applied-ai-018's picture
Add files using upload-large-folder tool
19a3898 verified
raw
history blame
24.6 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# Automatic Tensor Parallelism
import re
from torch import nn
from .replace_policy import replace_policies
from typing import Optional
import torch
from deepspeed import comm as dist
from .layers import LinearAllreduce, LinearLayer, LmHeadLinearAllreduce
from deepspeed.accelerator import get_accelerator
from .fusedqkv_utils import require_tp_fused_qkvw, prepare_tp_fused_qkvw
from deepspeed.module_inject.tp_shard import get_shard_size, get_shard_size_list
def move(tensor, device):
if tensor.is_meta:
return torch.empty_like(tensor, device=device)
else:
# Using new tensors help in freeing memory (after split for example) was done before by calling clone().
# Using copy=True instead of clone() will help in case of cpu --> cpu.
# Otherwise to() will not create a new copy for the view of the full tensor, and it will not be de-referenced.
return tensor.to(device, copy=True)
class ReplaceWithTensorSlicing:
def __init__(self, mp_group=None, mp_size=1, out_dim=1, in_dim=0):
if mp_group is not None:
self.gpu_index = dist.get_rank(group=mp_group)
else:
self.gpu_index = 0
self.out_dim = out_dim
self.in_dim = in_dim
self.mp_size = mp_size
def merge_assert(self, dim1, dim2):
assert dim1 > dim2, \
'Merging tensors is not allowed here! Please use deepspeed load_checkpoint\
for merging your checkpoints before replacing the transformer layer with\
inference-kernels'
def strided_copy(self,
dst: Optional[torch.Tensor],
src: Optional[torch.Tensor],
num_splits: int,
int8: bool = False,
allocate_tensor: bool = False):
if src is None:
return src
src_shape = src.shape
dst_shape = dst.shape
outer_dim = 0 if int8 else -1
if allocate_tensor:
dst = torch.empty_like(dst)
src_split = torch.split(src.data, src.shape[outer_dim] // num_splits, dim=outer_dim)
if (len(src_shape) == 2 and len(dst_shape) == 2):
if src_shape[outer_dim] == dst_shape[self.out_dim]:
try:
dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape)
except:
print(dst.shape, src.shape)
exit()
dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
if hasattr(src, 'scale'):
dst.scale = src.scale
return dst
self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim])
qkv_size = dst_shape[self.out_dim] // num_splits
qkv_split = [torch.split(src_s, qkv_size, dim=outer_dim) for src_s in src_split]
weight_split = [
torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=outer_dim) for i in range(len(qkv_split[0]))
]
dst = dst.reshape(-1).data.copy_(weight_split[self.gpu_index].contiguous().reshape(-1)).reshape(
weight_split[self.gpu_index].shape)
else:
if src_shape[0] == dst_shape[0]:
return torch.nn.parameter.Parameter(src)
qkv_size = dst_shape[0] // num_splits
qkv_split = [torch.split(src_s, qkv_size, dim=0) for src_s in src_split]
bias_split = [torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=0) for i in range(len(qkv_split[0]))]
dst.data.copy_(bias_split[self.gpu_index].contiguous())
dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
if hasattr(src, 'scale'):
dst.scale = src.scale
return dst
def copy(self, dst, src, int8=False, allocate_tensor=False):
if src is None:
return src
assert not dst.data.is_meta # the torch.Tensor.copy_ method used below will silently fail on meta tensors
if allocate_tensor:
dst = torch.empty_like(dst)
outer_dim = 0 if int8 else 1
inner_dim = 1 if int8 else 0
src_shape = src.shape
dst_shape = dst.shape
if (len(src_shape) == 2 and len(dst_shape) == 2):
if src_shape[inner_dim] == dst_shape[self.in_dim] and src_shape[outer_dim] == dst_shape[self.out_dim]:
dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape)
else:
if src_shape[inner_dim] != dst_shape[self.in_dim]:
self.merge_assert(src_shape[inner_dim], dst_shape[self.in_dim])
dst.data.copy_(src[:, self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim]] if inner_dim == 1 else \
src[self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim], :])
else:
self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim])
dst.data.copy_(src[:, self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim]] if outer_dim == 1 else \
src[self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim], :])
else:
if src_shape[0] == dst_shape[0]:
dst = src if src.dtype == dst.dtype else dst.data.copy_(src)
else:
dst.data.copy_(src[self.gpu_index * dst_shape[-1]:(self.gpu_index + 1) * dst_shape[-1]])
dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
if hasattr(src, 'scale'):
dst.scale = src.scale
return dst
class Loading():
def is_load_module(module):
load_layers = [nn.Linear, nn.Embedding, nn.LayerNorm]
load_layer_names = [
"LPLayerNorm", "SharedEmbedding", "OPTLearnedPositionalEmbedding", "LlamaRMSNorm", "FalconLinear",
"MistralRMSNorm", "T5LayerNorm", "MixtralRMSNorm"
]
return module.__class__ in load_layers or module._get_name() in load_layer_names
def load_buffer(module, state_dict, prefix):
for name in module._buffers.keys():
if module._buffers[name].data.is_meta:
module._buffers[name] = torch.nn.parameter.Parameter(
data=torch.empty_like(module._buffers[name].data, device="cpu"),
requires_grad=module._buffers[name].data.requires_grad)
if prefix + name in state_dict.keys():
module._buffers[name].data.copy_(state_dict[prefix + name])
def load(module, state_dict, prefix, mp_group=None):
mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group)
if hasattr(module, 'weight'):
if module.weight.data.is_meta:
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
module.weight = torch.nn.parameter.Parameter(data=torch.empty_like(module.weight.data, device="cpu"),
requires_grad=module.weight.data.requires_grad)
if 'query_key_value' in prefix:
module.weight = mp_replace.strided_copy(module.weight.data,
state_dict[prefix + 'weight'],
num_splits=3)
else:
module.weight = mp_replace.copy(module.weight.data, state_dict[prefix + 'weight'])
else:
if hasattr(module, 'norm') and hasattr(module.norm, 'weight'):
if module.norm.weight.data.is_meta:
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
module.norm.weight = torch.nn.parameter.Parameter(
data=torch.empty_like(module.norm.weight.data, device="cpu"),
requires_grad=module.norm.weight.data.requires_grad)
module.norm.weight = mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight'])
if prefix + 'bias' in state_dict.keys():
if hasattr(module, 'bias'):
if module.bias.data.is_meta:
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"),
requires_grad=module.bias.data.requires_grad)
module.bias = mp_replace.copy(module.bias, state_dict[prefix + 'bias'])
else:
if hasattr(module, 'norm') and hasattr(module.norm, 'bias'):
if module.norm.bias.data.is_meta:
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
module.norm.bias = torch.nn.parameter.Parameter(
data=torch.empty_like(module.norm.bias.data, device="cpu"),
requires_grad=module.norm.bias.data.requires_grad)
module.norm.bias = mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias'])
class AutoTP():
def __init__(self, module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl):
self.module = module
self.all_reduce_linears = all_reduce_linears
self.prefix = prefix
self.state_dict = state_dict
self.mp_size = None
self.mp_group = None
self.linear_layer_setting = linear_layer_setting
self.orig_layer_impl = orig_layer_impl
self.linear_policies = None
self.conv_linear_layer = False
def in_module_list(module, module_list):
for item in module_list:
if type(item).__name__ == type(module).__name__:
return True
return False
def get_module_list(model):
mlist = []
for child in model.children():
if isinstance(child, nn.ModuleList):
for module in child.children():
if not mlist:
mlist = [module]
elif not AutoTP.in_module_list(module, mlist):
mlist = mlist + [module]
else:
mlist = mlist + AutoTP.get_module_list(child)
return mlist
def supported(model):
unsupported = ['deberta', 'flaubert', 'fsmt', 'gpt2', 'led', 'longformer', 'xlm', 'xlnet']
model = str(model)
key = re.search(r": (.*?)Model", model)
if key is None:
key = re.search(r": (.*?)Stack", model)
if key is None:
key = re.match(r"(.*?)Model", model)
assert key is not None, "Not able to determine model policy automatically. Please provide policy."
if key.group(1).lower() in unsupported:
return False
return True
def get_layers(parent, module):
layer_list = []
for key, submodule in module._modules.items():
if isinstance(submodule, nn.Linear):
layer_list = layer_list + [parent + "." + key]
elif isinstance(submodule, nn.LayerNorm) or key == 'LayerNorm' or key == 'layer_norm':
layer_list = layer_list + ["ln"]
else:
layer_list = layer_list + AutoTP.get_layers(key, submodule)
return layer_list
def update_policy_list(policy_list, new_module, new_gems):
if len(policy_list):
for i, policy in enumerate(policy_list):
# if module already exists in policy, combine gems and remove duplicates
if policy[0] == type(new_module):
new_gems = set(new_gems + policy[1])
policy_list[i] = tuple([type(new_module), new_gems])
return policy_list
policy_list.append(tuple([type(new_module), new_gems]))
return policy_list
def kernel_supported(module_list):
policy = []
for plcy in replace_policies:
# instantiate a throw-away policy in order to populate the _orig_layer_class
_ = plcy(None)
if isinstance(plcy._orig_layer_class, list):
for orig_layer_class in plcy._orig_layer_class:
policy.append(orig_layer_class)
elif plcy._orig_layer_class is not None:
policy.append(plcy._orig_layer_class)
for child in module_list:
if child.__class__ in policy:
return True
return False
def tp_parser(model):
policy_list = []
module_list = []
layer_list = []
gem_list = []
module_list = AutoTP.get_module_list(model)
assert AutoTP.supported(model), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \
if AutoTP.kernel_supported(module_list) else "AutoTP not supported for model. Please provide policy."
norm_layer_name_list = ['LayerNorm', 'layer_norm', 'ln_1', 'ln_2']
#ln_1 , ln_2 for Qwen
for module in module_list:
for key, submodule in module._modules.items():
if isinstance(submodule, nn.Linear):
layer_list = layer_list + ["." + key]
elif isinstance(submodule, nn.LayerNorm) or key in norm_layer_name_list:
layer_list = layer_list + ["ln"]
else:
layer_list = layer_list + AutoTP.get_layers(key, submodule)
for i, layer in enumerate(layer_list):
if layer == 'ln':
if layer_list[i - 1] != 'ln':
gem_list = gem_list + [layer_list[i - 1]]
elif 'out_proj' in layer:
gem_list = gem_list + [layer]
elif 'o_proj' in layer:
gem_list = gem_list + [layer]
elif 'down_proj' in layer:
gem_list = gem_list + [layer]
elif 'attention.dense' in layer and 'GPTNeoX' in str(model):
gem_list = gem_list + [layer]
elif 'self_attention.dense' in layer and 'falcon' in str(
type(module)): # this is a hack to get the right linear layer for this model!
gem_list = gem_list + [layer]
# Mixtral-7x8b used w2*act(w1*w3) linear. need to replace w2 to linearallreduce.
elif 'w2' in layer and 'Mixtral' in str(type(module)):
gem_list = gem_list + [layer]
layer_list = []
if gem_list != []:
gem_list = list(set(gem_list))
policy_list = AutoTP.update_policy_list(policy_list, module, gem_list)
gem_list = []
assert len(policy_list), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \
if AutoTP.kernel_supported(module_list) else "Not able to determine model policy automatically. Please provide policy."
return policy_list
def set_tensor_parallel_config(self, mp_size, mp_group):
self.mp_size = mp_size
self.mp_group = mp_group
def _replace(self, child, name, conv_linear_layer):
if getattr(child, "replaced", False) == True:
return
weight_shape = child.weight.shape
mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group)
# For mixtral-7x8b, need to skip MoE gate linear replace.
if name == "block_sparse_moe.gate":
return child
if name in self.all_reduce_linears:
# if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size]
# else [weight_shape[0], weight_shape[1] // mp_size]
if self.conv_linear_layer:
child.weight.data = child.weight.data.transpose(-1, -2).contiguous()
data = child.weight.data.split(get_shard_size_list(
weight_shape[0] if self.conv_linear_layer else weight_shape[1], self.mp_size, name),
dim=1)
data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach()
del data
setattr(child, "replaced", True)
if name == "lm_head" or name == 'embed_out':
return LmHeadLinearAllreduce(
torch.nn.parameter.Parameter(data_dc, requires_grad=False), dist.get_rank(), dist.get_world_size(),
child.bias if child.bias is None else torch.nn.parameter.Parameter(
move(child.bias,
get_accelerator().current_device_name())), self.mp_group)
return LinearAllreduce(torch.nn.parameter.Parameter(data_dc, requires_grad=False), child.bias if child.bias is None else \
torch.nn.parameter.Parameter(move(child.bias, get_accelerator().current_device_name())), self.mp_group)
else:
# if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size]
# else [weight_shape[0] // mp_size, weight_shape[1]]
if self.conv_linear_layer:
child.weight.data = child.weight.data.transpose(-1, -2).contiguous()
if require_tp_fused_qkvw(name, self.mp_size):
#Check and handle fused qkv for TP
#The copy is a regular copy, The shape of dst and src is the same
data_dc = move(
prepare_tp_fused_qkvw(self.module, child.weight.data, self.mp_size, mp_replace.gpu_index),
get_accelerator().current_device_name())
bias_data_dc = None if child.bias is None else move(
prepare_tp_fused_qkvw(self.module, child.bias.data, self.mp_size, mp_replace.gpu_index),
get_accelerator().current_device_name())
else:
data = child.weight.data.split(get_shard_size_list(weight_shape[0], self.mp_size, name),
dim=1 if self.conv_linear_layer else 0)
data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach()
del data
if child.bias is not None:
bias_data = child.bias.data.split(get_shard_size_list(
weight_shape[1] if self.conv_linear_layer else weight_shape[0], self.mp_size, name),
dim=0)
bias_data = move(bias_data[mp_replace.gpu_index], get_accelerator().current_device_name())
bias_data_dc = torch.nn.parameter.Parameter(bias_data, requires_grad=False)
del bias_data
else:
bias_data_dc = None
setattr(child, "replaced", True)
return LinearLayer(weight=torch.nn.parameter.Parameter(data_dc, requires_grad=False), bias=bias_data_dc)
def _slice_embedding(self, child, name, conv_linear_layer):
if getattr(child, "replaced", False) == True:
return
mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group)
if hasattr(child.weight, 'ds_tensor'):
data = child.weight.ds_tensor.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size), dim=1)
else:
data = child.weight.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size, name), dim=1)
data = data[mp_replace.gpu_index].to(get_accelerator().current_device_name())
data = torch.nn.parameter.Parameter(data, requires_grad=False)
new_embedding = nn.Embedding(child.weight.shape[0], get_shard_size(child.weight.shape[1], self.mp_size, name))
new_embedding.weight.data.copy_(data)
setattr(child, "replaced", True)
return new_embedding
def update_mp_params(self, child):
if getattr(child, "replaced", False) == True:
return
for param in [
"n_heads", "inner_dim", "num_heads", "num_kv", "num_attention_heads", "num_attn_heads",
"all_head_size", "embed_dim", "hidden_size", "num_key_value_heads", "num_kv_heads", "kv_n_heads",
"d_model"
]:
if hasattr(child, param):
param_val = getattr(child, param)
setattr(child, param, get_shard_size(param_val, self.mp_size))
setattr(child, "replaced", True)
def update_linear_policies(self):
self.conv_linear_layer = False
if self.linear_layer_setting is not None:
self.linear_policies = {self.linear_layer_setting[0]: self._replace}
if len(self.linear_layer_setting) == 2:
self.linear_policies.update({self.linear_layer_setting[1]: self._slice_embedding})
else:
import transformers
if self.orig_layer_impl is transformers.models.gpt2.modeling_gpt2.GPT2Block:
try:
self.conv_linear_layer = True
self.linear_policies = {transformers.pytorch_utils.Conv1D: self._replace}
except ImportError:
self.linear_policies = {nn.Linear: self._replace}
else:
self.linear_policies = {nn.Linear: self._replace, nn.Embedding: self._slice_embedding}
def _replace_module(self, r_module, prev_name='', prev_class_name=''):
for name, child in r_module.named_children():
if prev_class_name == "":
class_name = prev_name
elif prev_name == "":
class_name = prev_class_name
else:
class_name = prev_class_name + '.' + prev_name
checking_key = self.prefix + '.' + class_name + '.' + name + '.' if class_name != "" else self.prefix + '.' + name + '.'
if Loading.is_load_module(child) and self.state_dict is not None:
if any(checking_key in item for item in self.state_dict):
Loading.load(child, self.state_dict, checking_key, self.mp_group)
else:
continue
if len(child._buffers) != 0 and self.state_dict is not None:
Loading.load_buffer(child, self.state_dict, checking_key)
if child.__class__ in self.linear_policies:
setattr(r_module, name, self.linear_policies[child.__class__](child, prev_name + '.' + name,
self.conv_linear_layer))
elif any(isinstance(child, lp) for lp in self.linear_policies):
# Added for falcon model support
# Note: isinstance will account for class inheritance, child.__class__ does not
key = None
for lp in self.linear_policies:
if isinstance(child, lp):
key = lp
break
assert key is not None
setattr(r_module, name, self.linear_policies[key](child, prev_name + '.' + name,
self.conv_linear_layer))
else:
self.update_mp_params(child)
self._replace_module(child, name, class_name)
return r_module
def get_model_num_kv_heads(self, config):
num_kv_heads = None
kv_head_names = ['num_kv_heads', 'num_key_value_heads', 'num_attention_heads', 'n_heads']
for name in kv_head_names:
if hasattr(config, name):
num_kv_heads = getattr(config, name)
if num_kv_heads is not None:
break
return num_kv_heads
def _replace_last_linear_module(self, r_module):
if hasattr(r_module, "lm_head"):
name = "lm_head"
child = r_module.lm_head
elif hasattr(r_module, "embed_out"):
name = "embed_out"
child = r_module.embed_out
else:
return r_module
if child.__class__ in self.linear_policies:
setattr(r_module, name, self.linear_policies[child.__class__](child, name, self.conv_linear_layer))
return r_module