peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/module_quantize.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
def quantize_transformer_layer(orig_layer_impl, model, megatron=False, preln=False): | |
""" Quantize bert-style transformer layers with DeepSpeed's transformer layer | |
Arguments: | |
orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, | |
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer | |
model (torch.nn.Module): user's nn.module representing their model | |
megatron (bool): megatron model-parallel implementation (this is supported for inference only) | |
preln (bool): does the original layer implementation do pre or post layer norm? | |
Note: For Bert kind of models, we inject based on the DeepSpeed-Example models, if not setting huggingface flag. | |
Returns: | |
Updated nn.module with quantized transformer layers | |
""" | |
def quantize_weight(weight): | |
return weight.to(torch.int8) | |
def megatron_layer_quantize(layer): | |
layer.attention.query_key_value.weight.data = quantize_weight(layer.attention.query_key_value.weight.data) | |
layer.attention.dense.weight.data = quantize_weight(layer.attention.dense.weight.data) | |
layer.mlp.dense_h_to_4h.weight.data = quantize_weight(layer.mlp.dense_h_to_4h.weight.data) | |
layer.mlp.dense_4h_to_h.weight.data = quantize_weight(layer.mlp.dense_4h_to_h.weight.data) | |
def bert_layer_quantize(layer): | |
layer.attention.self.query.weight.data = quantize_weight(layer.attention.self.query.weight.data) | |
layer.attention.self.key.weight.data = quantize_weight(layer.attention.self.key.weight.data) | |
layer.attention.self.value.weight.data = quantize_weight(layer.attention.self.value.weight.data) | |
layer.attention.output.dense.weight.data = quantize_weight(layer.attention.output.dense.weight.data) | |
if preln: | |
layer.intermediate.dense_act.weight.data = quantize_weight(layer.intermediate.dense_act.weight.data) | |
else: | |
layer.intermediate.dense.weight.data = quantize_weight(layer.intermediate.dense.weight.data) | |
layer.output.dense.weight.data = quantize_weight(layer.output.dense.weight.data) | |
def quantize_fn(child): | |
if megatron: | |
# Quantize megatron GPT2 / GPT3 trained model | |
megatron_layer_quantize(child) | |
else: | |
# Quantize either DeepSpeed or HuggingFace trained model | |
bert_layer_quantize(child) | |
return child | |
return quantize_module(model=model, orig_class=orig_layer_impl, quantize_fn=quantize_fn) | |
def quantize_module(model, orig_class, quantize_fn): | |
policy = {orig_class: quantize_fn} | |
return _quantize_module(model, policy) | |
def _quantize_module(model, policies): | |
for name, child in model.named_children(): | |
if child.__class__ in policies: | |
orig = repr(child) | |
setattr(model, name, policies[child.__class__](child)) | |
new = getattr(model, name) | |
else: | |
_quantize_module(child, policies) | |
return model | |