method's default processing behavior. For example, | |
| to get the raw contents of any file, simply use ``format="raw"``: | |
| >>> s = nltk.data.load('grammars/sample_grammars/toy.cfg', 'text') | |
| >>> print(s) | |
| S -> NP VP | |
| PP -> P NP | |
| NP -> Det N | NP PP | |
| VP -> V NP | VP PP | |
| ... | |
| Making Local Copies | |
| ~~~~~~~~~~~~~~~~~~~ | |
| .. This will not be visible in the html output: create a tempdir to | |
| play in. | |
| >>> import tempfile, os | |
| >>> tempdir = tempfile.mkdtemp() | |
| >>> old_dir = os.path.abspath('.') | |
| >>> os.chdir(tempdir) | |
| The function `nltk.data.retrieve()` copies a given resource to a local | |
| file. This can be useful, for example, if you want to edit one of the | |
| sample grammars. | |
| >>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg') | |
| Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy.cfg' | |
| >>> # Simulate editing the grammar. | |
| >>> with open('toy.cfg') as inp: | |
| ... s = inp.read().replace('NP', 'DP') | |
| >>> with open('toy.cfg', 'w') as out: | |
| ... _bytes_written = out.write(s) | |
| >>> # Load the edited grammar, & display it. | |
| >>> cfg = nltk.data.load('file:///' + os.path.abspath('toy.cfg')) | |
| >>> print(cfg) | |
| Grammar with 14 productions (start state = S) | |
| S -> DP VP | |
| PP -> P DP | |
| ... | |
| P -> 'on' | |
| P -> 'in' | |
| The second argument to `nltk.data.retrieve()` specifies the filename | |
| for the new copy of the file. By default, the source file's filename | |
| is used. | |
| >>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg', 'mytoy.cfg') | |
| Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'mytoy.cfg' | |
| >>> os.path.isfile('./mytoy.cfg') | |
| True | |
| >>> nltk.data.retrieve('grammars/sample_grammars/np.fcfg') | |
| Retrieving 'nltk:grammars/sample_grammars/np.fcfg', saving to 'np.fcfg' | |
| >>> os.path.isfile('./np.fcfg') | |
| True | |
| If a file with the specified (or default) filename already exists in | |
| the current directory, then `nltk.data.retrieve()` will raise a | |
| ValueError exception. It will *not* overwrite the file: | |
| >>> os.path.isfile('./toy.cfg') | |
| True | |
| >>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg') | |
| Traceback (most recent call last): | |
| . . . | |
| ValueError: File '...toy.cfg' already exists! | |
| .. This will not be visible in the html output: clean up the tempdir. | |
| >>> os.chdir(old_dir) | |
| >>> for f in os.listdir(tempdir): | |
| ... os.remove(os.path.join(tempdir, f)) | |
| >>> os.rmdir(tempdir) | |
| Finding Files in the NLTK Data Package | |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| The `nltk.data.find()` function searches the NLTK data package for a | |
| given file, and returns a pointer to that file. This pointer can | |
| either be a `FileSystemPathPointer` (whose `path` attribute gives the | |
| absolute path of the file); or a `ZipFilePathPointer`, specifying a | |
| zipfile and the name of an entry within that zipfile. Both pointer | |
| types define the `open()` method, which can be used to read the string | |
| contents of the file. | |
| >>> path = nltk.data.find('corpora/abc/rural.txt') | |
| >>> str(path) | |
| '...rural.txt' | |
| >>> print(path.open().read(60).decode()) | |
| PM denies knowledge of AWB kickbacks | |
| The Prime Minister has | |
| Alternatively, the `nltk.data.load()` function can be used with the | |
| keyword argument ``format="raw"``: | |
| >>> s = nltk.data.load('corpora/abc/rural.txt', format='raw')[:60] | |
| >>> print(s.decode()) | |
| PM denies knowledge of AWB kickbacks | |
| The Prime Minister has | |
| Alternatively, you can use the keyword argument ``format="text"``: | |
| >>> s = nltk.data.load('corpora/abc/rural.txt', format='text')[:60] | |
| >>> print(s) | |
| PM denies knowledge of AWB kickbacks | |
| The Prime Minister has | |
| Resource Caching | |
| ~~~~~~~~~~~~~~~~ | |
| NLTK uses a weakref dictionary to maintain a cache of resources that | |
| have been loaded. If you load a resource that is already stored in | |
| the cache, then the cached copy will be returned. This behavior can | |
| be seen by the trace output generated when verbose=True: | |
| >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True) | |
| <<Loading nltk:grammars/book_grammars/feat0.fcfg>> | |
| >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True) | |
| <<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>> | |
| If you wish to load a resource from its source, bypassing the cache, | |
| use the ``cache=False`` argument to `nltk.data.load()`. This can be | |
| useful, for example, if the resource is loaded from a local file, and | |
| you are actively editing that file: | |
| >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',cache=False,verbose=True) | |
| <<Loading nltk:grammars/book_grammars/feat0.fcfg>> | |
| The cache *no longer* uses weak references. A resource will not be | |
| automatically expunged from the cache when no more objects are using | |
| it. In the following example, when we clear the variable ``feat0``, | |
| the reference count for the feature grammar object drops to zero. | |
| However, the object remains cached: | |
| >>> del feat0 | |
| >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', | |
| ... verbose=True) | |
| <<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>> | |
| You can clear the entire contents of the cache, using | |
| `nltk.data.clear_cache()`: | |
| >>> nltk.data.clear_cache() | |
| Retrieving other Data Sources | |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
| >>> formulas = nltk.data.load('grammars/book_grammars/background.fol') | |
| >>> for f in formulas: print(str(f)) | |
| all x.(boxerdog(x) -> dog(x)) | |
| all x.(boxer(x) -> person(x)) | |
| all x.-(dog(x) & person(x)) | |
| all x.(married(x) <-> exists y.marry(x,y)) | |
| all x.(bark(x) -> dog(x)) | |
| all x y.(marry(x,y) -> (person(x) & person(y))) | |
| -(Vincent = Mia) | |
| -(Vincent = Fido) | |
| -(Mia = Fido) | |
| Regression Tests | |
| ~~~~~~~~~~~~~~~~ | |
| Create a temp dir for tests that write files: | |
| >>> import tempfile, os | |
| >>> tempdir = tempfile.mkdtemp() | |
| >>> old_dir = os.path.abspath('.') | |
| >>> os.chdir(tempdir) | |
| The `retrieve()` function accepts all url types: | |
| >>> urls = ['https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg', | |
| ... 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg'), | |
| ... 'nltk:grammars/sample_grammars/toy.cfg', | |
| ... 'grammars/sample_grammars/toy.cfg'] | |
| >>> for i, url in enumerate(urls): | |
| ... nltk.data.retrieve(url, 'toy-%d.cfg' % i) | |
| Retrieving 'https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg', saving to 'toy-0.cfg' | |
| Retrieving 'file:...toy.cfg', saving to 'toy-1.cfg' | |
| Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-2.cfg' | |
| Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-3.cfg' | |
| Clean up the temp dir: | |
| >>> os.chdir(old_dir) | |
| >>> for f in os.listdir(tempdir): | |
| ... os.remove(os.path.join(tempdir, f)) | |
| >>> os.rmdir(tempdir) | |
| Lazy Loader | |
| ----------- | |
| A lazy loader is a wrapper object that defers loading a resource until | |
| it is accessed or used in any way. This is mainly intended for | |
| internal use by NLTK's corpus readers. | |
| >>> # Create a lazy loader for toy.cfg. | |
| >>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg') | |
| >>> # Show that it's not loaded yet: | |
| >>> object.__repr__(ll) | |
| '<nltk.data.LazyLoader object at ...>' | |
| >>> # printing it is enough to cause it to be loaded: | |
| >>> print(ll) | |
| <Grammar with 14 productions> | |
| >>> # Show that it's now been loaded: | |
| >>> object.__repr__(ll) | |
| '<nltk.grammar.CFG object at ...>' | |
| >>> # Test that accessing an attribute also loads it: | |
| >>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg') | |
| >>> ll.start() | |
| S | |
| >>> object.__repr__(ll) | |
| '<nltk.grammar.CFG object at ...>' | |
| Buffered Gzip Reading and Writing | |
| --------------------------------- | |
| Write performance to gzip-compressed is extremely poor when the files become large. | |
| File creation can become a bottleneck in those cases. | |
| Read performance from large gzipped pickle files was improved in data.py by | |
| buffering the reads. A similar fix can be applied to writes by buffering | |
| the writes to a StringIO object first. | |
| This is mainly intended for internal use. The test simply tests that reading | |
| and writing work as intended and does not test how much improvement buffering | |
| provides. | |
| >>> from io import StringIO | |
| >>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'wb', size=2**10) | |
| >>> ans = [] | |
| >>> for i in range(10000): | |
| ... ans.append(str(i).encode('ascii')) | |
| ... test.write(str(i).encode('ascii')) | |
| >>> test.close() | |
| >>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'rb') | |
| >>> test.read() == b''.join(ans) | |
| True | |
| >>> test.close() | |
| >>> import os | |
| >>> os.unlink('testbuf.gz') | |
| JSON Encoding and Decoding | |
| -------------------------- | |
| JSON serialization is used instead of pickle for some classes. | |
| >>> from nltk import jsontags | |
| >>> from nltk.jsontags import JSONTaggedEncoder, JSONTaggedDecoder, register_tag | |
| >>> @jsontags.register_tag | |
| ... class JSONSerializable: | |
| ... json_tag = 'JSONSerializable' | |
| ... | |
| ... def __init__(self, n): | |
| ... self.n = n | |
| ... | |
| ... def encode_json_obj(self): | |
| ... return self.n | |
| ... | |
| ... @classmethod | |
| ... def decode_json_obj(cls, obj): | |
| ... n = obj | |
| ... return cls(n) | |
| ... | |
| >>> JSONTaggedEncoder().encode(JSONSerializable(1)) | |
| '{"!JSONSerializable": 1}' | |
| >>> JSONTaggedDecoder().decode('{"!JSONSerializable": 1}').n | |
| 1 | |