peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/_plot
/regression.py
import numbers | |
import numpy as np | |
from ...utils import _safe_indexing, check_matplotlib_support, check_random_state | |
class PredictionErrorDisplay: | |
"""Visualization of the prediction error of a regression model. | |
This tool can display "residuals vs predicted" or "actual vs predicted" | |
using scatter plots to qualitatively assess the behavior of a regressor, | |
preferably on held-out data points. | |
See the details in the docstrings of | |
:func:`~sklearn.metrics.PredictionErrorDisplay.from_estimator` or | |
:func:`~sklearn.metrics.PredictionErrorDisplay.from_predictions` to | |
create a visualizer. All parameters are stored as attributes. | |
For general information regarding `scikit-learn` visualization tools, read | |
more in the :ref:`Visualization Guide <visualizations>`. | |
For details regarding interpreting these plots, refer to the | |
:ref:`Model Evaluation Guide <visualization_regression_evaluation>`. | |
.. versionadded:: 1.2 | |
Parameters | |
---------- | |
y_true : ndarray of shape (n_samples,) | |
True values. | |
y_pred : ndarray of shape (n_samples,) | |
Prediction values. | |
Attributes | |
---------- | |
line_ : matplotlib Artist | |
Optimal line representing `y_true == y_pred`. Therefore, it is a | |
diagonal line for `kind="predictions"` and a horizontal line for | |
`kind="residuals"`. | |
errors_lines_ : matplotlib Artist or None | |
Residual lines. If `with_errors=False`, then it is set to `None`. | |
scatter_ : matplotlib Artist | |
Scatter data points. | |
ax_ : matplotlib Axes | |
Axes with the different matplotlib axis. | |
figure_ : matplotlib Figure | |
Figure containing the scatter and lines. | |
See Also | |
-------- | |
PredictionErrorDisplay.from_estimator : Prediction error visualization | |
given an estimator and some data. | |
PredictionErrorDisplay.from_predictions : Prediction error visualization | |
given the true and predicted targets. | |
Examples | |
-------- | |
>>> import matplotlib.pyplot as plt | |
>>> from sklearn.datasets import load_diabetes | |
>>> from sklearn.linear_model import Ridge | |
>>> from sklearn.metrics import PredictionErrorDisplay | |
>>> X, y = load_diabetes(return_X_y=True) | |
>>> ridge = Ridge().fit(X, y) | |
>>> y_pred = ridge.predict(X) | |
>>> display = PredictionErrorDisplay(y_true=y, y_pred=y_pred) | |
>>> display.plot() | |
<...> | |
>>> plt.show() | |
""" | |
def __init__(self, *, y_true, y_pred): | |
self.y_true = y_true | |
self.y_pred = y_pred | |
def plot( | |
self, | |
ax=None, | |
*, | |
kind="residual_vs_predicted", | |
scatter_kwargs=None, | |
line_kwargs=None, | |
): | |
"""Plot visualization. | |
Extra keyword arguments will be passed to matplotlib's ``plot``. | |
Parameters | |
---------- | |
ax : matplotlib axes, default=None | |
Axes object to plot on. If `None`, a new figure and axes is | |
created. | |
kind : {"actual_vs_predicted", "residual_vs_predicted"}, \ | |
default="residual_vs_predicted" | |
The type of plot to draw: | |
- "actual_vs_predicted" draws the observed values (y-axis) vs. | |
the predicted values (x-axis). | |
- "residual_vs_predicted" draws the residuals, i.e. difference | |
between observed and predicted values, (y-axis) vs. the predicted | |
values (x-axis). | |
scatter_kwargs : dict, default=None | |
Dictionary with keywords passed to the `matplotlib.pyplot.scatter` | |
call. | |
line_kwargs : dict, default=None | |
Dictionary with keyword passed to the `matplotlib.pyplot.plot` | |
call to draw the optimal line. | |
Returns | |
------- | |
display : :class:`~sklearn.metrics.PredictionErrorDisplay` | |
Object that stores computed values. | |
""" | |
check_matplotlib_support(f"{self.__class__.__name__}.plot") | |
expected_kind = ("actual_vs_predicted", "residual_vs_predicted") | |
if kind not in expected_kind: | |
raise ValueError( | |
f"`kind` must be one of {', '.join(expected_kind)}. " | |
f"Got {kind!r} instead." | |
) | |
import matplotlib.pyplot as plt | |
if scatter_kwargs is None: | |
scatter_kwargs = {} | |
if line_kwargs is None: | |
line_kwargs = {} | |
default_scatter_kwargs = {"color": "tab:blue", "alpha": 0.8} | |
default_line_kwargs = {"color": "black", "alpha": 0.7, "linestyle": "--"} | |
scatter_kwargs = {**default_scatter_kwargs, **scatter_kwargs} | |
line_kwargs = {**default_line_kwargs, **line_kwargs} | |
if ax is None: | |
_, ax = plt.subplots() | |
if kind == "actual_vs_predicted": | |
max_value = max(np.max(self.y_true), np.max(self.y_pred)) | |
min_value = min(np.min(self.y_true), np.min(self.y_pred)) | |
self.line_ = ax.plot( | |
[min_value, max_value], [min_value, max_value], **line_kwargs | |
)[0] | |
x_data, y_data = self.y_pred, self.y_true | |
xlabel, ylabel = "Predicted values", "Actual values" | |
self.scatter_ = ax.scatter(x_data, y_data, **scatter_kwargs) | |
# force to have a squared axis | |
ax.set_aspect("equal", adjustable="datalim") | |
ax.set_xticks(np.linspace(min_value, max_value, num=5)) | |
ax.set_yticks(np.linspace(min_value, max_value, num=5)) | |
else: # kind == "residual_vs_predicted" | |
self.line_ = ax.plot( | |
[np.min(self.y_pred), np.max(self.y_pred)], | |
[0, 0], | |
**line_kwargs, | |
)[0] | |
self.scatter_ = ax.scatter( | |
self.y_pred, self.y_true - self.y_pred, **scatter_kwargs | |
) | |
xlabel, ylabel = "Predicted values", "Residuals (actual - predicted)" | |
ax.set(xlabel=xlabel, ylabel=ylabel) | |
self.ax_ = ax | |
self.figure_ = ax.figure | |
return self | |
def from_estimator( | |
cls, | |
estimator, | |
X, | |
y, | |
*, | |
kind="residual_vs_predicted", | |
subsample=1_000, | |
random_state=None, | |
ax=None, | |
scatter_kwargs=None, | |
line_kwargs=None, | |
): | |
"""Plot the prediction error given a regressor and some data. | |
For general information regarding `scikit-learn` visualization tools, | |
read more in the :ref:`Visualization Guide <visualizations>`. | |
For details regarding interpreting these plots, refer to the | |
:ref:`Model Evaluation Guide <visualization_regression_evaluation>`. | |
.. versionadded:: 1.2 | |
Parameters | |
---------- | |
estimator : estimator instance | |
Fitted regressor or a fitted :class:`~sklearn.pipeline.Pipeline` | |
in which the last estimator is a regressor. | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input values. | |
y : array-like of shape (n_samples,) | |
Target values. | |
kind : {"actual_vs_predicted", "residual_vs_predicted"}, \ | |
default="residual_vs_predicted" | |
The type of plot to draw: | |
- "actual_vs_predicted" draws the observed values (y-axis) vs. | |
the predicted values (x-axis). | |
- "residual_vs_predicted" draws the residuals, i.e. difference | |
between observed and predicted values, (y-axis) vs. the predicted | |
values (x-axis). | |
subsample : float, int or None, default=1_000 | |
Sampling the samples to be shown on the scatter plot. If `float`, | |
it should be between 0 and 1 and represents the proportion of the | |
original dataset. If `int`, it represents the number of samples | |
display on the scatter plot. If `None`, no subsampling will be | |
applied. by default, 1000 samples or less will be displayed. | |
random_state : int or RandomState, default=None | |
Controls the randomness when `subsample` is not `None`. | |
See :term:`Glossary <random_state>` for details. | |
ax : matplotlib axes, default=None | |
Axes object to plot on. If `None`, a new figure and axes is | |
created. | |
scatter_kwargs : dict, default=None | |
Dictionary with keywords passed to the `matplotlib.pyplot.scatter` | |
call. | |
line_kwargs : dict, default=None | |
Dictionary with keyword passed to the `matplotlib.pyplot.plot` | |
call to draw the optimal line. | |
Returns | |
------- | |
display : :class:`~sklearn.metrics.PredictionErrorDisplay` | |
Object that stores the computed values. | |
See Also | |
-------- | |
PredictionErrorDisplay : Prediction error visualization for regression. | |
PredictionErrorDisplay.from_predictions : Prediction error visualization | |
given the true and predicted targets. | |
Examples | |
-------- | |
>>> import matplotlib.pyplot as plt | |
>>> from sklearn.datasets import load_diabetes | |
>>> from sklearn.linear_model import Ridge | |
>>> from sklearn.metrics import PredictionErrorDisplay | |
>>> X, y = load_diabetes(return_X_y=True) | |
>>> ridge = Ridge().fit(X, y) | |
>>> disp = PredictionErrorDisplay.from_estimator(ridge, X, y) | |
>>> plt.show() | |
""" | |
check_matplotlib_support(f"{cls.__name__}.from_estimator") | |
y_pred = estimator.predict(X) | |
return cls.from_predictions( | |
y_true=y, | |
y_pred=y_pred, | |
kind=kind, | |
subsample=subsample, | |
random_state=random_state, | |
ax=ax, | |
scatter_kwargs=scatter_kwargs, | |
line_kwargs=line_kwargs, | |
) | |
def from_predictions( | |
cls, | |
y_true, | |
y_pred, | |
*, | |
kind="residual_vs_predicted", | |
subsample=1_000, | |
random_state=None, | |
ax=None, | |
scatter_kwargs=None, | |
line_kwargs=None, | |
): | |
"""Plot the prediction error given the true and predicted targets. | |
For general information regarding `scikit-learn` visualization tools, | |
read more in the :ref:`Visualization Guide <visualizations>`. | |
For details regarding interpreting these plots, refer to the | |
:ref:`Model Evaluation Guide <visualization_regression_evaluation>`. | |
.. versionadded:: 1.2 | |
Parameters | |
---------- | |
y_true : array-like of shape (n_samples,) | |
True target values. | |
y_pred : array-like of shape (n_samples,) | |
Predicted target values. | |
kind : {"actual_vs_predicted", "residual_vs_predicted"}, \ | |
default="residual_vs_predicted" | |
The type of plot to draw: | |
- "actual_vs_predicted" draws the observed values (y-axis) vs. | |
the predicted values (x-axis). | |
- "residual_vs_predicted" draws the residuals, i.e. difference | |
between observed and predicted values, (y-axis) vs. the predicted | |
values (x-axis). | |
subsample : float, int or None, default=1_000 | |
Sampling the samples to be shown on the scatter plot. If `float`, | |
it should be between 0 and 1 and represents the proportion of the | |
original dataset. If `int`, it represents the number of samples | |
display on the scatter plot. If `None`, no subsampling will be | |
applied. by default, 1000 samples or less will be displayed. | |
random_state : int or RandomState, default=None | |
Controls the randomness when `subsample` is not `None`. | |
See :term:`Glossary <random_state>` for details. | |
ax : matplotlib axes, default=None | |
Axes object to plot on. If `None`, a new figure and axes is | |
created. | |
scatter_kwargs : dict, default=None | |
Dictionary with keywords passed to the `matplotlib.pyplot.scatter` | |
call. | |
line_kwargs : dict, default=None | |
Dictionary with keyword passed to the `matplotlib.pyplot.plot` | |
call to draw the optimal line. | |
Returns | |
------- | |
display : :class:`~sklearn.metrics.PredictionErrorDisplay` | |
Object that stores the computed values. | |
See Also | |
-------- | |
PredictionErrorDisplay : Prediction error visualization for regression. | |
PredictionErrorDisplay.from_estimator : Prediction error visualization | |
given an estimator and some data. | |
Examples | |
-------- | |
>>> import matplotlib.pyplot as plt | |
>>> from sklearn.datasets import load_diabetes | |
>>> from sklearn.linear_model import Ridge | |
>>> from sklearn.metrics import PredictionErrorDisplay | |
>>> X, y = load_diabetes(return_X_y=True) | |
>>> ridge = Ridge().fit(X, y) | |
>>> y_pred = ridge.predict(X) | |
>>> disp = PredictionErrorDisplay.from_predictions(y_true=y, y_pred=y_pred) | |
>>> plt.show() | |
""" | |
check_matplotlib_support(f"{cls.__name__}.from_predictions") | |
random_state = check_random_state(random_state) | |
n_samples = len(y_true) | |
if isinstance(subsample, numbers.Integral): | |
if subsample <= 0: | |
raise ValueError( | |
f"When an integer, subsample={subsample} should be positive." | |
) | |
elif isinstance(subsample, numbers.Real): | |
if subsample <= 0 or subsample >= 1: | |
raise ValueError( | |
f"When a floating-point, subsample={subsample} should" | |
" be in the (0, 1) range." | |
) | |
subsample = int(n_samples * subsample) | |
if subsample is not None and subsample < n_samples: | |
indices = random_state.choice(np.arange(n_samples), size=subsample) | |
y_true = _safe_indexing(y_true, indices, axis=0) | |
y_pred = _safe_indexing(y_pred, indices, axis=0) | |
viz = cls( | |
y_true=y_true, | |
y_pred=y_pred, | |
) | |
return viz.plot( | |
ax=ax, | |
kind=kind, | |
scatter_kwargs=scatter_kwargs, | |
line_kwargs=line_kwargs, | |
) | |