peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/linear
/quantization.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import copy | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Optional | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.ops.fp_quantizer import Quantizer, FP_Quantize | |
from .config import QuantizationConfig | |
class QuantizedParameter(nn.Parameter): | |
""" | |
Quantized parameter class that implements weight quantization. Weights | |
are stored in quantized form on GPUs, and can be dequantized on-the-fly when | |
needed by the model. The weights are actually quantized during any `.to(device)`. | |
Arguments: | |
data (Tensor): parameter tensor. | |
requires_grad (bool, optional): if the parameter requires gradient. Defaults | |
to False and is not supported to be True. Argument provided only for interface | |
compatibility with torch.nn.Parameter. | |
quantization_config (QuantizationConfig, optional): | |
quantizer (Quantizer, optional): Defaults to FP_Quantize but can be any quantizer | |
that implements deepspeed.ops.fp_quantizer.Quantizer. This argument is also | |
required since the quantizer is stashed in the Parameter itself, some models | |
may clone the Parameter by passing an attribute __dict__. For an example, see | |
tests/unit/linear/test_quant_param.py::TestQuantParam::test_hf_clone | |
""" | |
def __new__( | |
cls, | |
data: Optional[torch.Tensor] = None, | |
requires_grad: bool = False, # quantized weights must be frozen | |
quantization_config: QuantizationConfig = None, | |
quantizer: Quantizer = None, | |
): | |
if requires_grad: | |
raise ValueError(f"requires_grad=True is not supported with QuantizedParameter") | |
if data is None: | |
data = torch.empty(0) | |
self = torch.Tensor._make_subclass(cls, data, requires_grad) | |
self.quantization_config = QuantizationConfig() if quantization_config is None else quantization_config | |
if quantizer is not None: | |
self.quantizer = quantizer | |
else: | |
# if FPQuantizerBuilder is not compatible in this env this init will fail | |
self.quantizer = FP_Quantize(group_size=self.quantization_config.group_size) | |
self._ensure_quantized(self) | |
return self | |
def _ensure_quantized(self, tensor: torch.Tensor): | |
# If the tensor is on the accelerator and is not quantized, then quantize it in-place. | |
if get_accelerator().on_accelerator(tensor) and tensor.dtype != torch.int8: | |
with get_accelerator().stream(get_accelerator().current_stream(tensor.device)): | |
tensor.data = self.quantizer.quantize(tensor.data, | |
q_bits=self.quantization_config.q_bits, | |
q_mantisa_bits=self.quantization_config.mantissa_bits) | |
assert tensor.dtype == torch.int8 | |
def dequantized(self) -> torch.Tensor: | |
""" | |
Return a tensor containing the dequantized weights of this parameter. | |
""" | |
if get_accelerator().on_accelerator(self.data) and self.data.dtype == torch.int8: | |
with get_accelerator().stream(get_accelerator().current_stream(self.data.device)): | |
return self.quantizer.dequantize(self.data, | |
q_bits=self.quantization_config.q_bits, | |
q_mantisa_bits=self.quantization_config.mantissa_bits) | |
return self.data | |
def __getstate__(self): | |
state = self.__dict__ | |
state["data"] = self.data | |
state["quantization_config"] = self.quantization_config | |
state["requires_grad"] = self.requires_grad | |
return state | |
def __setstate__(self, state): | |
self.quantizer = state["quantizer"] | |
self.quantization_config = state["quantization_config"] | |
self.data = state["data"] | |
self.requires_grad = state["requires_grad"] | |
def __deepcopy__(self, memo): | |
new_instance = type(self).__new__(type(self)) | |
state = self.__getstate__() | |
new_instance.__setstate__(state) | |
new_instance.quantizer = copy.deepcopy(state["quantizer"]) | |
new_instance.quantization_config = copy.deepcopy(state["quantization_config"]) | |
new_instance.data = copy.deepcopy(state["data"]) | |
return new_instance | |
def __copy__(self): | |
new_instance = type(self).__new__(type(self)) | |
state = self.__getstate__() | |
new_instance.__setstate__(state) | |
return new_instance | |
def cuda(self, device=None, non_blocking=False): | |
return self.to(device="cuda" if device is None else device, non_blocking=non_blocking) | |
def to(self, *args, **kwargs): | |
""" | |
Move the parameter to the given device. Then, if the device is a cuda device, | |
quantize it. | |
""" | |
tensor = super().to(*args, **kwargs) | |
self._ensure_quantized(tensor) | |
return tensor | |
class QuantizedLinear(nn.Linear): | |
""" | |
Linear layer that implements weight quantization. Parameters | |
are stored via `QuantizedParameter` and are dequantized on-the-fly during any | |
forward pass. | |
""" | |
def __init__(self, | |
input_dim: int, | |
output_dim: int, | |
bias: bool = False, | |
quantization_config: QuantizationConfig = None, | |
dtype=torch.bfloat16): | |
super().__init__(input_dim, output_dim, bias=bias, dtype=dtype) | |
assert dtype == torch.bfloat16, "currently only supports bfloat16 dtype" | |
self.weight = QuantizedParameter(self.weight.data, quantization_config=quantization_config) | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return F.linear(input, self.weight.dequantized(), self.bias) | |